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Previous work

Time periodic weak solutions for compressible fluids:
barotropic case: Feireisl, Nečasová, Petzeltová, Straškraba
(1999)
full system with temperature: Feireisl, Mucha, Novotný,
Pokorný (2012)

Weak solutions for interaction of compressible fluids
with elastic shells:

Koiter shell: Breit, Schwarzacher (2018)
Thermoelastic shell: Trifunović, Wang (2023)

Time periodic interaction problems:
incompressible 2D fluid, strong solution: Casanova (2019)
incompressible 3D fluid, weak solution: Mîndrilǎ, Schwarzacher
(2022, 2023)
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Setting of the problem

We consider a rectangular domain Ω ⊂ R2 filled with a
compressible viscous fluid and containing a viscoelastic beam
clamped on the sides of the domain.
In order to avoid the beam from touching the boundary, we make a
significant technical simplification: periodicity in the z-direction.
Notation:

Γ = (0, L) ΓT = (0,T )× Γ
Ω = (0, L)× (−H,H) domain filled with the fluid
QT = (0,T )× Ω space-time fluid cylinder

(t, x , z) time, horizontal and vertical variables
η(t, x) vertical displacement of the beam
η̂(t, x) = η(t, x)− 2nH ∈ [−H,H)

Γη(t) = {(x , η(t, x)) : x ∈ Γ} position of the beam
ρ, u density and velocity of the fluid
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z-periodic version of the beam
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Governing equations

The viscoelastic beam equation on ΓT :

ηtt + ηxxxx − ηtxx = −Sηffl · e2 + f .

Sη =
√

1 + |ηx |2 ... Jacobian of the transformation from Eulerian
to Lagrangian coordinates,
f ... time-periodic force
The compressible Navier-Stokes equations on QT :

∂t(ρu) +∇ · (ρu ⊗ u) = −∇p(ρ) +∇ · S(∇u) + ρF,
∂tρ+∇ · (ρu) = 0,

where for simplicity p(ρ) = ργ and

S(∇u) := µ
(
∇u +∇τu −∇ · uI

)
+ ζ∇ · uI, µ, ζ > 0.

F is the time-periodic force acting onto the fluid.
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Coupling

The fluid-structure coupling (kinematic and dynamic, resp.)
on ΓT :

ηt(t, x)e2 = u(t, x , η̂(t, x)),
ffl(t, x) =

[[
(−p(ρ)I+ S(∇u))

]]
(t, x , η̂(t, x)) νη(t, x),

where νη = (−ηx ,1)√
1+|ηx |2

denotes normal vector on Γη facing upwards

and

[[A]](·, z) := lim
ε→0+

(
A(·, z − ε)− A(·, z + ε)

)
.

represents the jump in the vertical direction.
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Boundary conditions

The beam boundary conditions (clamped):

η is periodic in x and η(t, x) = 0, (t, x) ∈ (0,T )× {0, L}.

Fluid spatial periodicity:

ρ, u are periodic in x and z directions.

Time periodicity:

ρ, u, η are periodic in time.
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Some observations

The nature of the studied problem enables us to work with two
equivalent formulations of the problem.

problem in a periodic box as presented above
problem in a moving domain with η being the lower and upper
boundary

For a given η(t, x) we introduce an equivalent fluid domain and the
corresponding time-space cylinder

Ωη(t) := {(x , z) : x ∈ (0, L), η(t, x) < z < η(t, x) + 2H},
Qη

T :=
⋃

t∈(0,T )

{t} × Ωη(t).
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Two equivalent domains
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Weak solutions

ρ ∈ L∞# (0,T ; Lγ#(Ω)),
u ∈ L2

#(0,T ;H1
#(Ω)),

η ∈ L∞# (0,T ;H2
#(Γ)) ∩ H1

#(0,T ;H1
#,0(Γ)) with

ηt ∈ L∞# (0,T ; L2
#(Γ))

The kinematic coupling γ|Γ̂ηu = ηte2 holds on ΓT .

The renormalized continuity equation∫
QT

ρB(ρ)(∂tφ+ u · ∇φ) =
∫
QT

b(ρ)(∇ · u)φ

for all functions φ ∈ C∞
# (QT ) and any

b ∈ L∞(0,∞) ∩ C [0,∞) such that b(0) = 0 with
B(ρ) = B(1) +

∫ ρ
1

b(z)
z2 dz .
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Weak solutions II

The coupled momentum equation∫
QT

ρu · ∂tφ+

∫
QT

(ρu ⊗ u) : ∇φ

+

∫
QT

ργ(∇ ·φ)−
∫
QT

S(∇u) : ∇φ

+

∫
ΓT

ηtψt −
∫
ΓT

ηxxψxx −
∫
ΓT

ηtxψx

= −
∫
ΓT

f ψ −
∫
QT

ρF ·φ

for all φ ∈ C∞
# (QT ) and all ψ ∈ C∞

#,0(ΓT ) such that
φ(t, x , η̂(t, x)) = ψ(t, x)e2 on ΓT .
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Main theorem

Theorem 1

Let H, L,T ,m0 > 0 be given and let γ > 1. Let f ∈ L2
#(ΓT ) and

F ∈ L2
#(0,T ; L∞# (Ω)). Then there exists at least one solution to

the FSI problem such that
∫
Ω ρ(t) = m0 for almost all t ∈ (0,T ),

the energy inequality is satisfied∫
QT

S(∇u) : ∇u +

∫
ΓT

|ηtx |2 ≤
∫
ΓT

f ηt +

∫
QT

ρu · F

and moreover

sup
t∈(0,T )

[∫
Ω

(1
2
ρ|u|2 + 1

γ − 1
ργ

)
+

∫
Γ

(1
2
|ηt |2 +

1
2
|ηxx |2

)]
+

∫
QT

S(∇u) : ∇u +

∫
ΓT

|ηtx |2 ≤ C (f ,F,Ω,m0).
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A priori estimates I

Let us assume that we have a sufficiently smooth solution (ρ, u, η)
to our problem. The energy associated to the studied system is

E (t) =

∫
Ω

(
1
2
ρ|u|2 + 1

γ − 1
ργ

)
(t) +

∫
Γ

(
1
2
|ηt |2 +

1
2
|ηxx |2

)
(t)

Further, we denote

E := sup
(0,T )

E .

The ultimate goal is to show that

E ≤ C ,

where the constant C depends just on the data of the problem.
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A priori estimates II

Taking the test functions in the coupled momentum equation as
(φ, ψ) = (u, ηt) yields∫

QT

S(∇u) : ∇u +

∫
ΓT

|ηtx |2 =

∫
ΓT

f ηt +

∫
QT

ρu · F,

which then implies

||u||2L2(0,T ;H1(Ω)) + ||ηt ||2L2(0,T ;H1(Γ)) ≤ C (1 + Eκ)

for some κ > 0 very small.
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A priori estimates IV

Next, we do the same thing but only on time interval (s, t) instead
of (0,T ). Then we easily get

E (t) ≤ E (s) + C (1 + Eκ) ≤ E (s) + C + κE .

Integrating with respect to s and taking supremum over t we end
up with

E ≤ C0

(
1 +

∫ T

0
E (s)ds

)
.

In order to close the circle we need∫ T

0
E (s)ds ≤ δ0E + C (δ0)

for some δ0 ∈ (0, 1
C0
).
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A priori estimates V
Here, the main problem lies in the density term. We use the
Bogovskii operator on the fixed domain Ω and careful estimates of
the arising terms to deduce∫

QT

ργ ≤ C
(
1 + E1−κ′′

)
for some κ′′ > 0. With this we can easily close the estimates as
follows: ∫ T

0
E (s)ds ≤ C

(
1 + E1−κ′′

)
≤ C (δ0) + δ0E

therefore

E ≤ C0

(
1 +

∫ T

0
E (s)ds

)
≤ C0(1 + δ0E + C (δ0)).

and choosing δ0 small enough with respect to the constant C0 we
conclude

E ≤ C .
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Approximated problem

The existence of solution is proved via a limit procedure starting
from an approximated problem. We introduce

finite-dimensional spaces both in time and space variables
we decouple the problem and introduce penalization terms of
the type ∫

ΓT

ηt − v · e2

ε
ψ

in the structure and fluid equations.
as usual we introduce artificial diffusion in the continuity
equation, also with a parameter ε
we introduce artificial pressure term δρa for a large a.
some other helpful terms multiplied by δ appear in the fluid
momentum equation
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Limit procedures

time basis m → ∞
space basis n → ∞
penalization and diffusion ε→ 0
couple back the separated equations
artificial pressure δ → 0
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Future work

Natural extensions to think about include
Better boundary conditions, in particular Dirichlet boundary
conditions for u on the lateral boundary
Examine the problem without z-periodicity, maybe under some
smallness assumptions?

Ondřej Kreml Time-periodic FSI problem 19/20



Thank you

Thank you for your attention.
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