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Visco-Elastic Fluids:
Prague 2006:

by
Barry Bernstein

strain, γ, stress, σ, temperature, ϑ, and heat
flux, Q, removal rate of heat, the rate of defor-
mation, γ̇.

Elastic Solid

The stress-strain relation takes the form

σ = µγ

µ(ϑ) is an elastic modulus.

The Helmholtz free energy, A(γ, ϑ) obeys

σ =
∂A

∂γ

so that

A =
1

2
γ2 + h(ϑ)
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The entropy, s, satisfies

s = −∂A

∂ϑ

and the internal energy, E, is given by

E = A + ϑs

Balance of energy equations the rate of change
in internal energy to the sum of the work done
by the stresses and the rate of heat added, viz.

Ė = σγ̇ − Q

So

Ė = Ȧ + ϑ̇s + ϑṡ =
∂A

∂γ
γ̇ +

∂A

∂ϑ
ϑ̇ + ϑṡ + ϑ̇s

= sγ̇ − sϑ̇ + ϑṡ + ϑ̇s = σγ̇ + ϑṡ

Putting these last two equations together yields

ϑṡ + Q = 0

or

ṡ +
Q

ϑ
= 0
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Viscous Fluid

parameter, η, called viscosity

σ = ηγ̇

i.e. η = η(ϑ),

Helmholtz Free energy, A = A(ϑ).

entropy s = −dA/dϑ,

internal energy E = A + ϑs.

Balance of energy Ė = σγ̇ − Q.

˙A + ϑs =
dA

dϑ
ϑ̇ + ϑ̇s + ϑṡ = −sϑ̇ + sϑ̇ + ϑṡ

= ηγ̇2 − Q

Which sorts out to

ṡ +
Q

ϑ
=

η

ϑ
γ̇2 ≥ 0

The second law is satisfied. Entropy is produced
by viscosity and rate of production is > 0 if any
flow.
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Viscoelasticity

Time dependence.

relaxation modulus , G(t, ϑ), measured in a stress-
relaxation experiment. (t = time.)

G =
∑

n

ane
−t/τn

τn: relaxation times.

In a general deformation history

σ = G(0)γ(t) +

∫ t

−∞
Ġ(t − τ )γ(τ )dτ

γ =

{
0 if t < 0

γ(t) if t > 0

Then

σ = G(0)γ(t) +

∫ t

0

Ġ(t − τ )γ(τ ) dτ

Slowly changing modulus: i.e. if Ġ is not large,
apparent constant – apparently elastic. inde-
pendently of G(∞). For fluid behavior, G(∞) =
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0, — eventual complete relaxation. Then

σ =

∫ ∞

0

G(t − τ )γ̇(τ ) dτ

G = ηδ(t) — viscous fluid again. Since the fluid
point of view is unifying, we adopt it.

Helmholtz free energy

A = −1

2

∫ t

−∞
Ġ(t−τ, ϑ)[γ(t)−γ(τ )]2 dτ+h(ϑ),

∂

∂ϑ
(−Ġ) ≥ 0

where h = h(ϑ):

s =
1

2

∫
∂

∂ϑ
Ġ(t − τ, ϑ)[γ(t) − γ(τ )]2 dτ − h′(ϑ)

E = A + ϑs

Ė = σγ̇ + ϑṡ − 1

2

∫ t

−∞
G̈(t − τ, ϑ)[γ(t0 − γ(τ )]2 dτ

energy balance equation ⇒

ṡ +
Q

ϑ
=

1

2ϑ

∫ t

−∞
G̈(t − τ, ϑ)[γ(t) − γ(τ )]2 dτ
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Since G is a sum of decaying exponentials, G̈ ≥
0 and so the second law holds.

Consider G ∼ ϑ (as in perfect gas or ideal rub-
ber).

G(t − τ, ϑ) = ϑG(t − τ )

Internal energy, E, then becomes

E = h(ϑ) − ϑh′(ϑ)

So during an isothermal stress relaxation, there
is no work being done, the internal energy is
not changing and so no heat is flowing. What
is happening?
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Ideal Gas

• Phase 1: work put into internal energy, ϑ
rises

• Phase 2: heat flows into surroundings, in-
ternal energy returns to original value. All
work is stored in the surroundings

• Phase 3: gas does work to return to original
pressure. It cools.

• Phase 4: heat flows back from room – gas
returns to original state.

Our material: During relaxation no heat is flow-
ing; Material is losing its ability to remove heat
from its surroundings and return the correspond-
ing energy as work.
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Let

Σ =
1

2

∫
∂

∂ϑ
Ġ(t − τ, ϑ)[γ(t) − γ(τ )]2 dτ

then s+Σ = −h′(ϑ) Consider, now, a stress re-
laxation experiment. Since for times t < 0 and
τ ≤ t γ(t) − γ(τ ) = 0, Σ = 0. The load is put
on, the temperature returns to room tempera-
ture and s + Σ is the same as it was originally.
But now, σ > 0 and so s has decreased. As
time goes on, Σ decays toward zero, and so s
rises to its original value.

Perhaps more importantly, one should note that
if Σ > 0, and nothing else is changing, then
Σ is changing. Equilibrium is possible only if
Σ = 0. So we are dealing with thermodynamic
non-equilibrium. We proposed that Σ be called
entaxy, i.e. internal form.

Time-temperature superposition: Let bT (τ ) be
the ratio between the rate of the material clock
and the laboratory clock.

β(t) =

∫ t

0

bT (ξ) dξ
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be the material time when the laboratory time
is t. Then the Helmholtz free energy becomes

A = −1

2

∫ t

−∞
Ġ(β(t)−β(τ ), ϑ)[γ(t)−γ(τ )]2 bT (τ )dτ+h(ϑ)

and, except for such modifications, nothing im-
portant changes.

Ideas to be carried over to theory which
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1. Allows finite strain.

2. is properly invariant and

3. is three dimensional.

To these ends, then, we consider a motion, which
is a time dependent mapping of the material
points into space. We choose a reference con-
figuration, which is just some mapping of ma-
terial points into space: We suppose, then, that
Xα, α = 1, 2, 3, varies over a given material
region in the reference configuration and that
xi = xi(Xα, t) maps the material point Xα into
the spatial point xi at time t. The deformation
tensor is given by

xiα
def
=

∂xi

∂Xα

Right Cauchy-Green tensor

Cαβ = xiαxiβ

invariant to rigid motions in space. Then , σij

is then given by

σij = 2ρxiαxjβ
∂A

∂Cαβ
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where ρ is mass density. The entropy density,
s = −∂A/∂ϑ and the internal energy density
is E = A + ϑs. Heat flux vector, qi: Balance of
Energy:

ρĖ = σijvi,j − qi,i

which leads to the entropy production equation

ρϑṡ + qi,i = 0

or

ρṡ +
(qi

ϑ

)
,i

=
−qiϑ,i

ϑ2

Positive thermal conductivity, qiT,i ≤ 0 as in
Fourier’s law, we have agreement with the sec-
ond law of thermodynamics. We also observe
that for an elastic material, entropy production
is the result of heat flow – no viscosity.

Large strain viscoelasticity. For such, we need a
constitutive law for history dependence. So we
made some assumptions and did some exper-
iments. We came up with the stress depend-
ing on the history of strain through a single in-
tegral in time. And the strain dependence of
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the integrand was taken to be relative strain,
i.e. xij(t, τ ) = xiαXαj, where the later is the
matrix inverse of xiα. The concept was that
the material wants to return to every configu-
ration that it had in the past as if it were a
preferred configuration, but it cannot and so it
compromises and gives a weight to each such
past configuration, with the more recent count-
ing more than the less recent, (fading memory)
and adds the weighted contributions.

The assumption led to the result that from sin-
gle step stress relaxation results, one could pre-
dict the stress history in any other motion. This
concept seemed to be verified experimentally as
shown by the following data.

Carrying over thermodynamic notions from lin-
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ear case:

We assume that there is a scalar function of
relative strain and time, t, which we shall call
U (xij(t, τ ), t) with the following properties:

• U ≥ 0.

• U (δij) = 0

• U∗
def
= ∂U/∂t ≤ 0.

There is a time-temperature superposition con-
stant, bT (t) so that the effective time to which
the material responds is

β(t) =

∫ t

0

bT (τ ) dτ

We define a quantity, Σ called entaxy which has
dimensions of entropy, by

Σ =

∫ t

=∞
U (xij(t, τ ), β(t) − β(τ ))bT (τ ) dτ

The Helmholtz free energy is given by an ex-
pression of the form

A = Φ(υ, ϑ) + Σ
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where υ = 1/ρ is the specific volume and Φ is
some given function.

The stress is given by

σij = ρxiα
∂A

∂xjα
(t)

where one can use any reference configuration,
Xα.

uptohere2 for the balance of energy, one winds
up with

ρϑṡ + qi,i = −ρϑ

∫ t

−∞
U∗bT (t)bT (τ ) dτ

which gives positive entropy production and,
along with positive thermal conductivity, agree-
ment with the second law. As in the linear
case, this is a non-equilibrium theory. It can be
shown that if σ > 0 abd no motion is occuring
and temperature is not changing, then Σ ↓ 0.
The only possibility of nothing changing is when
Σ = 0. So Σ is the seat of the non-equilibrium
behavior. Furthermore, when Σ = 0, it can be
shown that there is no shear stress. This is a
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fluid theory in the sense that it cannot support
a shear stress in thermodynamic equilibrium.

In concluding, let us summarize some features
of this theory.

• It is a theory of non-equilibrium thermody-
namic behavior.

• It is a fluid theory in the sense that shear
stresses are not supported in thermodynamic
equilibrium.

• It obeys the first and second laws of ther-
modynamics.

• Internal energy depends only on tempera-
ture. This means that in and isothermal
stress relaxation, no heat is flowing. It is
just losing its ability to remove energy from
its surroundings and return it as heat.
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Conclusions

• Linear viscoelasticity can be fit into a non-
equilibrium thermodynamic theory by choice
of an appropriate Helmholtz free energy.

• Agreement with the second law of thermo-
dynamics occurs as a result of fading mem-
ory of the past and positive thermal conduc-
tivity.

• These notions can be carried over to a the-
ory of finite strain by an appropriate formu-
lation.

• If stress is taken as proportional to temper-
ature, the finite strain theory presented here
has in common with ideal gases or ideal rub-
bers that work put in is, after temperature
equilibration with its surroundings, stored
in its surroundings. (in the room)

• In this case, during a stress relaxation, for
the theoretical substance described here no
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heat is flowing. The substance is merely los-
ing its ability to remove heat from the room
and return it as work.

• There is no difficulty in including time-temperature
superposition effects.


