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A formal solution is given for the motion of a highly viscous fluid when a symmetrical pressure
is applied at the surface. This is applied to the subsidence of a cylindrical body of constant
thickness and to the recovery of the fluid after removal of a load. Applying the latter case to
the plastic recoil of the earth after the disappearance of the Pleistocene ice sheets, it is found
that the geological data imply a kinematic viscosity of the order of 3X10% c.g.s. units.

INTRODUCTION

BSERVATIONS on the elevated and tilted
shore lines of the glaciated tracts of Europe
and North America have shown that during and
following the disappearance of the Pleistocene
ice sheets the earth returned to a configuration of
equilibrium by delayed plastic flow as well as by
immediate elastic recovery. The progress of this
recovery has been dated by means of varved
glacial clays and F. Nansen! has constructed
curves illustrating the uplift of the Fennoscan-
dian region from 16,000 B.C. to the present time.
This suggests the possibility of determining the
effective viscosity of the earth’s outer shells under
forces of long duration.

In the present paper we shall neglect the curva-
ture of the earth and treat the problem of the
motion of a semi-infinite, incompressible, viscous
fluid under the action of a radially symmetrical
pressure applied at the free surface. Since, in the
case of the earth, we are dealing with extremely
small accelerations and very high viscosity, we
may neglect the inertial terms in the equations of
motion in comparison with those arising from
viscous forces. We shall first treat the case of an
arbitrary symmetrical impressed pressure and
then apply the results to two special cases, (1) a
constant load of radius 7, applied at =0, and
(2) recovery after the removal of an arbitrary
symmetrical load.

1. FORMULATION OF THE PROBLEM
Neglecting the terms arising from the accelera-

tion, the equations of motion of a fluid of vis-
cosity 7 and density p in a gravitational field g
are;—
7)V2V=grad1’—(0, 01 Pg), (1'1)
div V=0, (1.2)

1 ¥, Nansen, The Earth's Crust, Its Surface Forms and
Isostatic Adjustment (1928), Oslo.

where the positive 2 axis has been taken as
directed downward. Transforming to cylindrical
coordinates (r, 2z, ¢), assuming radial symmetry,
and setting p= p—pgsz, these become

3/ror(raV,/or)—=V.,/r*+3*V,/dz?=3p/qdr, (1.11)
3/rdr(raV,/ar)+92V ., /art=9p/49z, (1.12)
a/rdr(rV,)+a8V,/92=0. (1.21)

The components of stress in which we are inter-
ested are

Pzz= —<Z_)+pg2)+2176 Vz/E)z, (1.31)
prr=1(dV+/02+0V./07). (1.32)

The boundary conditions are that on the free
surface p., shall vanish and p,, shall equal the
applied stress, and at infinity the stresses and
velocities shall vanish.

Let the equation of the free surface be 2= {(7, ¢)
and take the undisturbed surface as the plane
z=0. If we assume that { remains small in com-
parison with other distances entering into the
problem, such as the radius of the applied load,
we may replace the value of 3V ,/dz at z=¢ by its
value at =0, and similarly with all the other
quantities appearing in (1.31) and (1.32) except
pgs.? Calling the applied pressure —o(r, £), the
boundary conditions become

p(r, 0, &)+ pgt(r, £

—29(8V./82)(r, 0, §) =a(r, 1), (1.41)
(0V,/82+0V./07)m0=0 (1.42)
and a¢/at="V,(r,0,1). (1.43)

2. GENERAL SOLUTION FOR ARBITRARY IM-
PRESSED LoAD

Setting V,=Ri(r)Z.(3), V.=Ry(r)Z:(z), p

=Ry(r)Z3(z) in (1.11), (1.12), and (1.21), and

2 This is the sort of approximation commonly made in

treating waves on the surface of a fluid. Cf., H. Lamb,
Hydrodynamics, fifth edition, Chaps. IX. & XI.
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separating variables, we have the Bessel equa-
tions,

d/rdr(rdR,/dr) — Ri/r*+ AR, =0, (2.11)
d/rdr(rdRs/dr) +NRy=0 (2.12)
and R3;=const. X Rs. (2.13)

The appropriate solutions are R1= J1(A\7), Rey=R;
= Jo(\r), where we have included the constant
factor in R; in the z factor. The 2 equations are

422, /dz*— N2 Z = —\Zs /7, (2.21)
d2Z5/d2? — N2 Zy=d 75/ nds, (2.22)
AZ\+dZs/dz=0. (2.23)

Eliminating Z; and Z;, we have the fourth order
equation for Z,

' Zs/dz* —2NW2Z [dz* A Z,=0.  (2.3)

The solutions of this equation are e**?, ge™¢ of
which only those with negative exponents are
appropriate to the present problem. The solutions
of the set (2.21), (2.22), (2.23) are then,

Zy=e¢**(4+Bz), (2.41)
Zi=e*(4—B/\+Bz2), (2.42)
Z3=2nBe =, (2.43)

In order to satisfy the boundary condition
(1.42) we have B=X4.> We must now satisfy
(1.41) with functions of the form

V=2 oA N)e 22 T1(Ar)AdX, (2.51)
Vo= SiCAN e 22 To(Ar) (1422)dN, (2.52)
=24 L2A(N)e Ty (Ar)Ad. (2.53)

From (2.51) aV./9z=0 at 2=0, hence (1.41)
becomes

20 LA ToOININ+ pgt = (7, £). (2.61)

4 will evidently have to be a function of the time
in order to satisfy this equation, hence we may
differentiate with réspect to ¢ and use (1.43),
Then

JooTo(Ar) {2904 /ot +- pgAd/N}AdN=30/0t. (2.62)

3 Note that this is the same relationship that we would
get if instead of the vanishing of p,, at 2=0 we took as a
boundary condition that V,=0 at z=0. The latter is the
condition we would have if we assumed that on the surface
of the fluid there lay a solid crust capable of resisting
tangential deformation, but opposing a negligible resistance
to vertical deformation.
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Application of the Fourier-Bessel inversion
formula yields a first order differential equation
for 4 as a function of &.

2104 /3t pgA /= f37(da/0t) Jo(Ar)rdr.  (2.7)
The solution is*
A =K()\)e—pat/2n)\
1 t ro Jg
+—e‘P0”2"*ff —erotI2\J o (Ar)rdrds, (2.81)
277 0 0 at

where K(\) must be determined from the initial
conditions. Integrating the second term by parts
with respect to ¢

" 9o pg
—e"‘”/“)‘dt‘:—0'6”””2")‘——00——[Ue"g"z")‘dt.
0

o Ot 29\
Hence
1 o0
A=K — f o ToNP)rdr
7+

1 (o0
_ _e—pﬂtl2fl)\f ocoJo(Ar)rdr
29 0

g ¢ ]
e"””“"f f oerrti2n: Jo(hr)rdrdt. (2.82)
45\ 0o Yo

This expression, with Eqs. (2.51), (2.52), (2.53)
is the formal solution of the problem.

3. SUBSIDENCE OF A CYLINDRICAL Bopy

If we suppose that the fluid is initially at rest
and that at £=0 a uniform circular load of radius
7o is placed on the surface,

0; r>r
o(r, )=<0; =0 (3.1)
g=const; r<rg t>0.
Then K(A\)=0, and by using
Joo To(\)rdr=(ro/N) J1(\7)
A = (oro/29N\)ee0ti2 T, (\ry). (3.2)

By substituting in (2.51), (2.52) and (2.53),
V= (zo70/27) fo7€ Pot/2m—Az
XT1(Aro)J1(Ar)dN,  (3.31)
*E. L. Ince, Ordinary Differential Equations, p. 21.
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Vo= (ore/2n) fo7eroti2nr—2z
X J1(Aro) Jo(Ar) (1 4A2)/N)dx,  (3.32)
P=aro fo e Potl2n =2z T (\po) Jo(Ar)dN, (3.33)
§=JSo'Valr, 0, f)dt=(or0/ pg) Jo™(1 —er0t/2m)

XTi(Are) Jo(Ar)dN.  (3.34)
We may note as a check that as t—
§—(aro/pg) J37T1(Nr0) Jo(Ar)dN
0 ;o r>r
={ (3.35)
O'/pg; r <ro,

so that the system approaches the configuration
of hydrostatic equilibrium asymptotically as it
should.

It does not appear to be possible to express the
above integrals in closed form. They may be put
in dimensionless form for numerical or mechan-
ical integration by setting

T=pgrot/2n, x=r/*0, y=23/ro,
K=2r, v,=2nV.,/aro, v,=2qV./o70,
r=p/o, u=pgt/o.
Then
v,=y fo e KKy J (K) J(Kx)dK, (3.41)
v, = fi"e TE-Ku ] (K)
X Jo(Kx)(1+Ky)/K)dK, (3.42)
a= fi%e E-Ev ] (K)Jo(Kx)dK, (3.43)
w=fi"(1—e "E)J1(K)Jo(Kx)dK. (3.44)

4. RECOVERY AFTER REMOVAL OF LOAD

Setting the applied pressure, o, equal to zero
over the whole surface in (2.82) we have

A=K (\)erot2m,

K(\) can then be determined either from the
initial velocity at the surface or from the initial
configuration of the surface. From (2.52)

Var, 0,0)= KM Jo(Ar)dh.  (4.11)
Hence, by inversion,
KN =Mfi"V,(r, 0,0)Jo(\r)rdr. (4.12)
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We also have
F=¢(r, 0)+ fo!V.(r, 0, 0)ds.
={(r, 0)+(2n/pg) SSTKN) (1 —ereti2m)
X Jo(Ar)NdX.  (4.21)

As ¢ becomes infinite, { must approach zero,
therefore

¢(r, 0)= —(21/pg) SSTKN)Jo(AMr)NdN  (4.22)
or, inverting,
K\ =—(pg/2n) fo7¢ (7, 0)Jo(N\r)rdr.

Thus the subsequent motion is completely deter-
mined if we know either ¢(r, 0) or V,(r, 0, 0).

(4.23)

5. APPLICATION TO PosT-GraciaL UPLIFT OF
FENNOSCANDIA

It would, of course, be impossible to calculate
the motion of the earth throughout the history of
the retreat of a continental ice sheet, since both
the radius and the thickness varied with time in
an irregular and, in the case of the thickness, an
unknown manner. Moreover, an important part
of the uplift (estimated as one-sixth to one-quar-
ter of the total) was due not to plastic flow but
to elastic recovery. However, the results of the
last section show that we may treat the part of
the uplift which took place after the complete
disappearance of the ice without any knowledge
of how fast it retreated or how its thickness
varied provided we know the rate of uplift at all
distances from the center, or the configuration of
the surface, at some time subsequent to the
completion of the melting. During this part of the
motion we do not need to consider the elastic
component, since that would keep pace with the
decrease in the load and would be complete when
the ice had disappeared.

Nansen’s curves (Figs. 1 and 2) give the
amount and rate of uplift at a point in Angerman-
land near the center of the Fennoscandian glaci-
ated region and at Oslo, about 500 km distant.
In order to use this data it will be necessary to
assume a reasonable form for either {(z, 0), the
initial configuration of the surface, or Vy(r, 0, 0),
the initial rate of uplift, and fit the assumed func-
tion to the values given for these two points.
It is reasonable to suppose that V,(r, 0, 0) will
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F16. 1. Uplift of the Fennoscandian region. Abscissas are
times in units of 1000 years B.C. and A.D. Ordinates
(solid curves) are depths of the surface in meters below
equilibrium level. Ordinates of the dotted curve give the
radius of the ice cap in kilometers.

have a maximum at the center and will decrease
outward in a way that can be represented with
sufficient accuracy by an exponential function.
We shall suppose then that

V.(r, 0, 0) = —ae ", (5.1)

using the square of 7 in the exponent rather than
the first power in order to avoid having a cusp
at the center. By substituting in (4.12),

K(\) = —a\fo"e P Jo(\r)rdr

= — (aN/2bDe N1, (5.2)

By using (4.21) and (4.22),

¢=(an/ pgh?) fye MW —eati2\ Jo(Ar)N2dN.  (5.3)

Atr=0,t=0

¢(0, 0) = (an/pgh?) Sfi7e ¥/ #*Ned\ =2+/m(nab/ pg).

The kinematic viscosity, »=1/p, is then given by
y=g¢(0, 0)/2+/7ab. (5.41)

Since we are at liberty, in applying the above
theory, to take any time after the disappearance
of the ice as the initial instant {= 0, we may check
roughly the validity of the assumption that
V.(r, 0, 0) does not depart very widely from the
form given in (5.1) by calculating » from (5.41)
for various initial instants and seeing that it re-
mains of the same order of magnitude. If we ex-
press {(0, 0) in meters, a in meters per century,
and b in reciprocal kilometers, » is given in c.g.s.
units by

»=8.73X10%¢(0, 0)/ab. (5.42)
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F16. 2. Rate of uplift in meters per century. Abscissas in
units of 1000 years.

¢(0, 0). may then be read from the curve for
Angermanland in Fig. 1, @ from that in Fig. 2,
and & may be calculated from the curve for Oslo
in Fig. 2 by setting =500 in (5.1). In Table I the
values of these quantities are given for various
times taken as the initial instant.

The initial configuration of the surface, corre-
sponding to the assumed initial velocity (5.1),
is given by

c(r, 0) = (an/ pgb?) f17e 214 Jo(Ar)A2dN (5.51)
or
¢(r, 0)/£(0,0)

= (1/24/7) [e T 0NN, (5.52)

where x= br. Values of this quantity as a function
of x are given in Table Il. Taking the initial
instant at 5000 B.C., and using 5=1.27X1073
km™!, the initial profile of the surface and rate of
uplift are plotted in Fig. 3. A complete observed
profile is not available to compare with the calcu-
lated curve in order to determine how closely the
assumptions made fit the actual case, but it may
be noted that Fig. 3 indicates a depression of the
surface at 500 km radius of about 76 meters.
This is to be compared with 85 meters at Oslo at
5000 B.C. as read from the curve of Fig. 1.

In comparing the figure given above for the
earth’s kinematic viscosity with experimentally
determined viscosities of solid substances it
should be noted that two quite distinct properties

TABLE 1. Values of the quantities entering in Eq. (5.42) for
various times taken as the initial instant.

t=0 a bX10? ¢(0,0) w»Xx10™2
5,000 B.C. 3.9 1.27+.07 147 2.6+0.2
4,000 “ 2.7 1.19+.09 118 3.240.3
3,000 * 2.2 1.244.11 94 3.0+0.4
2,000 “ 1.8 1.25+.15 74 2.940.5
Mean value: »=2.9 X102 cm? sec.™
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Fic. 3. Rate of uplift and surface profile at 5000 B.C. Vertical exaggeration of profile 1.7 X10? times.

TasLe II.

x ¢(r, 0)/¢(0, 0) E ¢$(r, 0)/5(0, 0)
0.0 +1.000 1.0 +0.155
0.2 +0.922 1.5 —0.076
0.4 +0.780 2.0 —0.068
0.6 +0.562 2.5 —0.033
0.8 +0.328

of matter are often included in the term.’ One,
which is better designated as inner friction, relates
to the damping of elastic vibrations, the other
relates to plastic flow. The coefficient of inner
friction is of the order of 10% or 10° c.g.s. units for
most metals and is higher for soft than for hard
substances. The “true’’ coefficient of viscosity is
more difficult to measure experimentally, differ-
ent observers giving widely varying values,® and,
in general, increases rapidly with the hardness of
the substance. The figures given in Table III are
taken from Gutenberg and Schlechtweg’s paper.
In view of the great increase of viscosity with the
hardness of the material and the pressure, it is not
surprising to find that for silicates under the
enormous pressures within the earth the viscosity
is as high as we have found here, even when the
decrease of viscosity at high temperatures is
taken into consideration.

R. W. van Bemmelen and H. P. Berlage” have
recently made an estimate of the viscosity of the
earth on the basis of post-glacial uplift using a

5 B. Gutenberg and H. S. Schlechtweg, Viscosity and
Inner Friction of Solid Bodies, Physik. Zeits. 31, 745 (1930).

¢ W. D. Kusnezow, Zeits. f. Physik. 51, 239 (1928).

7R. W. van Bemmelen and H. P. Berlage, Gerl. Beit. z.
Geophys. 43, 19 (1934).

TABLE III. Values taken for the coefficient of viscosity of
various substances.

MATERIAL TEMPERATURE 7 (g. cm™ sec.‘l).
Shoemakers wax 15°C 2 X10®
Asphalt 15 3 X100
Ice 0 5 X101
Glass 575 1 xX10w
Lead 20 1 X10w%
Calcite 18 1.5X10®
Rocksalt 18 2 X10

method quite different from that followed hree.
They find 7= 1.3 X10% which, since they assume
a density of 3, is gquivalent to = 0.4 X 102, Their
method makes use of special hypotheses concern-
ing the structure and dynamics of the earth’s
crust and is only indirectly based on hydro-
dynamical theory. They also assume that the
flow is confined to a layer 100 km thick and it is
therefore to be expected that their value should
be lower than that found by the present method.
According to their theory » varies as the cube of
the assumed thickness of the layer, hence if it
were taken to be 400 km, their figure would be
comparable with ours.

In conclusion the author wishes to express his
thanks to Professor 1. B. Slichter, under whose
guidance this work was done, for many helpful
suggestions and criticisms. The graphical evalua-
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kindly carried out by members of the Mathe-
matics Laboratory of the Massachusetts Institute
of Technology. Acknowledgment should also be
made to Professor R. A. Daly’s stimulating lec-
tures ‘on Pleistocene movements of the earth’s
crust, which originally suggested the problem.
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