Towards mathematically justifying nonlinear constitutive relations between stress and linearized strain

Casey Rodriguez

University of North Carolina at Chapel Hill

Modelling, PDE Analysis and Computational Mathematics in Materials Science

Casev Rodriguez

Nonlinear constitutive relations between stress and linearized strain

UNC

Bernoulli's 1687 gut string experiments with $\epsilon \leq 0.07.$

Casey Rodriguez

Nonlinear constitutive relations between stress and linearized strain

UNC

Bernoulli's 1687 gut string experiments with $\epsilon \leq 0.07.$

Grüneisen's 1906 cast iron experiments with $\epsilon \leq 0.004.$

Casey Rodriguez

Bernoulli's 1687 gut string experiments with $\epsilon \leq 0.07$.

Grüneisen's 1906 cast iron experiments with $\epsilon \leq 0.004.$

Goal: Propose a mathematical asymptotic framework where nonlinear constitutive relations between stress and linearized strain rigorously emerge as leading-order approximations to those describing finite elastic bodies.

Casey Rodriguez

Classical Cauchy elasticity.

Classical Cauchy elasticity.

Linearized elasticity. If $\delta_0 := |\mathbf{F} - \mathbf{I}| \ll 1$, then:

Casey Rodriguez

Classical Cauchy elasticity.

Linearized elasticity. If $\delta_0 := |\mathbf{F} - \mathbf{I}| \ll 1$, then:

$$\begin{split} \boldsymbol{E} &= \boldsymbol{\epsilon} + \boldsymbol{O}(\delta_0^2), \quad \boldsymbol{\epsilon} = \frac{1}{2}(\boldsymbol{F} + \boldsymbol{F}^t) - \boldsymbol{I} = \boldsymbol{O}(\delta_0), \\ &\bar{\boldsymbol{S}} = \boldsymbol{f}_{\boldsymbol{E}}(\boldsymbol{0})[\boldsymbol{\epsilon}] + \boldsymbol{O}(\delta_0^2). \end{split}$$

Casev Rodriguez

Classical Cauchy elasticity.

Linearized elasticity. If $\delta_0 := |\mathbf{F} - \mathbf{I}| \ll 1$, then:

$$E = \epsilon + O(\delta_0^2), \quad \epsilon = \frac{1}{2}(F + F^t) - I = O(\delta_0),$$
$$\bar{S} = f_E(0)[\epsilon] + O(\delta_0^2).$$

The response of a fixed material is described by the classical linearized elastic stress-strain relationship

$$\boldsymbol{\sigma} = \mathbf{C}[\boldsymbol{\epsilon}],$$

to leading order, as $\delta_0 \to 0$.

Casey Rodriguez

$$h(E, \bar{S}) = 0.$$

Casey Rodriguez

UNC

$$\boldsymbol{h}(\boldsymbol{E},\bar{\boldsymbol{S}})=\boldsymbol{0}.$$

If $\delta_0 := |\mathbf{F} - \mathbf{I}| \ll 1$, then it was argued that since $\mathbf{E} = \boldsymbol{\epsilon} + \mathbf{O}(\delta_0^2)$, the above fixed relation is asymptotically equivalent to

 $h(\epsilon, \bar{S}) = 0$, as $\delta_0 \to 0$.

$$h(\boldsymbol{E}, \bar{\boldsymbol{S}}) = \boldsymbol{0}.$$

If $\delta_0 := |\mathbf{F} - \mathbf{I}| \ll 1$, then it was argued that since $\mathbf{E} = \boldsymbol{\epsilon} + \mathbf{O}(\delta_0^2)$, the above fixed relation is asymptotically equivalent to

$$\boldsymbol{h}(\boldsymbol{\epsilon}, \boldsymbol{S}) = \boldsymbol{0}, \quad \text{as } \delta_0 \to 0$$

However, if h(0,0) = 0 and $h_{\bar{S}}(0,0)$ is invertible,

$$\boldsymbol{h}(\boldsymbol{E},\bar{\boldsymbol{S}})=\boldsymbol{0}.$$

If $\delta_0 := |\mathbf{F} - \mathbf{I}| \ll 1$, then it was argued that since $\mathbf{E} = \boldsymbol{\epsilon} + \mathbf{O}(\delta_0^2)$, the above fixed relation is asymptotically equivalent to

$$oldsymbol{h}(oldsymbol{\epsilon},oldsymbol{S}) = oldsymbol{0}, \quad ext{as} \; \delta_0 o 0.$$

However, if h(0,0) = 0 and $h_{\bar{S}}(0,0)$ is invertible, then by the implicit function theorem, there exists f such that for all δ_0 sufficiently small,

$$h(E, \bar{S}) = 0 \iff \bar{S} = f(E).$$

Casev Rodriguez

$$h(\boldsymbol{E}, \bar{\boldsymbol{S}}) = \boldsymbol{0}.$$

If $\delta_0 := |\mathbf{F} - \mathbf{I}| \ll 1$, then it was argued that since $\mathbf{E} = \boldsymbol{\epsilon} + \mathbf{O}(\delta_0^2)$, the above fixed relation is asymptotically equivalent to

$$oldsymbol{h}(oldsymbol{\epsilon},oldsymbol{S}) = oldsymbol{0}, \quad ext{as} \; \delta_0 o 0.$$

However, if h(0,0) = 0 and $h_{\bar{S}}(0,0)$ is invertible, then by the implicit function theorem, there exists f such that for all δ_0 sufficiently small,

$$h(E, \bar{S}) = 0 \iff \bar{S} = f(E).$$

Moral: By selecting δ_0 as the asymptotic parameter governing limiting behavior, a fixed constitutive relation is always approximated by a **linear** relation between stress and linearized strain, to leading order, as $\delta_0 \to 0$.

Casev Rodriguez

$$E = \epsilon + \frac{1}{2}\epsilon^2, \quad \epsilon = -1 + (1+2E)^{1/2},$$
$$E = \delta a (1+|a\bar{S}|^p)^{-1/p}\bar{S},$$

with $\delta \ll 1$.

Casev Rodriguez

$$\begin{split} E &= \epsilon + \frac{1}{2}\epsilon^2, \quad \epsilon = -1 + (1+2E)^{1/2}, \\ E &= \delta a (1+|a\bar{S}|^p)^{-1/p}\bar{S}, \end{split}$$

with $\delta \ll 1$. Note that δ bounds the magnitude of the strain across a range of values for the stress variable \bar{S} .

Casev Rodriguez

$$\begin{split} E &= \epsilon + \frac{1}{2}\epsilon^2, \quad \epsilon = -1 + (1+2E)^{1/2}, \\ E &= \delta a (1+|a\bar{S}|^p)^{-1/p}\bar{S}, \end{split}$$

with $\delta \ll 1$. Note that δ bounds the magnitude of the strain across a range of values for the stress variable \bar{S} .

Suppose we take $\delta \ll 1$ as the asymptotic parameter, and thus, we are considering a family of constitutive relations.

$$\begin{split} E &= \epsilon + \frac{1}{2}\epsilon^2, \quad \epsilon = -1 + (1+2E)^{1/2}, \\ E &= \delta a (1+|a\bar{S}|^p)^{-1/p}\bar{S}, \end{split}$$

with $\delta \ll 1$. Note that δ bounds the magnitude of the strain across a range of values for the stress variable \bar{S} .

Suppose we take $\delta \ll 1$ as the asymptotic parameter, and thus, we are considering a family of constitutive relations. Since $|E| \leq \delta$ for all \bar{S} , we have

 $\epsilon = E + O(\delta^2).$

Casey Rodriguez

$$\begin{split} E &= \epsilon + \frac{1}{2}\epsilon^2, \quad \epsilon = -1 + (1+2E)^{1/2}, \\ E &= \delta a (1+|a\bar{S}|^p)^{-1/p}\bar{S}, \end{split}$$

with $\delta \ll 1$. Note that δ bounds the magnitude of the strain across a range of values for the stress variable \bar{S} .

Suppose we take $\delta \ll 1$ as the asymptotic parameter, and thus, we are considering a family of constitutive relations. Since $|E| \leq \delta$ for all \bar{S} , we have

$$\epsilon = E + O(\delta^2).$$

We conclude that

$$\epsilon + O(\delta^2) = \delta a (1 + |a\bar{S}|^p)^{-1/p} \bar{S} \implies$$
$$\epsilon = \delta a (1 + |a\bar{S}|^p)^{-1/p} \bar{S} + O(\delta^2)$$

Casev Rodriguez

$$\begin{split} E &= \epsilon + \frac{1}{2}\epsilon^2, \quad \epsilon = -1 + (1+2E)^{1/2}, \\ E &= \delta a (1+|a\bar{S}|^p)^{-1/p}\bar{S}, \end{split}$$

with $\delta \ll 1$. Note that δ bounds the magnitude of the strain across a range of values for the stress variable \bar{S} .

Suppose we take $\delta \ll 1$ as the asymptotic parameter, and thus, we are considering a family of constitutive relations. Since $|E| \leq \delta$ for all \bar{S} , we have

$$\epsilon = E + O(\delta^2).$$

We conclude that

$$\epsilon + O(\delta^2) = \delta a (1 + |a\bar{S}|^p)^{-1/p} \bar{S} \implies$$
$$\epsilon = \delta a (1 + |a\bar{S}|^p)^{-1/p} \bar{S} + O(\delta^2)$$

Moral: If δ is the asymptotic parameter determining the limiting behavior for a family of constitutive relations, then these relations can be described by **nonlinear** relations between stress and linearized strain, to leading order, as $\delta \to 0$.

Casey Rodriguez

Nonlinear constitutive relations between stress and linearized strain

UNC

For small $\tilde{\delta} > 0$, and each $\delta \in (0, \tilde{\delta})$, let $U_{\delta} \subseteq B(\mathbf{0}, 1/2)$ and V be open subsets of Sym.

For small $\tilde{\delta} > 0$, and each $\delta \in (0, \tilde{\delta})$, let $U_{\delta} \subseteq B(\mathbf{0}, 1/2)$ and V be open subsets of Sym. We say that a collection of bounded Lipschitz continuous functions

$$\boldsymbol{f}_{\boldsymbol{\delta}}: U_{\boldsymbol{\delta}} \times V \to \operatorname{Sym},$$

indexed by $\delta \in (0, \tilde{\delta})$ is a family of strain-limiting functions with limiting small strains if:

For small $\tilde{\delta} > 0$, and each $\delta \in (0, \tilde{\delta})$, let $U_{\delta} \subseteq B(\mathbf{0}, 1/2)$ and V be open subsets of Sym. We say that a collection of bounded Lipschitz continuous functions

$$\boldsymbol{f}_{\boldsymbol{\delta}}: U_{\boldsymbol{\delta}} \times V \to \operatorname{Sym},$$

indexed by $\delta \in (0, \tilde{\delta})$ is a family of **strain-limiting functions with limiting small strains** if: there exist $C_0, C_1 > 0$ and $D_0 > 0$, independent of δ , such that for all $\delta \in (0, \tilde{\delta})$,

$$egin{aligned} &orall oldsymbol{E},oldsymbol{ar{S}}, \left|oldsymbol{f}_{\delta}(oldsymbol{E},oldsymbol{ar{S}})
ight| \leq C_0\delta, &orall oldsymbol{E}_1
eq oldsymbol{E}_2,oldsymbol{ar{S}}, rac{oldsymbol{f}_{\delta}(oldsymbol{E}_2,oldsymbol{S}) - oldsymbol{f}_{\delta}(oldsymbol{E}_1,oldsymbol{S})
ight| \ &|oldsymbol{E}_2 - oldsymbol{E}_1
ight| \\ &orall oldsymbol{E},oldsymbol{ar{S}}_1
eq oldsymbol{ar{S}}_2, \ &orall oldsymbol{f}_{\delta}(oldsymbol{E},oldsymbol{ar{S}}_2) - oldsymbol{f}_{\delta}(oldsymbol{E},oldsymbol{ar{S}}_1)
ight| \ &\leq C_1, \ &|oldsymbol{E}_2 - oldsymbol{E}_1
ight| \ &|oldsymbol{S}_2 - oldsymbol{ar{S}}_1
ight| \ &\leq D_0\delta. \end{aligned}$$

Casey Rodriguez

For small $\tilde{\delta} > 0$, and each $\delta \in (0, \tilde{\delta})$, let $U_{\delta} \subseteq B(\mathbf{0}, 1/2)$ and V be open subsets of Sym. We say that a collection of bounded Lipschitz continuous functions

$$\boldsymbol{f}_{\boldsymbol{\delta}}: U_{\boldsymbol{\delta}} \times V \to \operatorname{Sym},$$

indexed by $\delta \in (0, \tilde{\delta})$ is a family of **strain-limiting functions with limiting small strains** if: there exist $C_0, C_1 > 0$ and $D_0 > 0$, independent of δ , such that for all $\delta \in (0, \tilde{\delta})$,

$$egin{aligned} &orall oldsymbol{E},oldsymbol{ar{S}}, \left|oldsymbol{f}_{\delta}(oldsymbol{E},oldsymbol{ar{S}})
ight| \leq C_0\delta, &orall oldsymbol{E}_1
eq oldsymbol{E}_2,oldsymbol{ar{S}}, rac{oldsymbol{f}_{\delta}(oldsymbol{E}_2,oldsymbol{S}) - oldsymbol{f}_{\delta}(oldsymbol{E}_1,oldsymbol{S})
ight| \ &|oldsymbol{E}_2 - oldsymbol{E}_1
ight| \ &|oldsymbol{E}_2 - oldsymbol{E}_1
ight| \ &|oldsymbol{E}_2 - oldsymbol{ar{S}}_1
ight| \leq C_1, \ &|oldsymbol{F}_{\delta}(oldsymbol{E},oldsymbol{ar{S}}_2) - oldsymbol{f}_{\delta}(oldsymbol{E},oldsymbol{ar{S}}_1)
ight| \ &|oldsymbol{S}_2 - oldsymbol{ar{S}}_1
ight| \ &|oldsymbol{S}_2 - oldsymbol{ar{S}}_2
ight| \ &|oldsy$$

Example. $f_{\delta}(\bar{S}) = \delta a (1 + |a\bar{S}|^p)^{-1/p} \bar{S}$,

Casev Rodriguez

For small $\tilde{\delta} > 0$, and each $\delta \in (0, \tilde{\delta})$, let $U_{\delta} \subseteq B(\mathbf{0}, 1/2)$ and V be open subsets of Sym. We say that a collection of bounded Lipschitz continuous functions

$$\boldsymbol{f}_{\boldsymbol{\delta}}: U_{\boldsymbol{\delta}} \times V \to \operatorname{Sym},$$

indexed by $\delta \in (0, \tilde{\delta})$ is a family of **strain-limiting functions with limiting small strains** if: there exist $C_0, C_1 > 0$ and $D_0 > 0$, independent of δ , such that for all $\delta \in (0, \tilde{\delta})$,

$$egin{aligned} &orall oldsymbol{E},ar{oldsymbol{S}}, \ egin{aligned} &|oldsymbol{f}_{\delta}(oldsymbol{E},oldsymbol{S})| \leq C_0\delta, & orall oldsymbol{E}_1
eq oldsymbol{E}_2, ar{oldsymbol{S}}, \ egin{aligned} &|oldsymbol{f}_{\delta}(oldsymbol{E},oldsymbol{S}) - oldsymbol{f}_{\delta}(oldsymbol{E},oldsymbol{S})| \ &|oldsymbol{E}_2 - oldsymbol{E}_1| \ \end{aligned} \\ &orall oldsymbol{E}, ar{oldsymbol{S}}_1
eq oldsymbol{S}_2, \ egin{aligned} &|oldsymbol{f}_{\delta}(oldsymbol{E},oldsymbol{S}_2) - oldsymbol{f}_{\delta}(oldsymbol{E},oldsymbol{S}_1)| \ &|oldsymbol{E}_2 - oldsymbol{S}_1| \ \end{matrix} \leq D_0\delta. \end{aligned}$$

Example. $f_{\delta}(\bar{S}) = \delta a (1 + |a\bar{S}|^p)^{-1/p} \bar{S}$, or more generally,

$$oldsymbol{f}_{oldsymbol{\delta}}(oldsymbol{E},ar{oldsymbol{S}}) = oldsymbol{\delta}oldsymbol{f}_1ig(oldsymbol{E}/oldsymbol{\delta},ar{oldsymbol{S}}ig)$$

where $\boldsymbol{f}_1:U\times V\to \operatorname{Sym}$ is a bounded Lipschitz continuous function.

Theorem (Rajagopal-R. 24)

Let $\mathbf{f}_{\delta} =: U_{\delta} \times V \to \text{Sym}$ be a family of strain-limiting functions with limiting small strains. Let $\mathbf{\bar{S}} \in V$. Assume that there exists r > 0 such that for each $\delta > 0$ sufficiently small, there exists $\mathbf{E}_{\delta} \in U_{\delta}$ such that $B(\mathbf{E}_{\delta}, r\delta) \subseteq \delta U$ and

$$\boldsymbol{E}_{\delta} = f_{\delta}(\boldsymbol{E}_{\delta}, \bar{\boldsymbol{S}}).$$

Theorem (Rajagopal-R. 24)

Let $\mathbf{f}_{\delta} =: U_{\delta} \times V \to \text{Sym}$ be a family of strain-limiting functions with limiting small strains. Let $\mathbf{\bar{S}} \in V$. Assume that there exists r > 0 such that for each $\delta > 0$ sufficiently small, there exists $\mathbf{E}_{\delta} \in U_{\delta}$ such that $B(\mathbf{E}_{\delta}, r\delta) \subseteq \delta U$ and

$$\boldsymbol{E}_{\delta} = f_{\delta}(\boldsymbol{E}_{\delta}, \bar{\boldsymbol{S}}).$$

Let

$$oldsymbol{C}_{\delta} := oldsymbol{I} + 2oldsymbol{E}_{\delta}, \quad oldsymbol{F}_{\delta} := oldsymbol{R}_{\delta} oldsymbol{C}_{\delta}^{1/2}, \quad oldsymbol{\epsilon}_{\delta} := rac{1}{2} oldsymbol{(F}_{\delta} oldsymbol{F} - oldsymbol{S}, oldsymbol{E}_{\delta}^{1/2}) - oldsymbol{I}, \ oldsymbol{\sigma}_{\delta} := rac{1}{2} oldsymbol{(F}_{\delta} oldsymbol{ar{S}} + oldsymbol{ar{S}} oldsymbol{F}_{\delta}^{T}).$$

with $|\mathbf{R}_{\delta} - \mathbf{I}| < C_2 \delta$.

Casey Rodriguez

Theorem (Rajagopal-R. 24)

Let $\mathbf{f}_{\delta} =: U_{\delta} \times V \to \text{Sym}$ be a family of strain-limiting functions with limiting small strains. Let $\mathbf{\bar{S}} \in V$. Assume that there exists r > 0 such that for each $\delta > 0$ sufficiently small, there exists $\mathbf{E}_{\delta} \in U_{\delta}$ such that $B(\mathbf{E}_{\delta}, r\delta) \subseteq \delta U$ and

$$\boldsymbol{E}_{\delta} = f_{\delta}(\boldsymbol{E}_{\delta}, \bar{\boldsymbol{S}}).$$

Let

$$oldsymbol{C}_{\delta} := oldsymbol{I} + 2oldsymbol{E}_{\delta}, \quad oldsymbol{F}_{\delta} := oldsymbol{R}_{\delta} oldsymbol{C}_{\delta}^{1/2}, \quad oldsymbol{\epsilon}_{\delta} := rac{1}{2} oldsymbol{(F}_{\delta} oldsymbol{F} + oldsymbol{S} oldsymbol{F}_{\delta}^T) - oldsymbol{I}, \ oldsymbol{\sigma}_{\delta} := rac{1}{2} oldsymbol{(F}_{\delta} oldsymbol{ar{S}} + oldsymbol{ar{S}} oldsymbol{F}_{\delta}^T).$$

with $|\mathbf{R}_{\delta} - \mathbf{I}| < C_2 \delta$. Then for all δ sufficiently small, $(\boldsymbol{\epsilon}_{\delta}, \boldsymbol{\sigma}_{\delta}) \in U_{\delta} \times V$, and

$$\boldsymbol{\epsilon}_{\delta} = \boldsymbol{f}_{\delta}(\boldsymbol{\epsilon}_{\delta}, \boldsymbol{\sigma}_{\delta}) + \boldsymbol{O}(\delta^2), \quad as \ \delta \to 0,$$

where the big-oh term depends on C_0 , C_1 , C_2 , and $D_0|\bar{S}|$.

Casey Rodriguez

Example.

Casey Rodriguez

Nonlinear constitutive relations between stress and linearized strain

UNC

$$\boldsymbol{f}_{\delta}(\boldsymbol{E},\bar{\boldsymbol{S}}) = \frac{1+\nu}{E_{\delta}}\bar{\boldsymbol{S}} - \frac{\nu}{E_{\delta}}(\mathrm{tr}\bar{\boldsymbol{S}})\boldsymbol{I}, \quad (\boldsymbol{E},\bar{\boldsymbol{S}}) \in B(0,\delta b) \times B(0,c),$$

with a density-dependent generalized Young's modulus,

$$\boldsymbol{f}_{\delta}(\boldsymbol{E},\bar{\boldsymbol{S}}) = \frac{1+\nu}{E_{\delta}}\bar{\boldsymbol{S}} - \frac{\nu}{E_{\delta}}(\mathrm{tr}\bar{\boldsymbol{S}})\boldsymbol{I}, \quad (\boldsymbol{E},\bar{\boldsymbol{S}}) \in B(0,\delta b) \times B(0,c),$$

with a density-dependent generalized Young's modulus,

$$E_{\delta} = \delta^{-1} E_0 \left[1 + a \delta^{-1} (\rho_R / \rho - 1) \right]^{-1}$$

= $\delta^{-1} E_0 \left[1 + a \delta^{-1} ([\det(\mathbf{I} + 2\mathbf{E})]^{1/2} - 1) \right]^{-1}.$

Casey Rodriguez

$$\boldsymbol{f}_{\delta}(\boldsymbol{E},\bar{\boldsymbol{S}}) = \frac{1+\nu}{E_{\delta}}\bar{\boldsymbol{S}} - \frac{\nu}{E_{\delta}}(\mathrm{tr}\bar{\boldsymbol{S}})\boldsymbol{I}, \quad (\boldsymbol{E},\bar{\boldsymbol{S}}) \in B(0,\delta b) \times B(0,c),$$

with a density-dependent generalized Young's modulus,

$$E_{\delta} = \delta^{-1} E_0 \left[1 + a \delta^{-1} (\rho_R / \rho - 1) \right]^{-1}$$

= $\delta^{-1} E_0 \left[1 + a \delta^{-1} ([\det(\mathbf{I} + 2\mathbf{E})]^{1/2} - 1) \right]^{-1}.$

By the **Theorem**, we can conclude that

$$\boldsymbol{\epsilon}_{\delta} = \delta E_0^{-1} \left[1 + a \delta^{-1} \operatorname{tr} \boldsymbol{\epsilon}_{\delta} \right] \left[(1 + \nu) \boldsymbol{\sigma}_{\delta} - \nu (\operatorname{tr} \boldsymbol{\sigma}_{\delta}) \boldsymbol{I} \right] + \boldsymbol{O}(\delta^2).$$

Casey Rodriguez

$$\boldsymbol{f}_{\delta}(\boldsymbol{E},\bar{\boldsymbol{S}}) = \frac{1+\nu}{E_{\delta}}\bar{\boldsymbol{S}} - \frac{\nu}{E_{\delta}}(\mathrm{tr}\bar{\boldsymbol{S}})\boldsymbol{I}, \quad (\boldsymbol{E},\bar{\boldsymbol{S}}) \in B(0,\delta b) \times B(0,c),$$

with a density-dependent generalized Young's modulus,

$$E_{\delta} = \delta^{-1} E_0 \left[1 + a \delta^{-1} (\rho_R / \rho - 1) \right]^{-1}$$

= $\delta^{-1} E_0 \left[1 + a \delta^{-1} ([\det(\mathbf{I} + 2\mathbf{E})]^{1/2} - 1) \right]^{-1}.$

By the **Theorem**, we can conclude that

$$\boldsymbol{\epsilon}_{\delta} = \delta E_0^{-1} \left[1 + a \delta^{-1} \operatorname{tr} \boldsymbol{\epsilon}_{\delta} \right] \left[(1 + \nu) \boldsymbol{\sigma}_{\delta} - \nu (\operatorname{tr} \boldsymbol{\sigma}_{\delta}) \boldsymbol{I} \right] + \boldsymbol{O}(\delta^2).$$

The leading order constitutive relation (and variants) have been studied by a number of authors recently including: Rajagopal 21', Itou-Kovtunenko-Rajagopal 21', Murru-Rajagopal 21', Murru et al 22', Prusa-Rajagopal-Wineman 22', Vajipeyajula-Murru-Rajagopal 23', and Jeyavel et al 24'.

Casey Rodriguez

Example.

Casev Rodriguez

Nonlinear constitutive relations between stress and linearized strain

UNC

$$\begin{split} \boldsymbol{f}_{\delta}(\boldsymbol{E},\boldsymbol{S}) &= \delta \boldsymbol{f}_{1}(\boldsymbol{S}) \\ &= \delta \partial_{\boldsymbol{\bar{S}}} W^{*}(\boldsymbol{\bar{S}}), \end{split}$$

for some twice continuously differentiable function $W^*: V \to \mathbb{R}$.

Casev Rodriguez

$$\begin{split} \boldsymbol{f}_{\delta}(\boldsymbol{E},\boldsymbol{S}) &= \delta \boldsymbol{f}_{1}(\boldsymbol{S}) \\ &= \delta \partial_{\boldsymbol{\bar{S}}} W^{*}(\boldsymbol{\bar{S}}), \end{split}$$

for some twice continuously differentiable function $W^*: V \to \mathbb{R}$. Then by the **Theorem**

$$\boldsymbol{\epsilon}_{\delta} = \delta \partial_{\boldsymbol{\sigma}_{\delta}} W^*(\boldsymbol{\sigma}_{\delta}) + \boldsymbol{O}(\delta^2).$$

$$\begin{split} \boldsymbol{f}_{\delta}(\boldsymbol{E}, \bar{\boldsymbol{S}}) &= \delta \boldsymbol{f}_{1}(\bar{\boldsymbol{S}}) \\ &= \delta \partial_{\bar{\boldsymbol{S}}} W^{*}(\bar{\boldsymbol{S}}), \end{split}$$

for some twice continuously differentiable function $W^*: V \to \mathbb{R}$. Then by the **Theorem**

$$\boldsymbol{\epsilon}_{\delta} = \delta \partial_{\boldsymbol{\sigma}_{\delta}} W^*(\boldsymbol{\sigma}_{\delta}) + \boldsymbol{O}(\delta^2).$$

Suppose that V is convex and W^\ast is a convex function. Then the leading order relation can be inverted yielding

 $\boldsymbol{\sigma}_{\delta} = \partial_{\boldsymbol{\epsilon}_{\delta}}[\delta W(\boldsymbol{\epsilon}_{\delta}/\delta)].$

Casey Rodriguez

$$\begin{split} \boldsymbol{f}_{\delta}(\boldsymbol{E},\bar{\boldsymbol{S}}) &= \delta \boldsymbol{f}_{1}(\bar{\boldsymbol{S}}) \\ &= \delta \partial_{\bar{\boldsymbol{S}}} W^{*}(\bar{\boldsymbol{S}}) \end{split}$$

for some twice continuously differentiable function $W^*: V \to \mathbb{R}$. Then by the **Theorem**

$$\boldsymbol{\epsilon}_{\delta} = \delta \partial_{\boldsymbol{\sigma}_{\delta}} W^*(\boldsymbol{\sigma}_{\delta}) + \boldsymbol{O}(\delta^2).$$

Suppose that V is convex and W^\ast is a convex function. Then the leading order relation can be inverted yielding

 $\boldsymbol{\sigma}_{\delta} = \partial_{\boldsymbol{\epsilon}_{\delta}}[\delta W(\boldsymbol{\epsilon}_{\delta}/\delta)].$

In particular, the **Theorem** rationalizes hyperelastic theories for infinitesimal displacement gradients that use non-quadratic stored energies of the linearized strain.

Casey Rodriguez

Nonlinear constitutive relations between stress and linearized strain

UNC

• Extend this framework to nonlinear viscoelastic constitutive relations between stress and linearized strain.

- Extend this framework to nonlinear viscoelastic constitutive relations between stress and linearized strain.
- Extend this framework to elastic or viscoelastic rods and shells.

- Extend this framework to nonlinear viscoelastic constitutive relations between stress and linearized strain.
- Extend this framework to elastic or viscoelastic rods and shells.
- For a fixed external body force b, Dirichlet conditions on the boundary, and for all δ sufficiently small,

- Extend this framework to nonlinear viscoelastic constitutive relations between stress and linearized strain.
- Extend this framework to elastic or viscoelastic rods and shells.
- For a fixed external body force b, Dirichlet conditions on the boundary, and for all δ sufficiently small, does solvability of the "linearized" equilibrium equations,

$$\begin{aligned} \mathbf{0} &= \operatorname{Div} \boldsymbol{\sigma}_{L,\delta} + \boldsymbol{b}, \quad \boldsymbol{\sigma}_{L,\delta}^T = \boldsymbol{\sigma}_{L,\delta}, \\ \boldsymbol{\epsilon}_{L,\delta} &= \boldsymbol{f}_{\delta}(\boldsymbol{\epsilon}_{L,\delta}, \boldsymbol{\sigma}_{L,\delta}), \end{aligned}$$

- Extend this framework to nonlinear viscoelastic constitutive relations between stress and linearized strain.
- Extend this framework to elastic or viscoelastic rods and shells.
- For a fixed external body force b, Dirichlet conditions on the boundary, and for all δ sufficiently small, does solvability of the "linearized" equilibrium equations,

$$\begin{aligned} \mathbf{0} &= \operatorname{Div} \boldsymbol{\sigma}_{L,\delta} + \boldsymbol{b}, \quad \boldsymbol{\sigma}_{L,\delta}^T = \boldsymbol{\sigma}_{L,\delta}, \\ \boldsymbol{\epsilon}_{L,\delta} &= \boldsymbol{f}_{\delta}(\boldsymbol{\epsilon}_{L,\delta}, \boldsymbol{\sigma}_{L,\delta}), \end{aligned}$$

imply solvability of the fully nonlinear equilibrium equations,

$$\begin{aligned} \mathbf{0} &= \operatorname{Div} \boldsymbol{S}_{\delta} + \boldsymbol{b}, \quad \boldsymbol{S}_{\delta} \boldsymbol{F}_{\delta}^{T} = \boldsymbol{F}_{\delta} \boldsymbol{S}_{\delta}^{T}, \\ \boldsymbol{S}_{\delta} &= \boldsymbol{F}_{\delta} \bar{\boldsymbol{S}}, \quad \boldsymbol{E}_{\delta} = \boldsymbol{f}_{\delta} (\boldsymbol{E}_{\delta}, \bar{\boldsymbol{S}}_{\delta}), \end{aligned}$$

Casev Rodriguez

- Extend this framework to nonlinear viscoelastic constitutive relations between stress and linearized strain.
- Extend this framework to elastic or viscoelastic rods and shells.
- For a fixed external body force b, Dirichlet conditions on the boundary, and for all δ sufficiently small, does solvability of the "linearized" equilibrium equations,

$$\begin{aligned} \mathbf{0} &= \operatorname{Div} \boldsymbol{\sigma}_{L,\delta} + \boldsymbol{b}, \quad \boldsymbol{\sigma}_{L,\delta}^T = \boldsymbol{\sigma}_{L,\delta}, \\ \boldsymbol{\epsilon}_{L,\delta} &= \boldsymbol{f}_{\delta}(\boldsymbol{\epsilon}_{L,\delta}, \boldsymbol{\sigma}_{L,\delta}), \end{aligned}$$

imply solvability of the fully nonlinear equilibrium equations,

$$\begin{aligned} \mathbf{0} &= \mathrm{Div}\, \boldsymbol{S}_{\delta} + \boldsymbol{b}, \quad \boldsymbol{S}_{\delta} \boldsymbol{F}_{\delta}^{T} = \boldsymbol{F}_{\delta} \boldsymbol{S}_{\delta}^{T}, \\ \boldsymbol{S}_{\delta} &= \boldsymbol{F}_{\delta} \bar{\boldsymbol{S}}, \quad \boldsymbol{E}_{\delta} = \boldsymbol{f}_{\delta} (\boldsymbol{E}_{\delta}, \bar{\boldsymbol{S}}_{\delta}), \end{aligned}$$

with

$$\boldsymbol{E}_{\delta} = \boldsymbol{\epsilon}_{L,\delta} + \boldsymbol{O}(\delta^2), \quad \bar{\boldsymbol{S}}_{\delta} = \boldsymbol{\sigma}_{L,\delta} + \boldsymbol{O}(\delta), \quad \boldsymbol{S}_{\delta} = \boldsymbol{\sigma}_{L,\delta} + \boldsymbol{O}(\delta),$$

as $\delta \to 0$?

- Extend this framework to nonlinear viscoelastic constitutive relations between stress and linearized strain.
- Extend this framework to elastic or viscoelastic rods and shells.
- For a fixed external body force b, Dirichlet conditions on the boundary, and for all δ sufficiently small, does solvability of the "linearized" equilibrium equations,

$$\begin{aligned} \mathbf{0} &= \operatorname{Div} \boldsymbol{\sigma}_{L,\delta} + \boldsymbol{b}, \quad \boldsymbol{\sigma}_{L,\delta}^T = \boldsymbol{\sigma}_{L,\delta}, \\ \boldsymbol{\epsilon}_{L,\delta} &= \boldsymbol{f}_{\delta}(\boldsymbol{\epsilon}_{L,\delta}, \boldsymbol{\sigma}_{L,\delta}), \end{aligned}$$

imply solvability of the fully nonlinear equilibrium equations,

$$\begin{aligned} \mathbf{0} &= \mathrm{Div}\, \boldsymbol{S}_{\delta} + \boldsymbol{b}, \quad \boldsymbol{S}_{\delta} \boldsymbol{F}_{\delta}^{T} = \boldsymbol{F}_{\delta} \boldsymbol{S}_{\delta}^{T}, \\ \boldsymbol{S}_{\delta} &= \boldsymbol{F}_{\delta} \bar{\boldsymbol{S}}, \quad \boldsymbol{E}_{\delta} = \boldsymbol{f}_{\delta} (\boldsymbol{E}_{\delta}, \bar{\boldsymbol{S}}_{\delta}), \end{aligned}$$

with

$$\boldsymbol{E}_{\delta} = \boldsymbol{\epsilon}_{L,\delta} + \boldsymbol{O}(\delta^2), \quad \bar{\boldsymbol{S}}_{\delta} = \boldsymbol{\sigma}_{L,\delta} + \boldsymbol{O}(\delta), \quad \boldsymbol{S}_{\delta} = \boldsymbol{\sigma}_{L,\delta} + \boldsymbol{O}(\delta),$$

as $\delta \to 0$? Analogous results are known to hold for classical linearized elasticity (as $\delta_0 \to 0$), see, e.g., Stoppolli 54-55'.

Nonlinear constitutive relations between stress and linearized strain

10/11

Thank you for your attention!

Casey Rodriguez

Nonlinear constitutive relations between stress and linearized strain

UNC