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Prague Talk:
Viscoelasticity:

by
Barry Bernstein

It is common to think of certan subtaces as elastic solids and to think of others

as viscous fluids. But today we deal with media which can behave as either
one, depending on conditons, and, indeed, in appropriate senses, commonly
exhibit behavior which lies in between that of an elastic solid and that of
a viscous fluid and which show elastic behavior and viscous fluid behavior
in appropriate limiting senses. These are known as viscoelastic substances
and include polymers, which are in common use today. Indeed, it can be
argued that the substances which are, in fact, viscoelastic comprise very
many material. Indeed, if one considers viscoelasticity as giving us a point
of view for mathematical description of material behavior, then one might
even argue that this point of view is general enough to cover all materials.

In setting theories for material behavior, energetic aspects, i.e. thermody-
namic aspects are too often placed in the background or even ignored com-
pletely.

What I shall present to you today is a thermodynamic theory of viscoelastic
behavior which has had a certain amount of success and of which I am an
author. In its full version, it deals with large deformations and material time
dependence. And let me repeat that it is a thermodynamic theory: It obeys
the laws of thermodynamics, including the second law. It is my contention
that a theory of material behavior should address thermodynamics for at least
two reasons: 1) The world, if not the universe, operates thermodynaically
and so ignoring thermodynamics leave a theory incomplete and 2) There
can be many ways to formulate mechanical relationships so that one needs
criteria to select from many formulations those which have the best hope of
describing reality and thermodynamic restrictions provide one important set
of criteria – obeying the first and second laws.

In the case of large strains in a three dimensional world, there are geomet-
ric invariance considerations which introduce a complexity which can mask
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the physical assumptions at first. So, in presenting the theory, I will ini-
tially present the theory in a boiled down version which can omit the three
dimensional non-linear considerations in order to bring out the physical as-
sumptions. Then, once we have these considerations in mind, we shall see
how they fit into the properly invariant three dimesional theory with large
strains.

First, we introduce the limited cast of characters that we need for the sim-
plified theory. We have, to begin with, strain, γ, stress, σ, temperature, ϑ,
and heat flux, Q, which is the rate at which heat is being removed. We also
need the rate of deformation, γ̇.

First let us consider the elastic solid. The stress-strain relation takes the
form

σ = µγ

where µ is an elastic modulus. We now do the thermodynamics of this simple
model: First of all, the elastic modulus can depend on temperature, ϑ, and
the Helmholtz free energy, A(γ, ϑ) obeys

σ =
∂A

∂γ

which results in A taking the form

A =
1

2
γ2 + h(ϑ)

where h is some function of ϑ. The entropy, s, satisfies

s = −∂A

∂ϑ

and the internal energy, E, is given by

E = F + ϑs

Balance of energy equations the rate of change in internal energy to the sum
of the work done by the stresses and the rate of heat added, viz.

Ė = σγ̇ − Q
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So

Ė = Ȧ + ϑ̇s + ϑṡ =
∂A

∂γ
γ̇ +

∂A

∂ϑ
ϑ̇ + ϑṡ + ϑ̇s

= sγ̇ − sϑ̇ + ϑṡ + ϑ̇s = σγ̇ + ϑṡ

Putting these last two equations together yields

ϑṡ + Q = 0

or

ṡ +
Q

ϑ
= 0

The production of entropy for an elastic material is due only to heat flow.
Contrast this to the viscous fluid, which we shall introduce next.

In the viscous fluid we have a parameter, η, called viscosity and the stress is
proportional to the rate of strain, or rate of deformation, γ̇.

σ = ηγ̇

In general, η is a function of the temperature ϑ, i.e. η = η(ϑ), as is the
Helmholtz Free energy, A = A(ϑ). The entropy is then given by s = −dA/dϑ,

and the internal energy is given by E = A + ϑs. The balance of energy
is then Ė = σγ̇ − Q, which then sorts out as

˙A + ϑs =
dA

dϑ
ϑ̇ + ϑ̇s + ϑṡ = −sϑ̇ + sϑ̇ + ϑṡ

= ηγ̇2 − Q

Which sorts out to

ṡ +
Q

ϑ
=

η

ϑ
γ̇2 ≥ 0

so that the second law is satisfied. Note that entropy is produced now not
only by heat flow, but by viscous flow and is positive if anything happens.

In the case of a viscoelastic substance, we have time dependence. This man-
ifests itself as a dependence of the appropriate variables on time history. In
particular, there is what is called a relaxation modulus, G(t, ϑ), where t is
time. The modulus is measured as follows: Start with the material sample
at rest and assume that it can be considered as always having been at rest,



4

i.e. It can be assumed that the sample has forgotten its past history. Load
the sample to a fixed strain at an experimental time taken as t = 0, i.e. to a
given value of γ, and measure the stress as a function of time t. Then σ/γ
will give G, Generally it is expected, at least at fixed ϑ, that G will be a sum
or integral of decaying exponentials

G =
∑

n

ane
−t/τn

where the τn are called the relaxation times. The stress in a general defor-
mation history is then given at present time, t, by

σ = G(0)γ(t) +

∫ t

−∞
Ġ(t− τ )γ(τ ) dτ

where we have omitted ϑ for simplicity, but we understand that it is still
there. consider now the motion given by

γ =

{
0 if t < 0

γ(t) if t > 0

Then one gets

σ = G(0)γ(t) +

∫ t

0

Ġ(t− τ )γ(τ ) dτ

So, if the modulus is changing slowly, i.e. if Ġ is not large, one can envision
a period of time in which Ġ can be neglected and the material will appear to
be elastic with elastic modulus µ = G(0). To turn this around, we can say
that whatever the decay rate of G, at the initial time t = 0 and for some time
afterwards, the material will appear to be elastic — time in which the elastic
approximation holds is always there, but it may be long or short depending
on the rate Ġ.

Note that we have made no assumption about G(∞). We get an approximate
elastic interval of time no matter what G(∞) is. To get fluid behavior, we
need to assume that G(∞) = 0, i.e. that relaxation is eventualy complete.
Doing so, we find that after an integration by parts gives

σ =

∫ ∞

0

G(t − τ )γ̇(τ ) dτ
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so that if G is replaced by a delta function, we recover the viscous fluid with
viscosity being the area under the curve of the relaxation modulus. If the
rate at which the relaxation modulus decays with time is fast enough, we will
see apparent viscous fluid behavior. Since the fluid point of view is unifying,
we adopt it.

Now let us turn to the energies. We take as our Helmholtz free energy

A = −1

2

∫ t

−∞
Ġ(t − τ, ϑ)[γ(t)− γ(τ )]2 dτ + h(ϑ),

∂

∂ϑ
(−Ġ) ≥ 0

where h is some given function of ϑ, and proceed as before. The algebra
is a bit more complex than before, but the steps are essentially the same.
We come out with the following where we have kept the dot to mean the
derivative with respect to present time t:

s =
1

2

∫
∂

∂ϑ
Ġ(t− τ, ϑ)[γ(t)− γ(τ )]2 dτ − h′(ϑ)

E = A + ϑs

Ė = σγ̇ + ϑṡ − 1

2

∫ t

−∞
G̈(t − τ, ϑ)[γ(t0− γ(τ )]2 dτ

After putting this into the energy balance equation, we get, after simplifying,

ṡ +
Q

ϑ
=

1

2ϑ

∫ t

−∞
G̈(t− τ, ϑ)[γ(t)− γ(τ )]2 dτ

Since G is a sum of decaying exponentials, G̈ ≥ 0 and so the second law
holds.

Now let us look at a special case, namely when G is proportional to temper-
ature, in analogy to the perfect gas or ideal rubber. Write

G(t − τ, ϑ) = ϑG(t − τ )

Then the internal energy becomes

E = h(ϑ) − ϑh′(ϑ)

So, as in an ideal gas, the internal energy is a function of temperature alone.
So during an isothermal stress relaxation, there is no work being done, the
internal energy is not changing and so no heat is flowing. What is happening?
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Go back for a moment to an ideal gas. Suppose that it is originally at room
temperature and that it is compressed and then allowed to remain at rest
in contact with its isothermal surroundings which we call the room. During
rapid compression, the work put in goes into internal energy. It gets hot.
Then it cools to the room temperature: at which time the internal energy,
depending only on temperature, returns to its original value. When the
pressure is released, energy is recovered in the form of work. Where does
it come from? It initially comes from internal energy, the lowering of which
causes the gas to cool. Then the cooled gas returns to room temperature by
removing energy from the room in the form of heat flow.

What is different about our material? As it relaxes, no energy is flowing.
But it is losing its ability to give back work and then remove the energy from
the room in the form of heat flow.

One other comment may be of interest. Note that if we define Σ by

Σ =
1

2

∫
∂

∂ϑ
Ġ(t − τ, ϑ)[γ(t)− γ(τ )]2 dτ

then s + Σ = −h′(ϑ) Consider, now, a stress relaxation experiment. Since
for times t < 0 and τ ≤ t γ(t) − γ(τ ) = 0, Σ = 0. The load is put on, the
temperature returns to room temperature and s + Σ is the same as it was
originally. But now, σ > 0 and so s has decreased. As time goes on, Σ decays
toward zero, and so s rises to its original value.

Perhaps more importantly, one should note that if Σ > 0, and nothing else
is changing, then Σ is changing. Equilibrium is possible only if Σ = 0. So
we are dealing with thermodynamic non-equilibrium. We proposed that Σ
be called entaxy, i.e. internal form.

One more refinement should be mentioned, namely time-temperature super-
position. The time seen by the material is that on a temperarture dependent
clock. The higher the temperature, the faster the relaxation. Let bT (τ ) be
the time read by the material clock at laboratory time and let

β(t) =

∫ t

0

bT (ξ) dξ

be the material time when the laboratory time is t. Then the Helmholtz free
energy becomes

A = −1

2

∫ t

−∞
Ġ(β(t)− β(τ ), ϑ)[γ(t)− γ(τ )]2 bT (τ )dτ + h(ϑ)
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and, except for such modifications, nothing important changes.

The next task is to carry over our these ideas to a theory which

1. Allows finite strain.

2. is properly invariant and

3. is three dimensional.

To these ends, then, we consider a motion, which is a time dependent map-
ping of the material points into space. We choose a reference configuration,
which is just some mapping of material points into space: We suppose, then,
that Xα, α = 1, 2, 3, varies over a given material region in the reference
configuration and that xi = xi(Xα, t) maps the material point Xα into the
spatial point xi at time t. The deformation tensor is given by

xiα
def
=

∂xi

∂Xα

For elastic behavior, the reference configuration is conveniently taken to be
a stress-free configuration, if one exists and the Helmholtz free energy is
then a function of the deformation gradient with respect to the stress-free
configuration. The Helmholtz free energy, being a scalar, depends on the
deformation gradient through its right Cauchy-Green tensor

Cα,β = xiαxiβ

which is the part of the deformation which is invariant to rigid motions in
space. The stress, σij is then given by

σij = 2ρxiαxjβ
∂A

∂Cαβ

where ρ is mass density. The entropy density is, as before, s = −∂A/∂ϑ and
the internal energy density is E = A + ϑs. For heat transfer, we introduce
the heat flux vector, qi: The integral of qi over a volume is the rate at which
heat leaves the volume. So we now balance energy by setting the rate of
change of internal energy equal to the work rate plus the rate of heat added.
After some algebra, one arrives at the entropy production equation

ρϑṡ + qi,i = 0
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which then can be written

ρṡ +
(qi

ϑ

)
,i

=
−qiϑ,i

ϑ2

So as long as heat flows against the temperature gradient, as in Fourier’s law,
we have agreement with the second law of thermodynamics. We also observe
that for an elastic material, entropy production is the result of heat flow –
no viscosity.

But we need to get to large strain viscoelasticity. For such, we need a con-
stitutive law for history dependence. So we made some assumptions and did
some experiments. We came up with the stress depending on the history of
strain through a single integral in time. And the strain dependence of the
integrand was taken to be relative strain, i.e. xij(t, τ ) = xiαXαj, where the
later is the matrix inverse of xiα. The concept was that the material wants to
return to every configuration that it had in the past as if it were a preferred
configuration, but it cannot and so it compromises and gives a weight to each
such past configuration, with the more recent counting more than the less
recent, (fading memory) and adds the weighted contributions.

The assumption led to the result that from single step stress relaxation re-
sults, one could predict the stress history in any other motion. This concept
seemed to be verified experimentally as shown by the following data.

In fairness, I must add that we also want the predictions to hold when the
strain is reversed. This turned out not to hold for the original materials
tested, but recently there have been some results on branched polymers for
which the strain reversal seems to hold.

Since most of the thermodynamic notions have already been developed in
the linear case, let us end by stating how they carry over to the non-linear
situation.

We assume that there is a scalar function of relative strain and time, t, which
we shall call U(xij(t, τ ), t) with the following properties:

• U ≥ 0.

• U(δij) = 0

• U∗
def
= ∂U/∂t ≤ 0.
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There is a time-temperature superposition constant, bT (t) so that the effec-
tive time to which the material responds is

β(t) =

∫ t

0

bT (τ ) dτ

We define a quantity, Σ called entaxy which has dimensions of entropy, by

Σ =

∫ t

=∞
U(xij(t, τ ), β(t)− β(τ ))bT(τ ) dτ

The Helmholtz free energy is given by an expression of the form

A = Φ(υ, ϑ) + Σ

where υ = 1/ρ is the specific volume and Φ is some given function.

The stress is given by

σij = ρxiα
∂A

∂xjα
(t)

where one can use any reference configuration, Xα.

for the balance of energy, one winds up with

ρϑṡ + qi,i = −ρϑ

∫ t

−∞
U∗bT (t)bT (τ ) dτ

which gives positive entropy production and, along with positive thermal
conductivity, agreement with the second law. As in the linear case, this is
a non-equilibrium theory. It can be shown that if σ > 0 abd no motion is
occuring and temperature is not changing, then Σ ↓ 0. The only possibility
of nothing changing is when Σ = 0. So Σ is the seat of the non-equilibrium
behavior. Furthermore, when Σ = 0, it can be shown that there is no shear
stress. This is a fluid theory in the sense that it cannot support a shear stress
in thermodynamic equilibrium.

In concluding, let us summarize some features of this theory.

• It is a theory of non-equilibrium thermodynamic behavior.

• It is a fluid theory in the sense that shear stresses are not supported in
thermodynamic equilibrium.
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• It obeys the first and second laws of thermodynamics.

• Internal energy depends only on temperature. This means that in and
isothermal stress relaxation, no heat is flowing. It is just losing its
ability to remove energy from its surroundings and return it as heat.


