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Surface/interface elasticity

▶ Gurtin & Murdoch (1975)
▶ Gurtin (1986) - interfacial and boundary energy
▶ Steigmann & Ogden (1997)
▶ Šilhavý (2011, 2013) - interfacial energy, phase transition
▶ Javili & Steinmann (2009, 2010) FEM for continua with

boundary energies
▶ Mogilevskaya et al. (2020, 2021) surface elasticity in linearized

setting
▶ Casado Días-Francfort-Lopez Pamies-Mora (2023) elastomers

with liquid inclusions



Bulk vs. increasing surface energy (M. Horák,
M. Šmejkal)



Functional of elastic energy for nonsimple materials

Let Ω ⊂ Rd , d ≥ 2, be a bounded open connected Lipschitz set,
representing the reference configuration of a hyperelastic body. The
elastic-energy functional depending on the deformation field
y : Ω → Rd reads

G(y) :=
∫
Ω

(
W (∇y(x)) + H(∇2y(x))

)
dx − L(y(x)− x)

+ γ ∥ |cof ∇y n| − 1 ∥L1(∂Ω) .

Here, W is the stored energy density, H is a convex coercive
function representing the energy density depending on the second
gradient L is a dead loading linear bounded functional, accounting
for the work of given external force fields. Local changes in the
surface measure of the boundary of Ω are penalized, as |cof ∇y n|
represents the surface area element of the deformed configuration:
γ > 0, n is the outer unit normal to ∂Ω.



Formal linearization

In the linearization process, we assume that y(x) = x + εv(x) for a
suitable rescaled displacement v and we set L = L/ε, which
reflects the scaling of external forces. Assuming that H and W are
frame indifferent, that H is convex positively p-homogeneous for
some suitable p > 1 and that W is minimized at the identity with
W (I) = DW (I) = 0, i.e., that identity is the natural state of the
body Ω, we consider the rescaled nonlinear global energy

Gε(v) :=
1
ε2

∫
Ω
W (I + ε∇v) dx +

1
εp

∫
Ω
H(ε∇2v)− L(v)

+
γ

ε
∥ |cof (I + ε∇v) n| − 1 ∥L1(∂Ω).



Formal linearization - bulk term

As ε → 0

W (I + ε∇v) =
ε2

2
E(v)∇2W (I)E(v) + o(ε2),

the second order term in the Taylor expansion of W produces the
standard quadratic potential of linear elasticity (being D2W (I) the
fourth order elastic tensor), acting by frame indifference only on the
symmetric part of the gradient

E(v) :=
∇v + (∇v)T

2
.



Formal linearization - surface term

On the other hand, by the formula cof F = (det F)F−T we have

cof (I + ε∇v) = det (I + ε∇v) (I + ε(∇v)T )−1

= (1 + ε div v + o(ε)) (I − ε(∇v)T + o(ε))

= I + εA(v) + o(ε),

where we have introduced the tensor

A(v) = I div v − (∇v)⊤ = I tr∇v − (∇v)⊤,

corresponding to the linearization of the cofactor matrix. As a
consequence,

|cof (I+ε∇v)n| =
√

1 + 2εA(v)n · n + o(ε) = 1+εA(v)n·n+o(ε).



Formal limit as ε → 0

G∗(v) :=
1
2

∫
Ω
E(v)D2W (I)E(v) dx +

∫
Ω
H(∇2v) dx − L(v)

+ γ

∫
∂Ω

|A(v)n · n| dS

Note that

A(v)n · n = (I tr∇v)n · n − (∇v)⊤n · n
= (I trE(v))n · n − E(v)n · n ,

divA(v) = 0 ,

and
∂2
jkvi = ∂jE(v)ik + ∂kE(v)ij − ∂iE(v)jk ,

so that G∗ depends only on v , E(v), and on its gradient.



Another model of surface energy

F(y) :=

∫
Ω
(W (∇y) + H(∇2y)) dx − L(y(x)− x)

+ γ

∣∣∣∣∫
∂Ω

|cof ∇y(σ) n(σ)| dS(σ)− |∂Ω|
∣∣∣∣ .

The associated rescaled energies are given by

Fε(v) :=
1
ε2

∫
Ω
W (I + ε∇v) dx +

1
εp

∫
Ω
H(ε∇2v)− L(v)

+
γ

ε

∣∣∣∣∫
∂Ω

|cof (I + ε∇v) n| dS − |∂Ω|
∣∣∣∣ .

We get as the as ε → 0∣∣∣∣∫
∂Ω

|cof (I + ε∇v) n| dS − |∂Ω|
∣∣∣∣ = ε

∣∣∣∣∫
∂Ω

A(v)n · n dS
∣∣∣∣+ o(ε),



We notice that the divergence theorem implies, assuming enough
smoothness of ∂Ω and introducing a suitable extension of the
normal n to the whole of Ω,∫

∂Ω
A(v) n · n dS =

∫
∂Ω

A(v)Tn · n dS

=

∫
Ω

div (A(v)Tn) dx =

∫
Ω
A(v) : ∇n dx ,

having used the fact that A(v) is divergence free. Therefore the
limit functional F∗ can also be rewritten as

F∗(v) =
1
2

∫
Ω
E(v)D2W (I)E(v) dx +

∫
Ω
H(∇2v) dx − L(v)

+ γ

∣∣∣∣∫
Ω
A(v) : ∇n dx

∣∣∣∣ .



Assumptions on W and H

W : Rd×d → [0,+∞] is continuous ,

W (RF) = W (F) for every R ∈ SO(d) and every F ∈ IRd×d ,

W (F) ≥ W (I) = 0 for every F ∈ IRd×d ,

W ∈ C 2(U) for some suitable open neighborhood U of SO(d) in IRd×d ,

FT D2W (I)F ≥ C |sym F|2 for every F ∈ Rd×d ,

W (F) ≥ C̄ dist2(F, SO(d)) for every F ∈ Rd×d .

H : IRd×d×d → IR is a convex positively p-homogeneous function,

∀B ∈ IRd×d×d C0|B|p ≤ H(B) ≤ C1(1 + |B|p),
H(RB) = H(B) for every B ∈ IRd×d×d and every R ∈ SO(d).

Here the product between R and B is defined as
(RB)imn = RikBkmn for all i ,m, n ∈ {1, . . . , d}.



Main results

Theorem (Convergence of minimizers)
Let p > d/2. Suppose that L is a bounded linear functional on
W 2,p(Ω; IRd), that W and H satisfy the assumptions above. Let
(εj)j∈N ⊂ (0, 1) be a vanishing sequence and let
(vj)j∈N ⊂ W 2,p

Γ (Ω;Rd) be a sequence of minimizers for functionals
Gεj over W 2,p

Γ (Ω;Rd). Then the sequence (vj)j∈N is weakly
converging in W 2,p(Ω;Rd) to the unique solution to the problem

min
{
G∗(v) : v ∈ W 2,p

Γ (Ω; IRd)
}
.



Theorem

Let p > d/2. Let W and H satisfy the assumptions above. Let L
be a bounded linear functional over W 2,2∧p(Ω; IRd). Let
(εj)j∈N ⊂ (0, 1) be a vanishing sequence. If (vj)j∈N ⊂ W 2,p(Ω,Rd)
is a sequence of minimizers of Gεj over W 2,p(Ω; IRd), then there
exists a sequence (Rj)j∈N ⊂ SO(d) such that, by defining

uj(x) := RT
j vj(x) +

1
εj
(RT

j x − x),

in the limit as j → +∞, along a suitable (not relabeled)
subsequence, there holds

∇uj → ∇u∗ weakly in W 1,p(Ω; IRd×d),

where u∗ ∈ W 2,p(Ω, IRd) is a minimizer of G over W 2,p(Ω,Rd),
and

Gεj (vj) → G(u∗), min
W 2,p(Ω,IRd )

Gεj → min
W 2,p(Ω,IRd )

G.



Main results

Lemma (Γ-limsup)

Let p > d/2. Suppose that L is a bounded linear functional on
W 2,p(Ω; IRd), that W and H satisfy the assumptions above. Let
(εj)j∈N ⊂ (0, 1) be a vanishing sequence. Let v ∈ W 2,p

Γ (Ω; IRd).
There exists a sequence (vj)j∈N ⊂ C∞(Ω; IRd)∩W 2,p

Γ (Ω; IRd) such
that

vj → v strongly in W 2,p(Ω; IRd) as j → +∞

and
lim

j→+∞
Gεj (vj) = G∗(v).



Main results

Lemma (Γ-liminf)

Let p > d/2. Suppose that L is a bounded linear functional on
W 2,p(Ω; IRd), that W and H satisfy the assumptions above. Let
(εj)j∈N ⊂ (0, 1) be a vanishing sequence. Let v ∈ W 2,p

Γ (Ω; IRd).
Let (vj)j∈N ⊂ W 2,p

Γ (Ω; IRd) be a sequence that weakly converges
to v in W 2,p(Ω; IRd). Then

lim inf
j→+∞

Gεj (vj) ≥ G∗(v).



Key lemma

The following is a key lemma, providing the rigorous linearization of
the interfacial term.

Lemma
Let p > d/2. Let v ∈ W 2,p(Ω; IRd). Let (εj)j∈N ⊂ (0, 1) be a
vanishing sequence and let (vj)j∈N ⊂ W 2,p(Ω; IRd) be a sequence
such that ∇vj weakly converge to ∇v in W 1,p(Ω; IRd×d) as
j → +∞. Then

lim
j→+∞

1
εj

∫
∂Ω

||cof (I + εj∇vj) n| − 1| dS =

∫
∂Ω

|A(v)n · n| dS .



Important steps of the proof
By the Cayley-Hamilton formula, we have

cof (I + εj∇vj) = I + εjA(vj) +
d−1∑
k=2

εkj Bk(vj)

where Bk(vj) is a matrix whose entries are polynomials of degree k
in the entries of ∇vj , and the sum is understood to be zero if
d = 2. Letting

B(vj) :=
d−1∑
k=2

εk−2
j Bk(vj),

we get therefore

cof (I + εj∇vj) = I + εjA(vj) + ε2
j B(vj).

We notice that

|cof (I + εj∇vj) n|2 = |n + εjA(vj) n + ε2
j B(vj) n|2

= 1 + 2εjA(vj) n · n + ε2
j D(vj) n · n,

where



D(vj) := A(vj)TA(vj)+2B(vj)+2εj B(vj)TA(vj)+ε2
j B(vj)T B(vj).

We observe that the following properties hold:

∇vj → ∇v strongly in L1(∂Ω; IRd×d) as j → +∞,

A(∇vj) → A(∇v) strongly in L1(∂Ω; IRd×d) as j → +∞,

the sequence (B(vj))j∈N is bounded in L1(∂Ω; IRd×d).



We define

Qj := {x ∈ ∂Ω : |A(vj(x))|+ εj |B(vj(x))| < 2−4ε
−1/4
j }

and we notice that

S(∂Ω \ Qj) ≤
∫
∂Ω\Qj

16ε1/4
j (|A(vj)|+ εj |B(vj)|) dS

≤ 16ε1/4
j

∫
∂Ω

(|A(vj)|+ εj |B(vj)|) dS

so that S(∂Ω \ Qj) → 0 as j → +∞.



On Qj it holds

|2εj A(vj) n·n+ε2
j D(vj) n·n| ≤ 2εj |A(vj)|+ε2

j |D(vj)| <
1
2
ε
3/4
j <

1
2
,

εj |D(vj)| ≤
√
εj + 2εj |B(vj)|.

|cof (I + εj∇vj) n| − 1 =
√

1 + 2εjA(vj) n · n + ε2
j D(vj) n · n − 1

= εjA(vj) n · n +
ε2
j

2
D(vj) n · n +

+∞∑
k=2

αk(2εjA(vj) n · n + ε2
j D(vj) n · n)k ,

where αk :=
(−1)k−1(2k)!

4k(k!)2(2k − 1)
and



+∞∑
k=2

αk (2εjA(vj) n · n + ε2
j D(vj) n · n)k → 0

We have

1Qj

|cof (I + εj∇vj) n| − 1
εj

= 1Qj
A(vj) n · n + 1Qj

εj
2
D(vj) n · n

+ 1Qj

1
εj

+∞∑
k=2

αk(2εjA(vj) n · n + ε2
j D(vj) n · n)k ,

Since S(∂Ω \ Qj) → 0 we deduce that

1Qj

|cof (I + εj∇vj) n| − 1
εj

→ A(v) n·n strongly in L1(∂Ω) as j → +∞

so that

lim
j→+∞

1
εj

∫
Qj

||cof (I + εj∇vj) n| − 1| dS =

∫
∂Ω

|A(v) n · n| dS .

The proof concludes by showing that

lim
j→+∞

1
εj

∫
∂Ω\Qj

||cof (I + εj∇vj) n| − 1| dS = 0.



Take home messages

1. In many cases, surface elasticity plays an important role.
2. We introduced two model examples of surface elastic energy
3. Results for pure traction problems are also available if

L(a+ Mx) = 0 for every a ∈ Rd and every M = −M⊤.

4. Preprint available at arXiv:2312.08783
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Thank you for your attention!
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