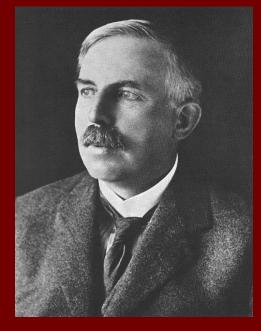
THERMOMECHANICAL MODELS OF SOILS

WHAT MAKES A GOOD THEORY?

WHAT MAKES A GOOD THEORY?

"A GOOD THEORY SHOULD BE EXPLAINABLE TO A BARMAID!!"



SIR EARNEST RUTHERFORD

THEORY CONSTRUCTION

EXPERIMENTS

CONCEPTUAL MODELS

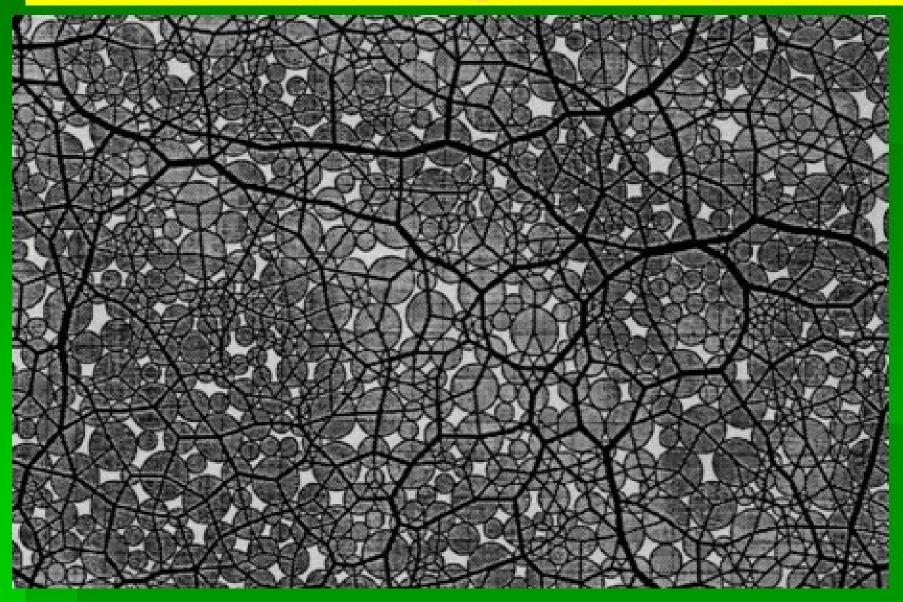
PREDICTIONS

MATHEMATICAL MODELS

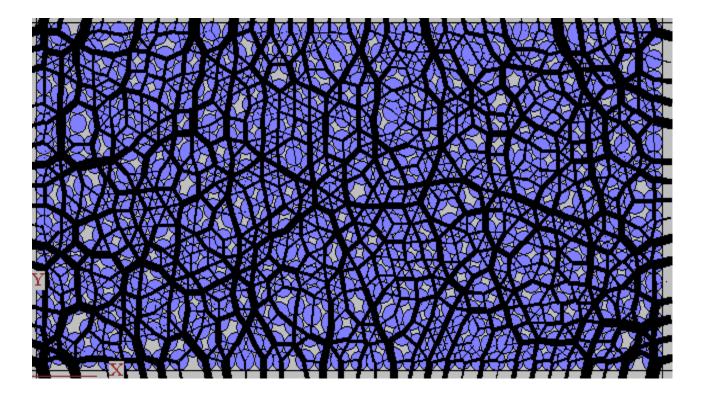
"STORED PLASTIC WORK" or "FROZEN ELASTIC ENERGY"

Laurits Bjerrum

Discrete element simulation, showing force chains (Radjai et al 1996)



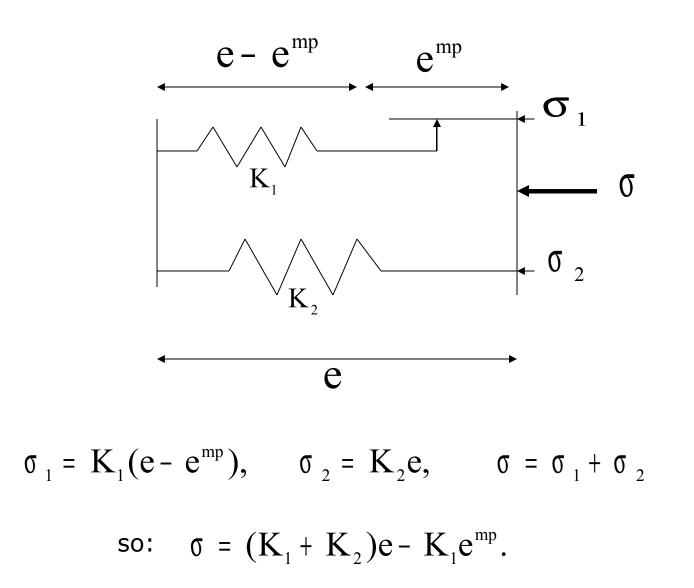
DEM simulation of isotropic compression, showing weak and strong networks (force chains)



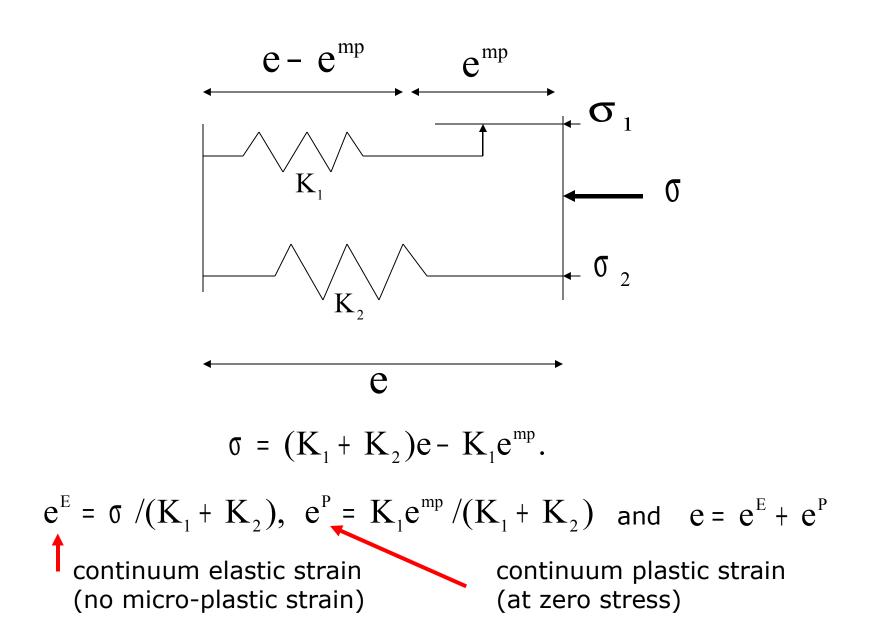
The deformation and stress distribution on the micro-scale is highly inhomogeneous

SIMPLE SPRING MODELS

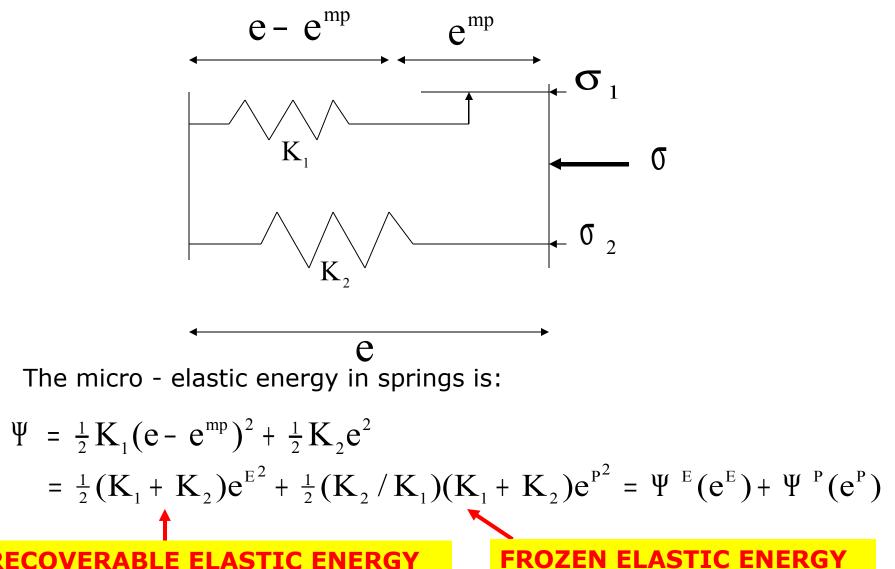
A SIMPLE SCHEMATIC MODEL -1



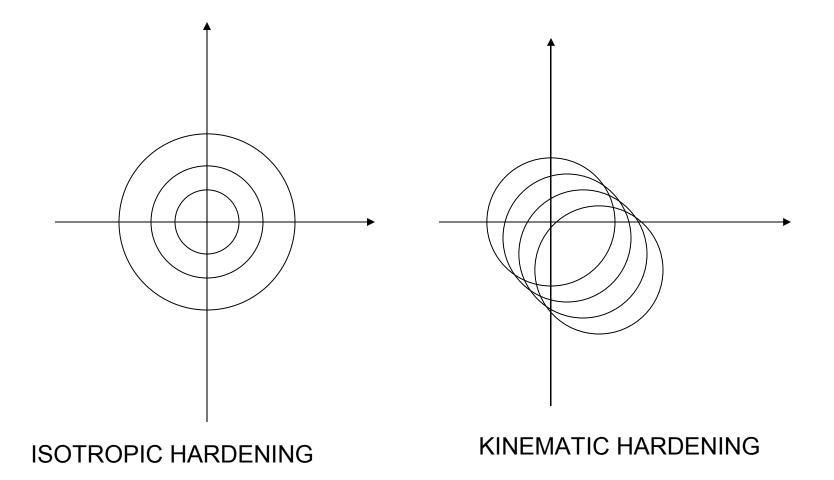
A SIMPLE SCHEMATIC MODEL -2



A SIMPLE SCHEMATIC MODEL -3



HARDENING LAWS



SOURCE OF KINEMATIC HARDENING

 $\Psi = \frac{1}{2}(K_1 + K_2)e^{E^2} + \frac{1}{2}(K_2 / K_1)(K_1 + K_2)e^{P^2} = \Psi^{E}(e^{E}) + \Psi^{P}(e^{P})$

Differentiate with respect to time:

$$\begin{split} \dot{\Psi} &= (K_1 + K_2)e^{E}\dot{e}^{E} + (K_2 / K_1)(K_1 + K_2)e^{P}\dot{e}^{P} = \dot{\Psi}^{E}(e^{E}) + \dot{\Psi}^{P}(e^{P}) \\ ie \quad \dot{\Psi} &= \sigma \dot{e}^{E} + \sigma^{S}\dot{e}^{P} = \dot{\Psi}^{E}(e^{E}) + \dot{\Psi}^{P}(e^{P}) \\ where \quad \sigma^{S} &= (K_2 / K_1)(K_1 + K_2)e^{P} \quad \text{is the shift stress.} \\ \text{If the ``micro-yield condition'' is: } - Y < \sigma_1 < Y \\ \text{The ``macro or continuum yield condition'' is } - Y + \sigma^{S} < \sigma < Y + \sigma^{S} \\ \end{split}$$

THUS KINEMATIC HARDENING/SOFTENING IS DUE TO GENERATION/RECOVERY OF FROZEN ELASTIC ENERGY

HOMOGENIZATION

BASIC HOMOGENIZATION THEORY

$$\langle * \rangle = \frac{1}{V} \int_{RVE} (*) dV$$

 $\langle \sigma^{m} \rangle = \sigma, \quad \langle e^{m} \rangle = e$
 RVE

$$\langle \sigma^{m} : e^{m} \rangle = \sigma : e$$

PROVIDED THE MICRO-STRESS FIELD IS STATICALLY ADMISSIBLE, AND MICRO-STRAIN FIELD IS KINEMATICALLY ADMISSIBLE

ELASTIC-PLASTIC MATERIALS - 1

THE ELASTIC AND PLASTIC PARTS OF THE STRAIN TENSOR ARE NOT KINEMATICALLY ADMISSIBLE

$$e^m = e^{me} + e^{mp}$$

$$e^{e} \neq \langle e^{me} \rangle$$
, and $e^{p} \neq \langle e^{mp} \rangle$

THE CONTINUUM ELASTIC AND PLASTIC STRAINS ARE NOT THE AVERAGES OF THE MICRO-ELASTIC AND PLASTIC STRAINS.

ELASTIC-PLASTIC MATERIALS - 2

IN UNLOADED STATE:

 $\sigma = 0$

$$e^{me} = e^{mr}$$
, so $e^m \equiv e^{mR} = e^{mr} + e^{mp}$

$$e^{P} \equiv \langle e^{mR} \rangle$$

$$\sigma^{mr} \equiv K : e^{mr}, \text{ where } \langle \sigma^{mr} \rangle = 0$$

Define:
$$\sigma^{mE} = \sigma^{m} - \sigma^{mr} \Rightarrow \langle \sigma^{mE} \rangle = \langle \sigma^{m} \rangle = \sigma^{m}$$

ELASTIC-PLASTIC MATERIALS - 3

IN LOADED STATE:

$$\sigma^{\mathrm{mE}} = \sigma^{\mathrm{m}} - \sigma^{\mathrm{mr}} \Rightarrow K^{-1} : \sigma^{\mathrm{mE}} = K^{-1} : \sigma^{\mathrm{m}} - K^{-1} : \sigma^{\mathrm{mr}}$$

$$\Rightarrow e^{mE} = e^{me} - e^{mr}$$

$$\Rightarrow e^{m} = e^{me} + e^{mp} = e^{mE} + e^{mr} + e^{mp} = e^{mE} + e^{mR}$$

$$\Rightarrow e = \langle e^{m} \rangle = \langle e^{mE} \rangle + \langle e^{mR} \rangle = e^{e} + e^{p}$$

$$\Rightarrow e = \langle e \rangle = \langle e \rangle + \langle e \rangle = e^{i} + e^{i}$$

ie:
$$\langle e^{mE} \rangle = e^{e}, \langle e^{mR} \rangle = e^{p}$$

(1) The continuum elastic strain is the average of the "fictitious" micro-elastic strain, which would pertain in the RVE, if there were no yielding.

(2) The continuum plastic strain is the average of the sum of the micro-plastic and micro-elastic residual strain

STORED PLASTIC WORK

THE INCREMENT OF WORK IS $dW = \sigma : de = \langle \sigma^m : de^m \rangle \Rightarrow$

 \Rightarrow dW = dW^e + dW^s + dW^d, where

$$dW^{e} = \langle \sigma^{mE} : de^{mE} \rangle$$
 "ELASTIC WORK"

 $dW^{s} = \langle \sigma^{mr} : de^{mr} \rangle$ "STORED PLASTIC WORK"

 $dW^{d} = \langle \sigma : de^{mp} \rangle$ "DISSIPATED WORK"

THERMOMECHANICAL FORMULATION

The first and second laws of thermodynamics for isothermal deformations:

Rate of working of applied stresses

Rate of dissipation

Rate of change of free energy

Note \hat{W} and $\hat{\Phi}$ are not "proper" time derivatives

We will assume that the elastic and plastic strains can be taken as state variables

UNIMODAL, DECOUPLED MODELS

$$\hat{W} = \sigma_{ij}\dot{e}_{ij} = \sigma_{ij}\dot{e}_{ij}^{E} + \sigma_{ij}\dot{e}_{ij}^{P}$$

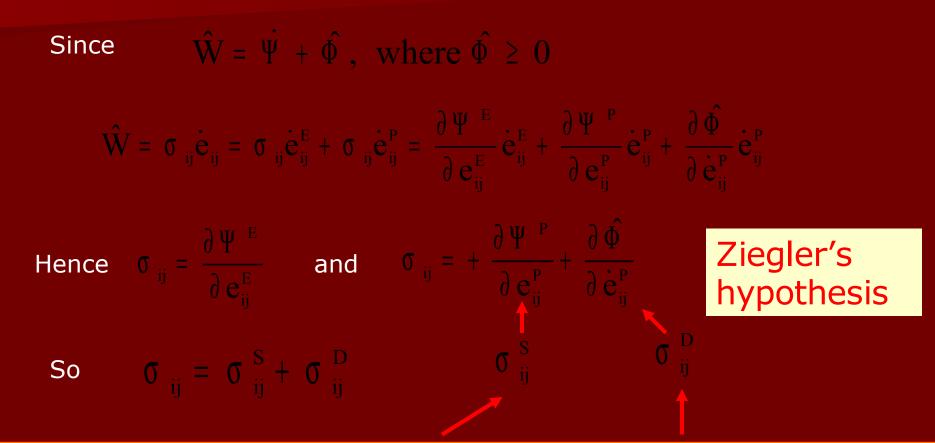
("Unimodal" means only one dissipation mechanism, so only one plastic strain)

$$\Psi(e_{ij}^{E}, e_{ij}^{P}) = \Psi^{E}(e_{ij}^{E}) + \Psi^{P}(e_{ij}^{P})$$
 ("Decoupled")

 $\hat{\Phi}(\sigma_{ij}, e_{ij}^{P}; \dot{e}_{ij}^{P}) = \frac{\partial \hat{\Phi}}{\partial \dot{e}_{ij}^{P}} \dot{e}_{ij}^{P}$ (By Euler's Theorem for a homogeneous function of degree 1, since material is rate independent.)

ELASTIC and PLASTIC STRAINS taken as STATE VARIABLES

STRESS DECOMPOSITION



Total stress is sum of shift and dissipative stress { Principal axes of stress and plastic strain rate no NOT coincide}

A NOTE ON PLASTIC WORK

FROM THE PREVIOUS SLIDE, THE RATE OF PLASTIC WORK IS:

$$\hat{W}^{P} \equiv \sigma_{ij} \dot{e}^{P}_{ij} = \sigma_{ij}^{S} \dot{e}^{P}_{ij} + \sigma_{ij}^{D} \dot{e}^{P}_{ij}$$

RATE OF PLASTIC WORK RATE OF ENERGY DISSIPATION

RATE AT WHICH PLASTIC WORK IS BEING STORED OR RECOVERED

RATE AT WHICH MICRO-ELASTIC ENERGY IS BEING FROZEN OR RELEASED

VOLUMETRIC HARDENING (TRIAXIAL)

$$\hat{W}^{P} = p\dot{e}_{V}^{P} + q\dot{e}_{\gamma}^{P} = \dot{\Psi}^{P}(e_{V}^{P}) + \hat{\Phi}(p,p_{S},e_{V}^{P};\dot{e}_{V}^{P},\dot{e}_{\gamma}^{P})$$

$$\dot{\Psi}^{P} = p_{S}\dot{e}_{V}^{P}, \text{ where } p_{S} \equiv \frac{\partial\Psi^{P}}{\partial e_{V}^{P}} \text{ is shift pressure.}$$

$$\hat{\Phi} = p_{D}\dot{e}_{V}^{P} + q_{D}\dot{e}_{\gamma}^{P}, \text{ where } p_{D} \equiv \frac{\partial\hat{\Phi}}{\partial\dot{e}_{V}^{P}}, q_{D} \equiv \frac{\partial\hat{\Phi}}{\partial\dot{e}_{\gamma}^{P}},$$

are dissipative stresses.

 $p = p_s + p_D$, and $q = q_D$

MODIFIED CAM CLAY

$$\hat{\Phi} = p_{S}\sqrt{\dot{e}_{v}^{P^{2}} + M^{2}\dot{e}_{v}^{P^{2}}}$$

$$p_{D} \equiv \frac{\partial\hat{\Phi}}{\partial\dot{e}_{v}^{P}} = \frac{p_{S}^{2}\dot{e}_{v}^{P}}{\hat{\Phi}}$$

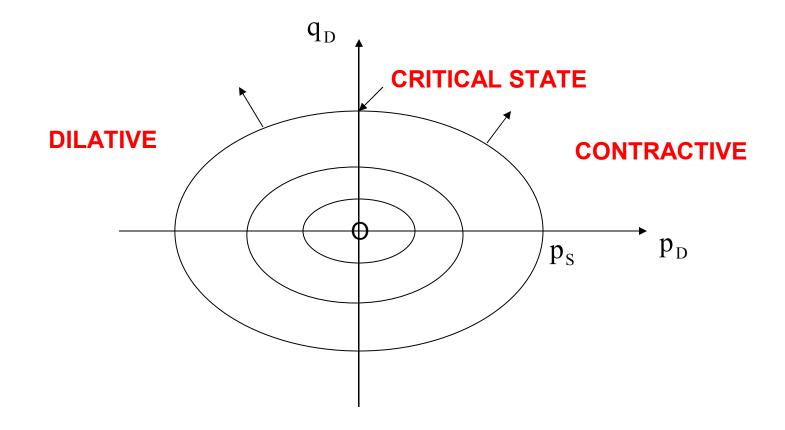
$$q_{D} \equiv \frac{\partial\hat{\Phi}}{\partial\dot{e}_{v}^{P}} = \frac{p_{S}^{2}M^{2}\dot{e}_{v}^{P}}{\hat{\Phi}}$$

$$\frac{p_{D}^{2}}{p_{S}^{2}} + \frac{q_{D}^{2}}{M^{2}p_{S}^{2}} = 1$$

$$\tan \psi \equiv -\frac{\dot{e}_{v}^{P}}{\dot{e}_{v}^{P}} = \frac{M^{2}p_{D}}{q_{D}}$$

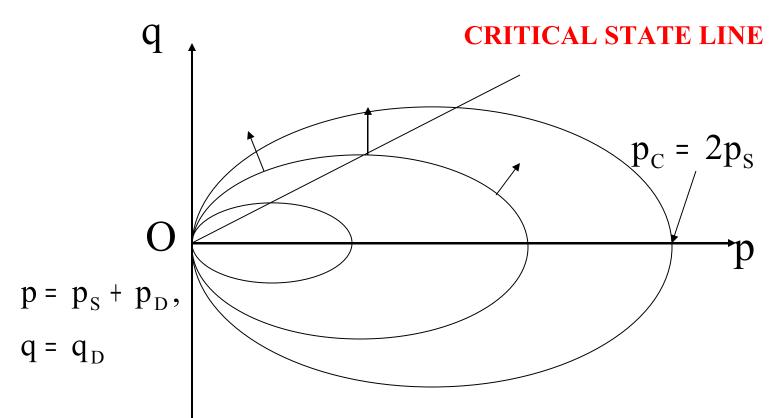
 $\frac{(p - p_{s})^{2}}{p_{s}^{2}} + \frac{q^{2}}{M^{2} p_{s}^{2}} = 1 \quad q = 0 \Rightarrow p_{s} = \frac{1}{2} p_{c}$

DISSIPATIVE YIELD LOCI



NB: ISOTROPIC HARDENING and NORMAL FLOW RULE

SHIFT TO GIVE MODIFIED CAM CLAY

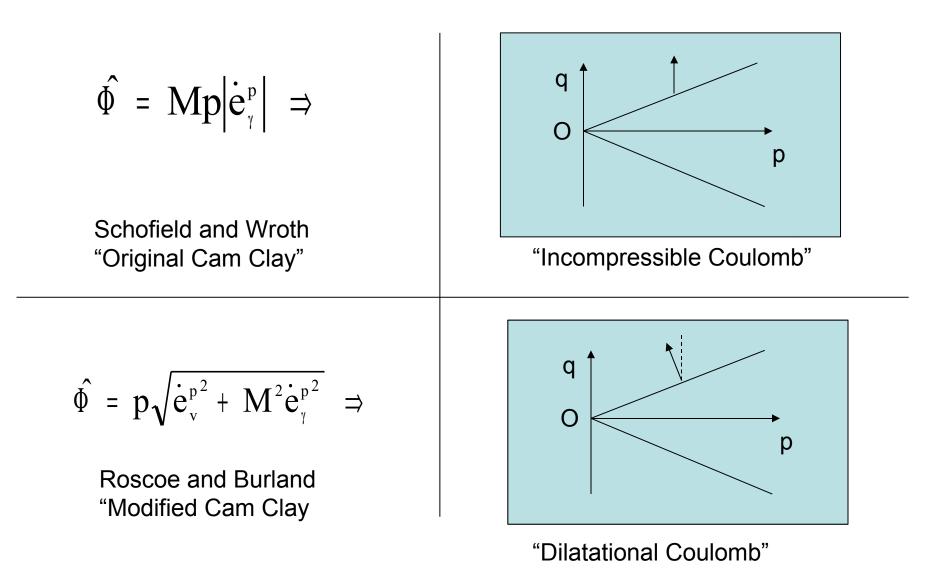


ISOTROPIC PLUS (VOLUMETRIC) KINEMATIC HARDENING.

HALF PLASTIC WORK IS STORED

FLOW RULE IS STILL NORMAL, SINCE DISSIPATION DOES NOT DEPEND ON p

FRICTION IMPLIES NON-ASSOCIATED FLOW RULES (Collins and Houlsby 1997).



THE ALPHA-GAMMA FAMILY OF MODELS (Collins and Kelly,Collins and Hilder (2002))

$$\Phi = \sqrt{[A^2 \dot{e}_v^{p^2} + B^2 \dot{e}_{\gamma}^{p^2}]} \Rightarrow \frac{p_d^2}{A^2} + \frac{q_d^2}{B^2} = 1$$

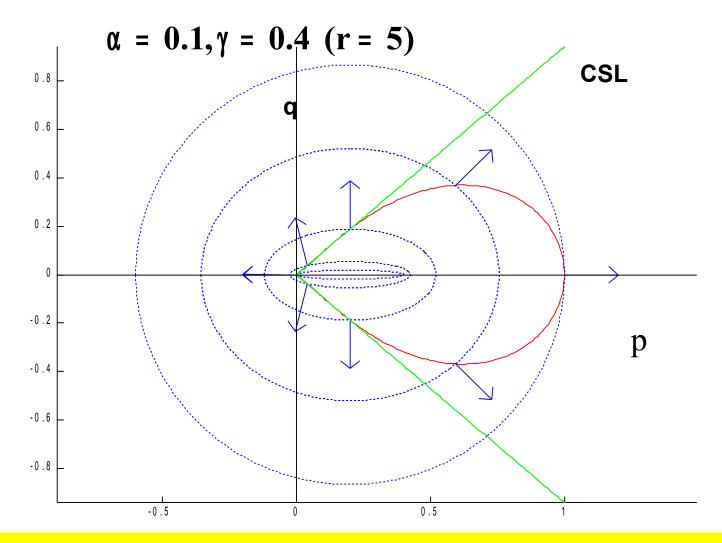
Dissipative yield loci are again concentric ellipses, but no longer self similar

Assume a linear dependence on p and P_s

$$A \equiv [(1 - \gamma)p + p_s] \qquad B \equiv M[(1 - \alpha)p + \alpha p_s]$$

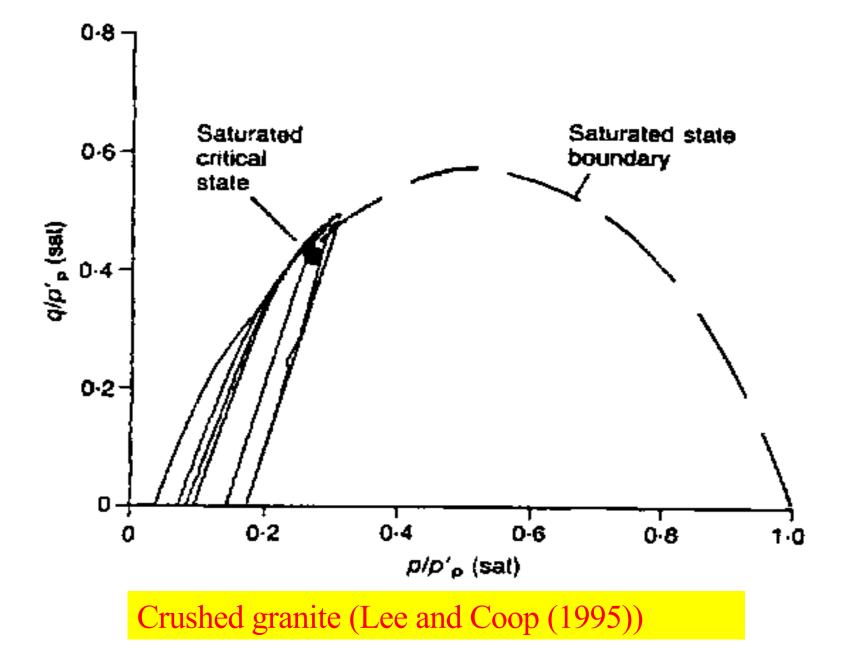
 $p_{c} = \frac{2}{\gamma} p_{s} = r p_{s}$ Where r is the SPACING RATIO

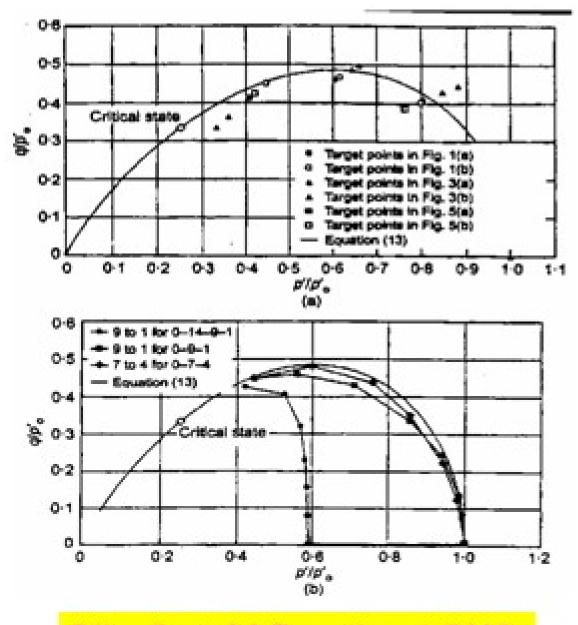
 $\alpha = \gamma = 1 \Rightarrow$ Modified Cam Clay



YIELD LOCUS and DISSIPATIVE YIELD LOCI (COLLINS AND HILDER 2002)

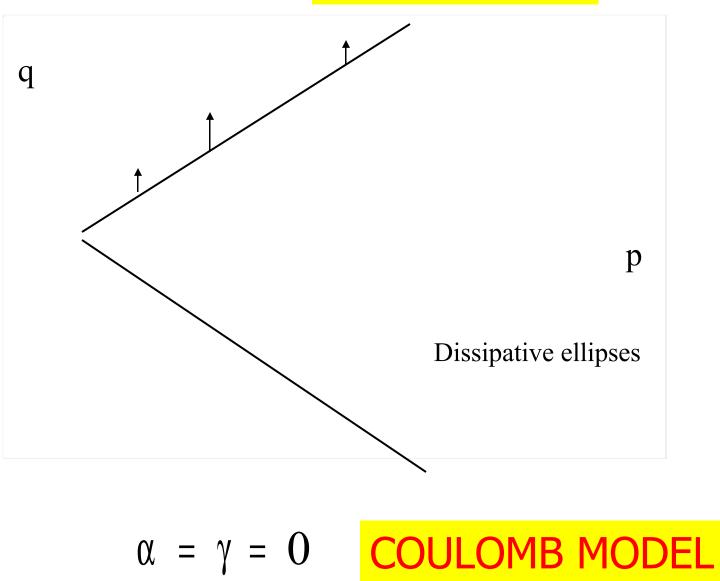
TRANSFORMATION DISTORTS YIELD LOCI, AND FLOW RULE IS NON-ASSOCIATED





Silica Sand: McDowell et al (2002)

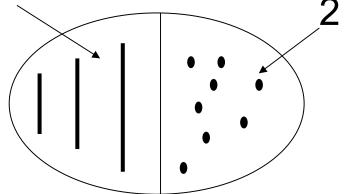
Coulomb failure line



A BI-MODAL MODEL (Radjai, Roux, et al, Thornton)

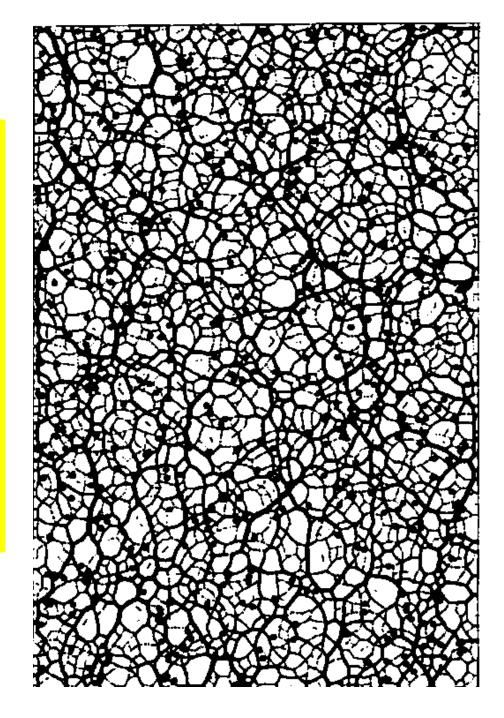
- **1. Strong sub-network** (Force chains). Carries all the deviatoric stress, and a fraction of the isotropic stress.
- 2. Weak sub-network. Carries the remaining fraction of the isotropic stress. Behaves like a "frictional fluid". All shearing occurs in the weak network

Representative Volume Element - schematic.



FORCE CHAIN NETWORK SHOWING DISPLACEMENT POINTS UNDER SHEAR. NEARLY ALL ARE IN WEAK NETWORK.

RADJAI et al (1997)



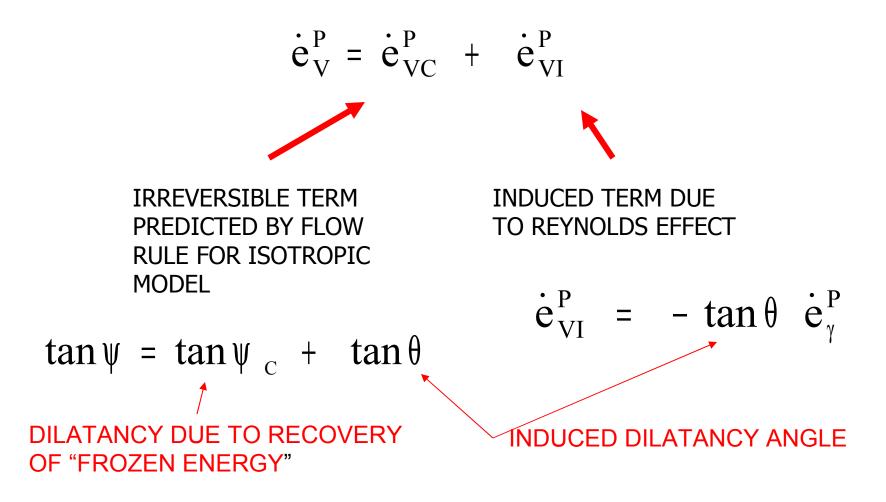
BI-MODAL MODEL-PREDICTIONS

- The tear drop parameter -alpha- is the fraction of the volume of the RVE in the strong sub-network.
- The spacing ratio parameter -gamma- is the determined by the ratio of the pressure in the strong sub-network to the mean pressure in the RVE.

WHERE IS REYNOLD'S IDEA OF DILATANCY OF A GRANULAR MATERIAL INCLUDED? NOWHERE!!!

MODELLING REYNOLDS DILATANCY

SPLIT VOLUME STRAIN RATE INTO TWO TERMS



ENERGY BALANCE EQUATION

 $\dot{p}\dot{e}_{V}^{P} + \dot{q}\dot{e}_{\gamma}^{P} = p_{S}\dot{e}_{VC}^{P} + [p_{R}\dot{e}_{VI}^{P} + q_{R}\dot{e}_{\gamma}^{P}] + [p_{D}\dot{e}_{VC}^{P} + q_{D}\dot{e}_{\gamma}^{P}]$

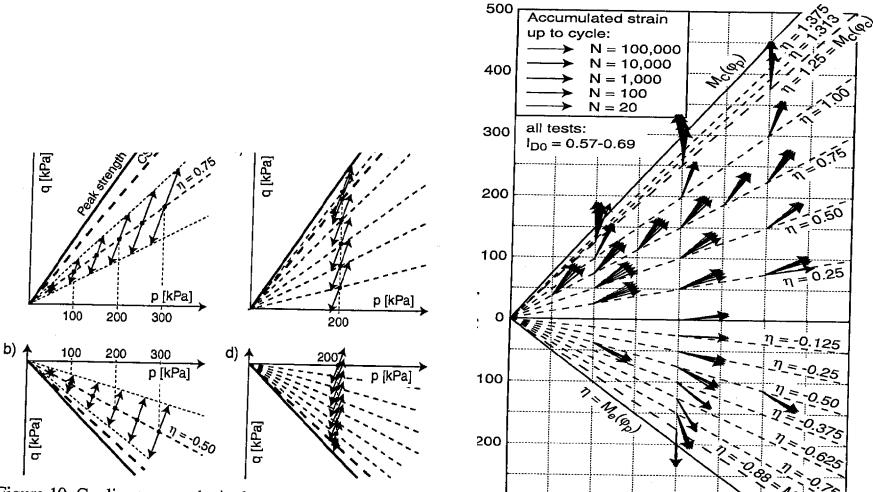
STORED WORK AND DISSIPATION ONLY DEPENDS ON IRREVERSIBLE PLASTIC VOLUME STRAIN

WORK RATE ASSOCIATED WITH REYNOLDS DILATANCY IS ZERO

$$p_R \dot{e}_{VI}^P + q_R \dot{e}_{\gamma}^P = 0$$

KANATANI(1982), GODDARD(1990), HOULSBY(1993) COLLINS & MUHUNTHAN (2003)

CYCLIC LOADING TESTS ON SAND



300

O.

100

200

p [kPa]

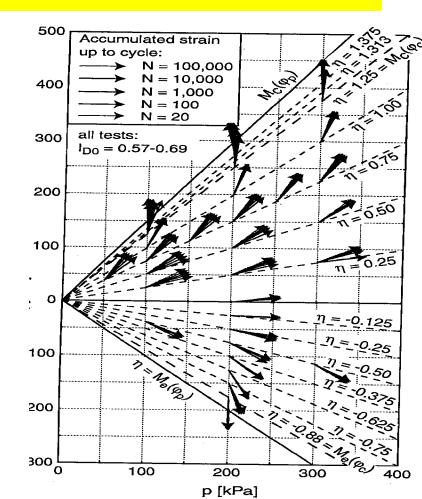
300

400

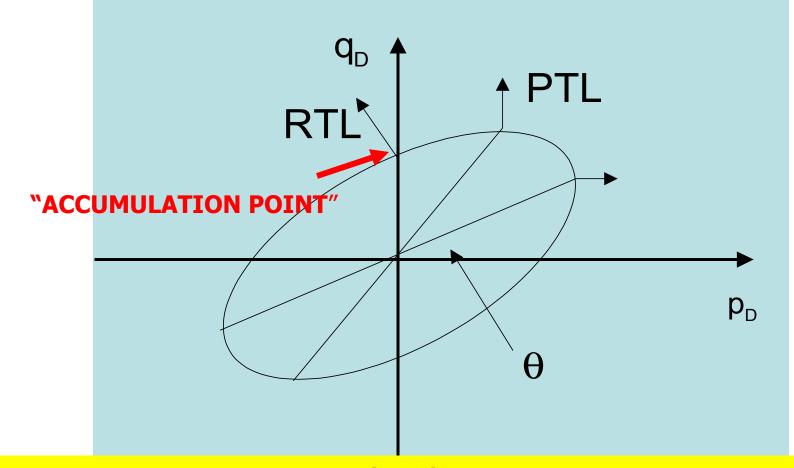
Figure 10. Cyclic stress paths in the tests with different average stresses σ^{av}

FOR SIMPLITY AND ILLUSTRATIVE PURPOSES WE TAKE MCC AS "BASE" ISOTROPIC MODEL

CYCLIC LOADING EXPERIMENTS ON SANDS, SHOW THAT THE ACCUMULATE PLASTIC STRAIN INCREMENTS ARE, APPROXIMATELY, NORMAL TO A CAM-CLAY TYPE YIELD LOCUS.

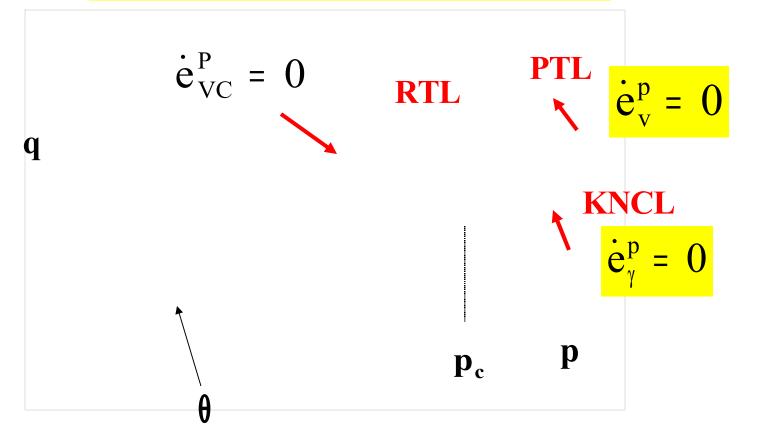


ANISOTROPIC DISSIPATIVE YIELD LOCUS



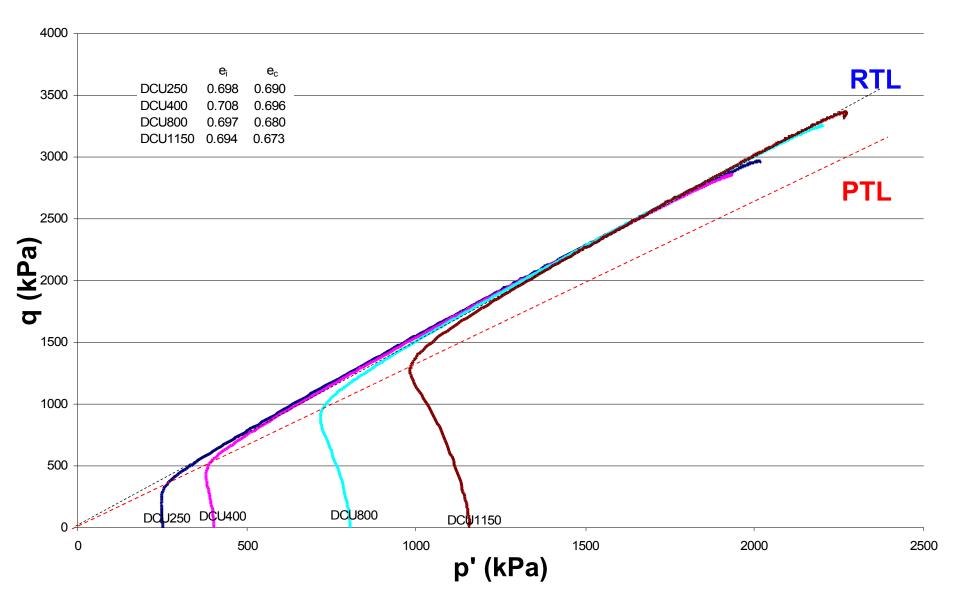
THE CRITICAL STATE LINE (CSL) OF ISOTROPIC MODEL SPLITS INTO TWO:THE REYNOLDS-TAYLOR (RTL) and PHASE TRANSITION LINES (PTL)

TRUE STRESS SPACE



eg ROTATED MODIFIED CAM CLAY MODEL. WHEN ON RTL MATERIAL IS BEHAVING IN MANNER ENVISGED BY REYNOLDS

UNDRAINED TESTS ON DENSE QUARTZ SAND



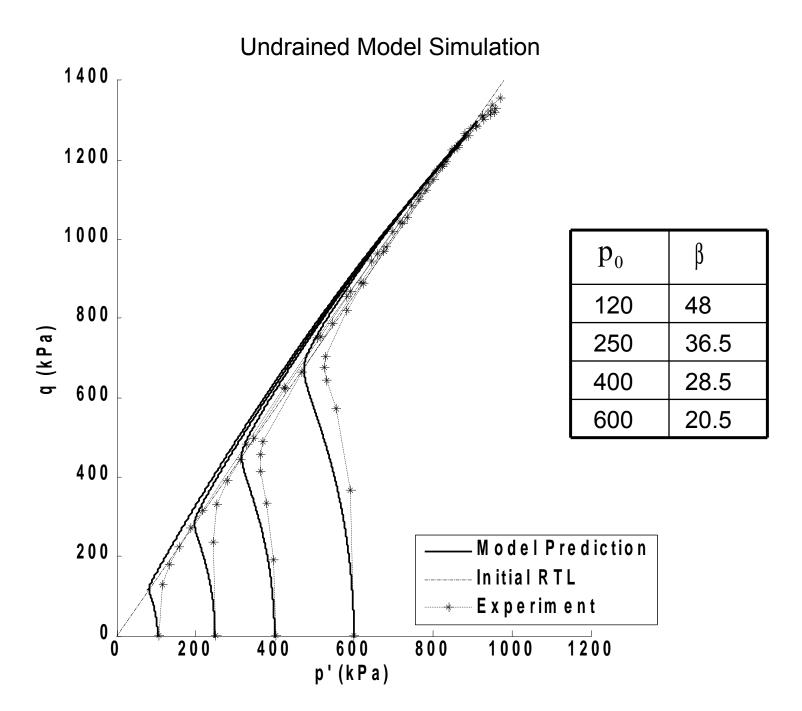


FIG 4a

REYNOLDS TAYLOR LINE

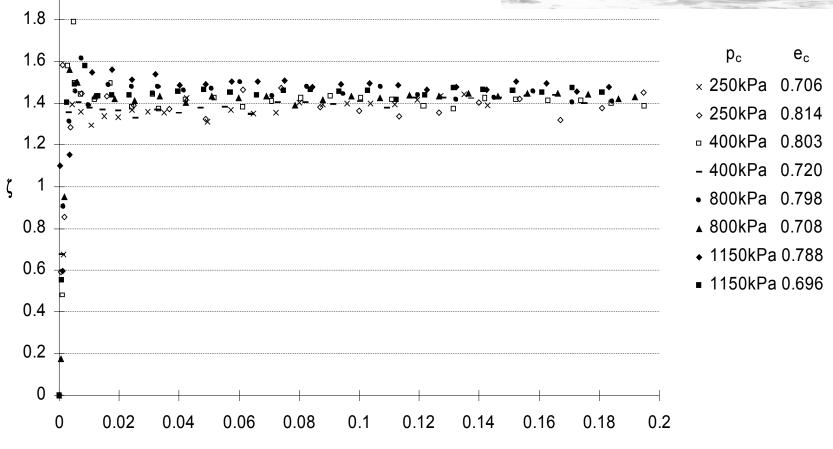
An important prediction from the theory is that before reaching the critical state, it first another state-the "Reynolds- Taylor State" .When the specimen is on the RTL:

$$\zeta \equiv \frac{q}{p} - \tan \psi = M$$

The difference between the stress ratio and the tangent of the dilation angle is constant.

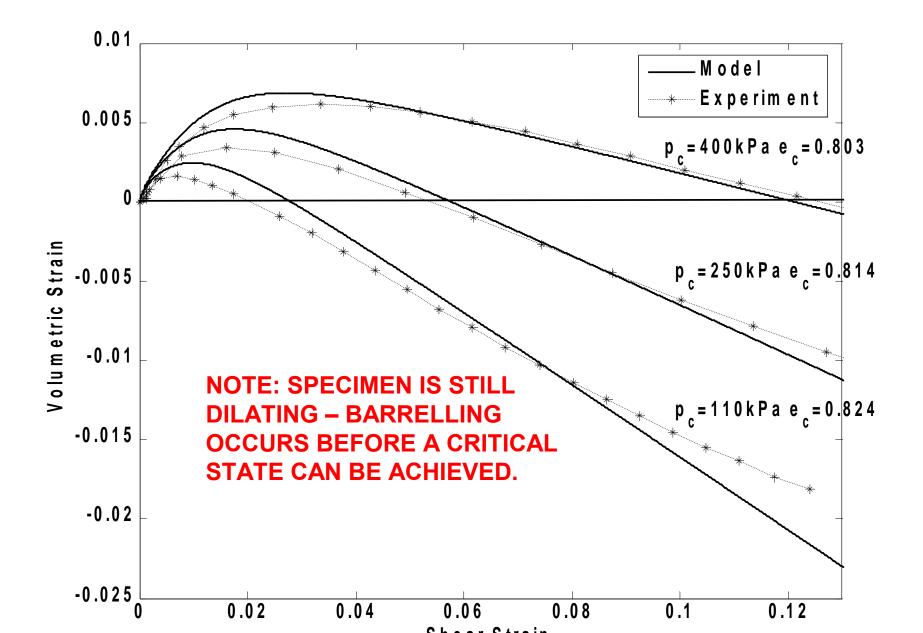
DRAINED RESULTS FOR PAKIRI BEACH SAND

2



Shear strain

DRAINED TESTS AND SIMULATIONS OF PAKIRI SAND



ONGOING & FUTURE RESEARCH

- THREE DIMENSIONAL MODELS
- INTRODUCE THE BEEN & JEFFERIES STATE PARAMETER.
- MICRO-POLAR MODELS
- COSSERAT MODELS
- USE OF PROBABILITY DISTIBUTIONS
- FINITE STRAIN MODELS (simple shear)

DAWN AT PAKIRI BEACH

THANK YOU! ANY QUESTIONS?