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Hypoelasticity

by
Barry Bernstein

1-dimensional situation, where ε is strain and σ

is stress. Linear

σ = µε

where µ is a modulus.

σ̇ = µε̇

σ̇ = µ(σ)ε̇

1. Hypoelasticity — less than elasticity –a rate
theory.

2. Elasticity — Cauchy elasticity

3. Hyperelasticity — more than elasticity —
Green elasticity
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Let us now turn to the proper formulation of the
hypoelastic equations. We shall use Cartesian
tensor notation in which, although we write all
indices as subscripts, we do sum out on repeated
indices in a term.

First we must define some symbols: to this end:

σij stress tensor
sij = σij − σkkδij/3 stress deviator
eij infinitesmal strain
εij = eij − ekkδij/3 strain deviator
vi velocity vector
dij = (vi,j + vj,i)/2 rate of deformation
ωij = (vi,j − vj,i)/2 rate of rotation
p pressure
ρ mass density

υ = 1/ρ specific volume

δij =

{
0 if i 6= j

1 if i = j
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If the spatial cartesian coordinates are xi, i =
1, 2, 3,

p,i ≡
∂p

∂xi

vi,j ≡
∂vi

∂xj

Aijkl = Ajik` = Aji`k, Aijkk = Akkij = 0

ṡij = sikωjk + sjkωik + Aijk`dk`

yield condition

sijsij = 2k2

β2 = sijsij < 2k2, elastic.,
ds

dε
=

√
1 − s2

Solutions
s = sin(ε− c)

But it also has a two singular solutions:

s = 1 and s = −1

−1 < s < 1, Lipschitz – uniqueness

s = ±1, Lipschitz & uniqueness fails.
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ds

dt
=

√
1 − s2n

ϕ(α) where α =
√
εijεij,

sij =
∂ϕ

∂εij
= ϕ′(α)

εij
α

and let
β =

√
sijsij

Then

β = ϕ′(α)

which, when solved for alpha is expressed as

α = ψ(β)

After a bit of manipulation, we get

ψ(β)

β
sij = εij

ṡij =
β

ψ(β)
ε̇ij +

1

β2

[
1

ψ′(β)
− β

ψ(β)

]
sijsk`ε̇k`

d

dt
β2 =

2

ψ′(β)
sijε̇ij
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ψ(β) =
k
√

2

2µ
sin−1 β

2k
√

2
which results in

dβ2

dt
= 4µ

√
1 − β2/2k2sijε̇ij

Actually, we can play around with ψ: In fact,
the way to do this is to pick ψ′β. Given a pos-
itive integer, n, we can pick ψ so that

ψ′(β) =
1

2µ
√

1 − (β2/2k2)n

dβ2

dt
=

√
1 − (β2/2k2)nsijε̇ij

ṡij =
β

ψ(β)
ε̇ij +

1

β2

[
1

ψ′(β)
− β

ψ(β)

]
sijsk`ε̇k`

During yield, 1/ψ′(β) = 0, and β2 = 2k2 to get

ṡij = 4µ
k
√

2

ψ(k
√

2)

[
ε̇ij −

1

2k2

]
sijsk`ε̇k`

sij and T state variables.
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Gibbs function, G(sij, T ), which we take to de-
pend on sij through the invariant, β

G = G(β, T )

εij = − ∂G

∂sij

η =
−∂G
∂T

(η is entropy density)

E = G + Tη + sijεij

ψ = −
∂G

∂β

η entropy density, T temperature, E is internal
energy.

ṡij =
β

ψ
+

1

β2

[
1

ψβ
− β

ψ

]
sijsk`ε̇k` −

ψT

βψβ
sijṪ

Energy balance

Ė = sijε̇ij − qi,i
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qi heat flux vector

Sij =
sij

k
√

2
H(B, T ) = G(β, T )

Θ(B, T ) = ψ(β, T )

Ṡij =
B

Θ
ε̇ij+

1

B2

[
1

ΘB
− B

Θ

]
SijSk`ε̇k`−

ΘT

BΘB
SijṪ

and the eqution for B becomes

dB2

dt
=

2

ΘB

[
Sij ε̇ij − BΘBṪ

]

yield condition is B = 1. last equation

dB2

dt
=

4µ

k
√

2

√
1 −B2n

[
Sk`ε̇k` − BΘT Ṫ

]

[
Sk`ε̇k` − BΘT Ṫ

]
> 0 loading[

Sk`ε̇k` − BΘT Ṫ
]
< 0 unloading

B2 < 1, chain rule applies

Ė = sk`ε̇k` + T η̇

which, with placed energy balance,

Ė = sijε̇ij − qi,i
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results in
ρT η̇ + qi,i = 0

no entropy production except due to heat flow.

During yield, B = 1, First we set B to the
constant value, B = 1 and then differentiate
G = G(1, T )

Ė = k
√

2ΘT Ṫ + T η̇

Result

T η̇ + qi,i = k
√

2
[
Sij ε̇ij −BΘT Ṫ

]

qiT,i ≤ 0 so that we get always

η̇ +
qi,i
T

= η̇ +
(qi
T

)
,i

+
qiT,i

T 2

So positive entropy production and positive ther-
mal conductivity (qiT,i ≤ 0) gives agreement
with the second law. The theory agrees with
the laws of thermodynamics.
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• Choose our state variables

• Choose the appropriate thermodynamic po-
tential in terms of which we will state con-
servation of energy

• Choose the rate equation for stress (devia-
tor)

• Establish that the second law holds.

1984, Olsen and Bernstein

E = G− sij
∂G

∂sij
+ Tη

Energy balance

−ρsij

(
∂G

∂sij

).

= sijdij

becomes
ρT η̇ + qi,i = 0

or

ρη̇ +
(qi
T

)
,i

= −qiT,i

T 2

qiT,i ≤ 0 is assumed, gives agreement with sec-
ond law. Let ψ = −∂G/∂β One arrives at
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constitutive eq.

ṡij − sikωjk − sjkωik

=
1

ρ

[
1

β2

(
1

ψβ
− β

ψ

)
sijsk` +

β

ψ
ϕijk`

]
dk`−

1

β

ψT

ψβ
Ṫ sij

where

ϕijk` =
1

2
δijδk` +

1

2
δjkδi` −

1

3
δijδk`

Bernstein and Olsen - model not elastic.

ZAMP Thermodynamics of Hypoelasticity, by

B. Bernstein and K. Rajagopal.

The stress deviator is traceless, sii = 0. This
relation uses up one of its three invariants. Of
the other two, we have dealt with β. We have
one more, which we call γ.

β =
√
sijsij

γ = 3
√
siksk`s`j

So that G = G(β, γ, T )
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• The constituive relation

ṡij = sikωjk+sjkωik+υAijk`dk`+aijṪ+υ̇bij

• The Gibbs function depending on sij and T .

• conservation of energy

• If we put all this into our equations and de-
fine

ϕij = − ∂G

∂sij

ρT η̇ + qi,i − ρr = sijdij − ρsijϕ̇ij

For second law to hold

sijdij − ρsijϕ̇ij ≥ 0

sijdij − ρsijϕ̇ij = 0

For Aijk` we have the following
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Ãijk` =A1δijδk` +
A2

2
(δikδj` + δi`δjk)

+A3δijsk` + A4sijδk`

+
A5

4
(δiksj` + δjksi` + δi`sjk + δj`sik)

+A6δijs
2
k` + A7δk`s

2
ij

+
A8

4

(
δiks

2
j` + δjks

2
i` + δi`s

2
jk + δj`s

2
ik

)

+A9sijsk` +
A10

2
(siksj` + sjksi`)

+A11sijs
2
k` + A12s

2
ijsk`

+
A13

4

(
siks

2
j` + sjks

2
i` + si`s

2
jk + sj`s

2
ik

)

+A14s
2
ijs

2
k` +

A15

2

(
s2

iks
2
j` + s2

jks
2
i`

)

P
def
= −Gββ −

γ

β
Gβγ

Q
def
= −

β

γ2
Gγβ −

1

γ
Gγγ
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Then these are conditions that must be sat-
isfied:

PA2 +Q
β2

6
A5 +

(
P
β2

2
+Q

γ3

3

)
A8

+
(
Pβ2 +Qγ3

)
A9

+

(
P
β2

2
+Q

γ3

3

)
A10 +

(
Pγ3 +Q

β4

6

)
A12

+

(
P
γ3

3
+Q

β4

12

)
A13

+

(
P
β4

4
+ 2Q

β2γ3

9

)
A15 = 1

and

QA2 + PA5 +Q
β2

6
A8 +Q

β2

6
A10 +

(
Pβ2 +Qγ3

)
A11

+

(
P
β2

2
+Q

γ3

3

)
A13 +

(
Pγ3 +Q

β4

6

)
A14

+

(
P
γ3

3
+Q

β4

12

)
A15 = 0

2 conds on 10 coefficients — Underdetermined.
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The Bernstein-Olsen results; choose

A2 =
β

ψ
and A9 =

1

β2

[
1

ψβ
− β

ψ

]
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Concluding Remarks

• Hypoelasticity is a rate theory of stress ver-

sus strain.

• Hypoelasticity is considered more general than

Cauchy elasticity, in which there stress is a

function of strain.

• Nevertheless under appropriate restrictions,

one may construct a thermodynamic theory

of hypoelasticity.

• The theory presented here involves a severely

underdetermined set of restrictions which arise

from the requirement that the theory fit the

laws of thermodynamics.

• Because hypoelasticity is path reversible, obey-

ing the second law, as formulated here, gives

no entropy production except that due to

heat flow, as in an elastic theory.
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• The theory of elasticity and perfect plastic-

ity can be formulated in a single set of equa-

tions. These can be made into a thermody-

namic theory in which loading and unload-

ing is well defined. The definition even in-

cludes dependence on temperature changes.

• In the elasticity-plasticity equations given

here, agreement with the second law follows

from the assumption that the stable path

will be taken both in loading and unload-

ing.


