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Hypoelasticity

by
Barry Bernstein

Hypoelasticity was introduced by Truesdell in 1955 as a (non-thermal) theory

involving rate type equations which show no time effects. I am told that
it is used to describe behavior of asphalt. But Truesdell’s interest was in
generalizations of mathematical models: He was interested in theory for its
own sake.

The idea of hypo-elasticity is basically simple. Let us look at a one dimen-
sional situation, where ε is strain and σ is stress. Linear elasticity would then
involve a relation of the form

σ = µε

where µ is a modulus — an elastic modulus. Since classical elasticity is
to hold for small strains, we can think of this equation as holding when ε
and σ are small perturbations about zero strain and zero stress respectively.
Carrying this further, ε and σ could be replaced by their changes, ∆ε and
∆σ respctively. Divide by the time interval ∆t in which these changes occur,
and with the usual limiting process, we arrive at

σ̇ = µε̇

This form allows large changes, for which µ need not be a constant. Let µ
depend on σ and we have the prototype for hypo-elasticity.

σ̇ = µ(σ)ε̇

It turns out, then, once the proper three dimensional properly invariant equa-
tions are formulated, the resulting theory of hypoelasticity is one possible
generalization of linear elasticity. Indeed, in the same year, 1955, Noll showed
that every elastic material for which the stress-strain relation is invertible is
also a hypo-elastic material. So, hypoelasticity appears to be more general
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than elasticity, a property which was very important to Truesdell and his
school.

Indeed, Truesdell had a classification of the elasticity-hypoelasticity: The
most general of these theories, according to Truesdell, was hypoelasticity.
Less general was Cauchy elasticity, in which stress was a function of defor-
mation gradient, but a strain energy function did not necessarily exist. At
the lowest rank of the heierarchy stood Green elasticity, which was Cauchy
elasticity with a strain energy. To summarize, here is the ranking and the
rational of the terminology of Truesdell:

1. Hypoelasticity — less than elasticty –a rate theory.

2. Elasticity — Cauchy elasticity

3. Hyperelasticity — more than elasticity — Green elasticity

Although the embedding of a strain energy in one of the thermodynamic
potentials (Hemholtz, Gibbs, etc.) is often not carried out, without a ther-
modynamic potential, it is unreasonable to expect to be able to construct
a thermodynamic theory. Thus, according to this classification, it appears
that only the hyper-elastic theory (of those under discussion) allows of a
thermodynamic theory. Professor Rajagopal and I have just turned that last
statement on its head by constructing thermodynamics for hypoelasticity.

Related to these matters is also plasticity, although the plasticity that I
have in mind is one which deals with infinitesmal strain. Nevertheless, as I
shall show you, plasticity can arise as a type of singular behavior in a rate
theory with no time-dependence, as does hypoelasticity. In the process of this
lecture, I shall also show you the construction of a thermodynamic theory of
elasticity and plasticity which agrees with the first and second laws.

Let us now turn to the proper formulation of the hypoelastic equations. We
shall use Cartesian tensor notation in which, although we write all indices as
subscripts, we do sum out on repeated indices in a term.
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First we must define some symbols: to this end:

σij stress tensor
sij = σij − σkkδij/3 stress deviator
eij infinitesmal strain
εij = eij − ekkδij/3 strain deviator
vi velocity vector
dij = (vi,j + vj,i)/2 rate of deformation
ωij = (vi,j − vj,i)/2 rate of rotation
p pressure
ρ mass densityυ = 1/ρ specific volume

Of course δij is the Kroneker delta, i.e. the unit matrix,

δij =

{
0 if i 6= j

1 if i = j

and the comma denotes partial differentiation. For example, if the spatial
cartesian coordinates are xi, i = 1, 2, 3,

p,i ≡
∂p

∂xi

vi,j ≡
∂vi

∂xj

Let us define the hypoelastic equations. For these equations, there is a fourth
order tensor valued function of σij,

Aijkl = Ajik` = Aji`k, Aijkk = Akkij = 0

such that the equations of hypoelasticity become

ṡij = sikωjk + sjkωik +Aijk`dk`

In our treatment, we assume that there is also a relation of density or spe-
cific volume to pressure, p. Since this can be a standard type of relation, the
discussion of it here will distract us from our treatment of the shear (stress
deviator) and so we shall not deal with it here. where the dot stands for ma-
terial derivative. The terms in ωij are needed for proper geometric invariance
and if put on the right hand side, then together with the material derivative,
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they would make up what is called the corotational derivative. They are of
second order and hence are dropped in the case of infinitesmal displacement,
but they are necessary for finite strain.

In the general theory of hypoelasticity the assignment of theAijk` as functions
of stress is left open, except for requiring this assignment to be isotropic.
Later we shall look at some restrictions on such assignment, these restrictions
resulting from thermodynamic considerations.

Now let us change pace and talk about plasticity. In the theory of perfect
plasticity, which is a theory of infinitesmal strain, the stress-strain relation
is that of elasticity as long as the stress, or, actually some function of the
stress remains below a critical value, perhaps known as the yield condition,
and above which other conditions hold – e.g. the yield condition remaining
constant. To be more specific, we deal with the von-Mises yield condition,
which is as follows: There is a critical value k > 0 such that the yield
condition is

sijsij = 2k2

As long as sijsij < 2k2, the stress-strain response is elastic. When equality is
reached, the von-Mises condition continues to hold and a set of rate equations,
known as the Prandtl-Reuss equations, takes over. This is a theory generally
known as elasticity–perfect plasticity. But there is a concept which is not
usually too well defined, namely loading and unloading. The Prandtl-Reuss
equations hold at the yield condition during loading. During unloading, there
is a return to elastic behavior, albeit with permanent set. But hold on – we
will have a definition of loading and of unloading before our hour is up. And
later, when we discuss thermodynamics, we shall have a definition which will
also involve temperature.

We shall start with a simple one dimensional model: Let ε be shear strain
and let s be shear stress. We consider the following constitutive equation:

ds

dε
=

√
1 − s2

This has solutions
s = sin(ε− c)

But it also has a two singular solutions:

s = 1 and s = −1
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Now consider ε to be varied. As long as s remains between s = −1 and s = 1,
This equation obeys a Lipshitz condition, and therefore follows a unique path
in ε, s space. Such we may call an elastic regime. When s reaches one of
the singular values, say s = 1, which it does exactly, not asymptotically at
ε− c = π/2, it stays there as long as ε is increasing. This is a plastic regime.

Now we are going to consider reversing the direction of ε̇, but first we need to
say something more about the plastic regime. We need to introduce the con-
cept of stability: When ε is increasing, and s is perturbed (only downwards
is possible), s will come right back up to the yield value. Upon decreasing
ε, however, s will continue to fall: the stable solution will be to return to an
elastic regime, albeit in general not the one which in which it entered the
yield condition in the first place.

Perhaps the sine function is not what most people have in mind for an elastic
regime. Indeed, if we replace the equation by

ds

dt
=

√
1 − s2n

then the elastic regimes straighten out for large enough n. For example,
n = 64 gives the following:

(show curve)

This is fine for the one-dimensional situation. For the three dimensional
situation, we shall deal here only with the shear part and ask you to believe
that the pressure-volume part can be added.

Consider now the strain deviator, εij. We assume a strain potential function

ϕ(α) where α =
√
εijεij, sij =

∂ϕ

∂εij
= ϕ′(α)

εij
α

and let
β =

√
sijsij

Then

β = ϕ′(α) which, when solved for alpha is expressed as α = ψ(β)

After a bit of manipulation, we get

ψ(β)

β
sij = εij
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But we want a rate equation, and so we take the time derivative and after
some algebra, we arrive at the following rate equation:

ṡij =
β

ψ(β)
ε̇ij +

1

β2

[
1

ψ′(β)
− β

ψ(β)

]
sijsk`ε̇k`

Multiplying both sides by sij and summing out on the indices yields

d

dt
β2 =

2

ψ′(β)
sij ε̇ij

We can now choose the function ψ(β) so that the equations are those of an
elastic-plastic material. Indeed, first choose ψ to be

ψ(β) =
k
√

2

2µ
sin−1 β

2k
√

2

which results in
dβ2

dt
= 4µ

√
1 − β2/2k2sij ε̇ij

Thus, when β2 reaches the value 2k2 which, as s did in the one-dimensional
case, dβ2/dt will be zero, and so the von-Mises yield condition will be reached.
Loading now can be defined as sij ε̇ij. Again, during loading, the yield condi-
tion will be stable. On the onset of unloading, however, the stable solution
will be a return to an elastic regime.

Actually, we can play around with ψ: In fact, the way to do this is to pick
ψ′β. Given a positive integer, n, we can pick ψ so that

ψ′(β) =
1

2µ
√

1 − (β2/2k2)n

which will straighten out the elastic regime curves. and give the yield behav-
ior

dβ2

dt
=

√
1 − (β2/2k2)nsij ε̇ij

But there are still the equations for sij. Remember, they are

ṡij =
β

ψ(β)
ε̇ij +

1

β2

[
1

ψ′(β)
− β

ψ(β)

]
sijsk`ε̇k`
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During yield, we set 1/ψ′(β) = 0, and β2 = 2k2 to get

ṡij = 4µ
k
√

2

ψ(k
√

2)

[
ε̇ij −

1

2k2

]
sijsk`ε̇k`

which are the well known Prandtl-Reuss equations. And so we have recovered
elasticity and plasticity of infinitesmal strain in a single set of equations.

Now let us see how all of this plays out thermodynamically. To construct the
thermodynamics, we need to be sure what will be taken as state variables.
Indeed, we shall take stress deviator sij and temperature T as state variables.
I ask that you take my word that we can also include pressure or mass
density as state variables in a fairly straightforward way, but doing so will
just distract us now. So let us stick with the stress-deviator and temperature.

The thermodynamic potential which is most appropriate here is the Gibbs
function, G(sij , T ), which we take to depend on sij through the invariant, β

G = G(β, T )

We write down some relationships, which we then replace by their time
derivatives as rate equations. Indeed, we write

εij = − ∂G

∂sij

η =
−∂G
∂T

(η is entropy density)

E = G+ Tη + sijεij ψ = −∂G
∂β

where η is entropy density, T is temperature, and E is internal energy. After
some manipulation, we arrive at the following rate equation:

ṡij =
β

ψ
+

1

β2

[
1

ψβ

− β

ψ

]
sijsk`ε̇k` −

ψT

βψβ

sijṪ

We now use the energy balance equation, which is the following:

Ė = sij ε̇ij − qi,i

where qi is the heat flux vector. And we need to non-dimensionalize our
equations. To this end let k(T ) be the temperature dependent yield stress
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and let

Sij =
sij

k
√

2

H(B,T ) = G(β, T )

Θ(B,T ) = ψ(β, T )

in which case the rate equation becomes

Ṡij =
B

Θ
ε̇ij +

1

B2

[
1

ΘB
− B

Θ

]
SijSk`ε̇k` −

ΘT

BΘB
SijṪ

and the eqution for B becomes

dB2

dt
=

2

ΘB

[
Sij ε̇ij −BΘBṪ

]

So the yield condition is B = 1. If we take ψ as before, we get for this last
equation

dB2

dt
=

4µ

k
√

2

√
1 −B2n

[
Sk`ε̇k` −BΘT Ṫ

]

This tells us that yield is stable when the epression in the brackets is positive
and unstable when the expression in the brackets is negative. So we have a
definition of loading and unloading

[
Sk`ε̇k` −BΘT Ṫ

]
> 0 loading

[
Sk`ε̇k` −BΘT Ṫ

]
< 0 unloading

But this is not the end: If If we go back to the balance of energy equation,
we may consider two conditions; 1) B2 < 1, in which case the chain rule of
calculus applies. One obtains

Ė = sk`ε̇k` + T η̇

which, when placed into the energy balance,

Ė = sij ε̇ij − qi,i

results in
ρT η̇ + qi,i = 0
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So there is no entropy production except that due to heat flow.

On the other hand, during yield, B = 1, we have to differentiate differently:
First we set B to the constant value, B = 2 and then differentiate. So
G = G(1, T ) depends only on temperature for this analysis. When we do so,
we get

Ė = k
√

2ΘT Ṫ + T η̇

which then results in the following

T η̇ + qi,i = k
√

2
[
Sij ε̇ij −BΘT Ṫ

]

Isn’t this interesting? The condition for stability of yield now comes into the
entropy production. If during yield if the expression in brackets is positive,
(laoding), yield is stable and produces entropy: The second law is upheld
by positive entropy production. On the other hand, should this expression
become negative, (unloading), the stable solution dictates a return to an
elastic regime, in which case there is zero entropy production. We need add
only positive thermal conductivity, qiT,i ≤ 0 so that we get always

η̇ +
qi,i

T
= η̇ +

(qi

T

)
,i

+
qiT,i

T 2

So positive entropy production and positive thermal conductivity (qiT,i ≤ 0)
gives agreement with the second law. The theory agrees with the laws of
thermodynamics.

Now to hypoelasticity. What we have done in the case of small strain can
be carried over to large strain, with appropriate modifications. Indeed, let
us consider what we need to do for a thermodynamic approach: We need to

• Choose our state variables

• Choose the appropriate thermodynamic potential in terms of which we
will state conservation of energy

• Choose the rate equation for stress (deviator)

• Establish that the second law holds.
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In 1984, Olsen and Bernstein did just that for a thermodynamic set of equa-
tions which follows pretty much what was just done for the case of infinitesmal
strain, but which treats large deformation hypoelasticity. We now present
the essence of this contribution.

Choose as state variables the stress deviator and temperature. Then assume
given a Gibbs free energy function G(sij , T ) which depends only of the in-
variant β =

√
sijsij. Again, let η = −∂G/∂T be the entropy density. The

internal energy will then be given by

E = G− sij
∂G

∂sij
+ Tη

Note that this time, we do not assume that the derivative of the Gibbs
function with respect to stress is strain. Instead, let these derivatives remain
as functions of stress and temperature, but we make the terms involving sij

balance balance the work terms in the energy balance, i.e.

−ρsij

(
∂G

∂sij

).

= sijdij

Then the balance of energy becomes

ρT η̇ + qi,i = 0

or

ρη̇ +
(qi

T

)
,i

= −qiT,i

T 2

which, when postitive thermal conductivity is qiT,i is assumed, gives agree-
ment with the second law. It remains only to complete the algebra and to
replace the time derivative of stress by the corotational derivative and to
define ψ = −∂G/∂β to arrive at the constitutive equation

ṡij − sikωjk − sjkωik

=
1

ρ

[
1

β2

(
1

ψβ
− β

ψ

)
sijsk` +

β

ψ
ϕijk`

]
dk` −

1

β

ψT

ψβ
Ṫ sij

where

ϕijk` =
1

2
δijδk` +

1

2
δjkδi` −

1

3
δijδk`
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Bernstein and Olsen were also able to show that this model was definitely
not elastic by applying conditions derived by in 1960.

The latest addition to these studies is to be published in ZAMP under the title

of Thermodynamics of Hypoelasticity, by B. Bernstein and K. Rajagopal.

The stress deviator is traceless, sii = 0. This relation uses up one of its three
invariants. Of the other two, we have dealt with β. We have one more, which
we call γ.

β =
√
sijsij

γ = 3
√
siksk`s`j

So that G depends on sij through its two invariants, β and γ. We proceed
pretty much as before, except that we make two assumptions and ask when
they tie together.

• The constituive relation

ṡij = sikωjk + sjkωik + υAijk`dk` + aijṪ + υ̇bij

• The Gibbs function depending on sij and T .

• conservation of energy

• If we put all this into our equations and define

ϕij = − ∂G

∂sij

we get after some manipulation

ρT η̇ + qi,i − ρr = sijdij − ρsij ϕ̇ij

So, if we want the second law to hold, we need to have

sijdij − ρsijϕ̇ij ≥ 0

But if the right hand side of this is > 0, we could reverse the path and thus
make it < 0. So the only way we are going to satisfy the second law is to
make it zero.

After using the constitutive equation in this last relationship and doing some
tensor algegra, we come up with restrictions on the Aijk` which make this
last condition hold. For Aijk` we have the following
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Ãijk` =A1δijδk` +
A2

2
(δikδj` + δi`δjk) +A3δijsk` +A4sijδk`

+
A5

4
(δiksj` + δjksi` + δi`sjk + δj`sik) +A6δijs

2
k` +A7δk`s

2
ij

+
A8

4

(
δiks

2
j` + δjks

2
i` + δi`s

2
jk + δj`s

2
ik

)

+A9sijsk` +
A10

2
(siksj` + sjksi`)

+A11sijs
2
k` +A12s

2
ijsk` +

A13

4

(
siks

2
j` + sjks

2
i` + si`s

2
jk + sj`s

2
ik

)

+A14s
2
ijs

2
k` +

A15

2

(
s2

iks
2
j` + s2

jks
2
i`

)

After making it traceless by subtracting its traces, and using that last rela-
tion, we come up with the following restrictions on the Ak: Let P and Q be
defined respectively by

P
def
= −Gββ − γ

β
Gβγ

Q
def
= − β

γ2
Gγβ − 1

γ
Gγγ

Then these are conditions that must be satisfied:

PA2 +Q
β2

6
A5 +

(
P
β2

2
+Q

γ3

3

)
A8 +

(
Pβ2 +Qγ3

)
A9

+

(
P
β2

2
+Q

γ3

3

)
A10 +

(
Pγ3 +Q

β4

6

)
A12 +

(
P
γ3

3
+Q

β4

12

)
A13

+

(
P
β4

4
+ 2Q

β2γ3

9

)
A15 = 1

and

QA2 + PA5 +Q
β2

6
A8 +Q

β2

6
A10 +

(
Pβ2 +Qγ3

)
A11

+

(
P
β2

2
+Q

γ3

3

)
A13 +

(
Pγ3 +Q

β4

6

)
A14

+

(
P
γ3

3
+Q

β4

12

)
A15xxx = 0
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These are two conditions on the ten coefficients, a grossly undetermined sys-
tem. Actually, it is even more so. Because of the volume of material presented
here in a relatively short time, I have not discussed the restrictions on the
temperature and volume terms. In fact, these add two more restrictions, but
also add four more coefficients. And all of these coefficients are functions of
the invariants, the temperature and, actually, also the volume.

The Bernstein-Olsen results fit in very nicely by choosing

A2 =
β

ψ
and A9 =

1

β2

[
1

ψβ

− β

ψ

]

Concluding Remarks
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• Hypoelasticity is a rate theory of stress versus strain.

• Hypoelasticity is considered more general than Cauchy elasticity, in
which there stress is a function of strain.

• Nevertheless under appropriate restrictions, one may construct a ther-
modynamic theory of hypoelasticity.

• The theory presented here involves a severely underdetermined set of
restrictions which arise from the requirement that the theory fit the
laws of thermodynamics.

• Because hypoelasticity is path reversible, obeying the second law, as
formulated here, gives no entropy production except that due to heat
flow, as in an elastic theory.

• The theory of elasticity and perfect plasticity can be formulated in
a single set of equations. These can be made into a thermodynamic
theory in which loading and unloading is well defined. The definition
even includes dependence on temperature changes.

• In the elasticity-plasticity equations given here, agreement with the
second law follows from the assumption that the stable path will be
taken both in loading and unloading.


