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Overview of Rubber-like Materials
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Rubbers widely used in industry and daily life

Applications: tires, bearings, bushings, sealants, etc. 

Relatively soft, light-weight, and flexible. Undergo large 

strains, energy dissipation, sub-ambient Tg. 

3-D network structure of long, flexible polymeric chains:



Functional Grading Concept

Tailoring the material non-homogeneity

P(X) for 

reducing stress-strain localizations

and temperature gradients

controlling the dynamic properties, 
surface properties, and the 
permeability to fluids 



Graded Rubbers: Layering

Ikeda, Y. 2003. J. Appl. Polym. Sci., 87: 61-67. 
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Milestones in Rubber Thermoelasticity
Entropic origin for the stress (Anthony et al., 1942; Meyer 

and van der Wyk, 1946). 

Large, multi-axial, isothermal deformations (Treloar, 1944; 

Rivlin and Saunders,1951)

Universal controllable deformations of isotropic elastic 

materials (Ericksen,1954,1955).

Universal deformations within the context of finite thermo-
elasticity (Petroski and Carlson, 1968,1970).

Generalized thermoelastic models: Chadwick (1974), 

Chadwick and Creasy (1984), Ogden (1992).

Many BVPs solved in the last decade (e.g., Horgan, 

Rajagopal, Saccomandi, Wineman). Non-homogeneity??? 



Consequences of Material Non-Homogeneity

Material homogeneity is simply assumed in the rheological 

characterization of rubbers.

What do standard tests really measure?

Three fundamental issues to be addressed:
isothermal/non-isothermal behavior of non-homogeneous 
rubbers (forward problem) 

tailoring the non-homogeneity

characterization of non-homogeneous rubbers (inverse  

problem) 



Kinematics
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Deformation Measures
The deformation gradient F

The left (right) Cauchy-Green deformation tensor B (C) is 

obtained via polar decomposition of F:

Material isotropy requires that the response functions depend 

on the principal invariants of B, i.e., I1, I2, and I3: 
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Finite Thermoelasticity
Thermo-mechanical behavior of non-homogeneous, isotropic 

non-linearly elastic materials can be described by

The Cauchy stress T and the heat flux vector q are given by

ψ, η , and ε : specific Helmholtz free energy, entropy, and internal energy

Γi : thermo-mechanical response functions 

ρ0 and θ : a reference density and temperature
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Entropic Finite Thermoelasticity
A constrained thermoelastic model:

The Cauchy stress T and the heat flux vector q are given by

Clausius-Duhem Inequalities:     

W : isothermal strain energy function; Constraint:
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Local Balance Equations

Balance of Mass:

Balance of Linear Momentum:

Balance of Thermal Energy:     
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Isothermal Deformation of Homogeneous Rubbers
Neo-Hookean model:
Mooney model:
Yeoh model:
Gent model:

Shear Strain, �

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

S
he

ar
 S

tre
ss

, T
xy

 (M
P

a)

0

1

2

3

4

5
Simple shear data 
(Seki et al. 1987)
Yeoh model: A10 = 248 kPa, 
A20 = −1.484 kPa, A30 = 0.302 kPa  
Mooney model:
A10 = 200 kPa, A20 = 50 kPa 
Gent model:
G = 455 kPa, (�G)−1 = 34.3
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Rectilinear Shearing of Rubber Slabs (I)

x

H

y

Displaced Boundary: f (H) = U, �(H) = �H

Simple Shear

Stationary Boundary: f (0) = 0, �(0) = �C

X
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Y

Reference Configuration

Current (Deformed) Configuration

Undeformed  
Slab

Inhomogeneous
Shear

Postulated Deformation:
x = X + f (Y)
y = Y
z = Z
Postulated Temperature:
� = �(y) = �(Y) 



Rectilinear Shear (II): Deformation Measures
The deformation measures are implicitly given by

Due to det F = 1, incompressibility constraint is satisfied. 
The strain inhomogeneity is determined from:
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xf ''x: absolute value of the shear strain gradient



Rectilinear Shear (III): Field Equations
The Cauchy’s equations of motion can be recorded as

The local energy balance equation with Fourier’s law:
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Rectilinear Shear (IV): Neo-Hookean Model
Non-isothermal Deformation
of a Homogeneous Slab:

An increase in temperature
gradient enhances the 
strain inhomogeneity.

The strain inhomogeneity is 
more pronounced near the 
colder boundary.
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H = 1 cm, U = 4 cm, 

θ0 = 296 K, θC = 298 K,         

A10 = 250 kPa, θH varied



Rectilinear Shear (V): Yeoh Model
Non-isothermal Deformation
of a Homogeneous Slab:

The strain-induced stiffening
homogenizes the strain field.

H = 1 cm, U = 4 cm, 
θ0 = 296 K, θC = 298 K,         
A10 = 250 kPa, A10 = -1.484 kPa,
A30 = 0.302 kPa, θH varied
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Rectilinear Shear (VI): Neo-Hookean Model
Non-isothermal Deformation
of a Homogeneous Slab:

Stress increase due to 
temperature-induced 
stiffening

Colder boundary subjected 
to a higher normal stress!

H = 1 cm, U = 4 cm, 
θ0 = 296 K, θC = 298 K,         
A10 = 250 kPa, θH varied
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Rectilinear Shear (VII): Yeoh Model
Non-isothermal Deformation
of a Homogeneous Slab:

The stresses are higher and 
less inhomogeneous in the
Yeoh slab than in the Neo-
Hookean slab.

H = 1 cm, U = 4 cm, 
θ0 = 296 K, θC = 298 K,         
A10 = 250 kPa, A10 = -1.484 kPa,
A30 = 0.302 kPa, θH varied
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Rectilinear Shear (VIII): AB Type Graded Rubbers
Isothermal Deformation
of a Non-Homogeneous Slab:

H = 2 mm, S = 1.2 MPa, 
θ0 = 296 K, φ = 5, Yinf = 1 mm, 
Λ = 0.039 MPa−1
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Rectilinear Shear (IX): AB Type Graded Rubbers
Isothermal Deformation
of a Non-Homogeneous Slab:

H = 2 mm, S = 1.2 MPa, 
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Rectilinear Shear (X): Functional Grading?
Non-isothermal Deformation
of a Graded Slab:

An optimum grading exists!

H = 1 cm, U = 4 cm, 
θ0 = θC = 296 K, θH = 444 K,  
� = 5.0, µB = 455 kPa,             
� = 0.0641 MPa−1
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Rectilinear Shear (XI): Functional Grading?
Non-isothermal Deformation
of a Graded Slab:

Grading leads to a reduction in 
stresses.

H = 1 cm, U = 4 cm, 
θ0 = θC = 296 K, θH = 444 K,  
� = 5.0, µB = 455 kPa,             
� = 0.0641 MPa−1
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A Perspective in Materials Engineering

Processing Properties
(Structure)

Performance
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How to generate the spatial variation of the crosslink density V(X)?



How to Produce FGREMs?
Construction-based methods: layers with different 
contents of 

curing agents (Ikeda, 2003)

secondary phase (fillers, recycled rubber powder)   

rubber blends

Transport-based methods:
Thermally-induced structure (crosslink density) 

Desired Material
Structure

Performance
&

Grading Criteria
Fabrication
Processes



Molding of a Rubber Tube (I)
Geometry

( )15.273r10r −−= Tλλλ

• Long tube, insulated ends, 
constant physical properties, 
except

r1

r2

r3

r

T
3 = 140 oC

Rubber: black, Gray: Metal mold

Rubber with curing agents is 
heated by the steam-jacketed 
metal mold.

The spatio-temporal development 
of temperature and crosslink 
density was simulated. 

(E. Bilgili, AIChE Annu. Meet., 2003)
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Molding Simulation (I): Rubber Temperature 

The rubber temperature rises fast near the outer mold (about 413 K), which is 
heated by steam. It monotonically increases and evolves to a steady state.
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Molding Simulation (II): Crosslink Density

The evolution of crosslink density V is non-monotonic due to reversion. 
Transport-based grading of rubbers is possible via control of the process.

Colder Region



Conclusions

Rubbers can be graded in a variety of ways.

Functional grading can reduce stress-strain localizations.

Sophisticated process models enable us to generate a 

desired structure.

An attempt to connect processing-properties-performance 

aspects of rubbers has been made.
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