

Numerical Methods for Smart Fluids

Error analysis for a finite element approximation of a simplified model

Luigi C. Berselli, Alex Kaltenbach

September 24, 2024

Modelling, PDE analysis and computational mathematics in materials science

Areas of application

Behera, A., Advanced Materials: An Introduction to Modern Materials Science, Springer Cham, 2022. https://doi.org/10.1007/978-3-030-80359-9

September 24, 2024 Numerical Methods for Smart Fluids – Alex Kaltenbach (TUB

Steady p(x)-Navier-Stokes equations: $(\mathbf{D}\mathbf{v} := \frac{1}{2}(\nabla \mathbf{v} + (\nabla \mathbf{v})^{\top}))$

Seek velocity vector field $\mathbf{v} : \overline{\Omega} \to \mathbb{R}^d$, $d \in \{2,3\}$, and pressure $q : \Omega \to \mathbb{R}$ such that

$$\begin{array}{c} -\operatorname{div} \mathbf{S}(\cdot, \mathbf{D}\mathbf{v}) + \operatorname{div}(\mathbf{v} \otimes \mathbf{v}) + \nabla q = \mathbf{f} & \text{in } \Omega, \\ \\ \operatorname{div} \mathbf{v} = \mathbf{0} & \text{in } \Omega, \\ \\ \mathbf{v} = \mathbf{0} & \text{on } \partial\Omega, \end{array} \right\}$$
 (*p*(*x*)-NSE)

where for $p \in C^{0,\alpha}(\overline{\Omega})$, $\alpha \in (0,1]$, with $p^- := \min_{x \in \overline{\Omega}} p(x) > \frac{3d}{d+2}$ and $\delta > 0$, we have that

$$\mathbf{S}(\cdot, \mathbf{D}\mathbf{v}) \coloneqq (\delta + |\mathbf{D}\mathbf{v}|)^{p(\cdot)-2}\mathbf{D}\mathbf{v}$$
.

Steady p(x)-Navier-Stokes equations: ($\mathbf{D}\mathbf{v} := \frac{1}{2}(\nabla \mathbf{v} + (\nabla \mathbf{v})^{\top})$)

Seek velocity vector field $\mathbf{v} \colon \overline{\Omega} \to \mathbb{R}^d$, $d \in \{2,3\}$, and pressure $q \colon \Omega \to \mathbb{R}$ such that

$$\begin{array}{c} -\operatorname{div} \mathbf{S}(\cdot, \mathbf{D}\mathbf{v}) + \operatorname{div}(\mathbf{v} \otimes \mathbf{v}) + \nabla q = \mathbf{f} & \text{in } \Omega, \\ & \operatorname{div} \mathbf{v} = \mathbf{0} & \text{in } \Omega, \\ & \mathbf{v} = \mathbf{0} & \text{on } \partial\Omega, \end{array} \right\}$$
 (*p*(*x*)-NSE)

where for $p \in C^{0,\alpha}(\overline{\Omega})$, $\alpha \in (0, 1]$, with $p^- := \min_{x \in \overline{\Omega}} p(x) > \frac{3d}{d+2}$ and $\delta > 0$, we have that

$$\mathbf{S}(\cdot, \mathbf{D}\mathbf{v}) \coloneqq (\delta + |\mathbf{D}\mathbf{v}|)^{p(\cdot)-2}\mathbf{D}\mathbf{v}.$$

Related contributions:

Error analyses:

[4, Breit, Diening, Schwarzacher, '15] (p(x)-Laplace equation);

[2, Berselli, Breit, Diening, '16] (p(x)-Stokes equations);

→ Convergence analyses:

[5, Del Pezzo, Lombardi, Martínez, '12] (p(x)-Laplace equation);

[7, Ko, Pustějovská, Süli, '18], [8, Ko, Süli, '19] (p(x)-Navier–Stokes equations).

Steady p(x)-Navier-Stokes equations: ($\mathbf{D}\mathbf{v} := \frac{1}{2}(\nabla \mathbf{v} + (\nabla \mathbf{v})^{\top})$)

Seek velocity vector field $\mathbf{v} \colon \overline{\Omega} \to \mathbb{R}^d$, $d \in \{2,3\}$, and pressure $q \colon \Omega \to \mathbb{R}$ such that

$$\begin{array}{c} -\operatorname{div} \mathbf{S}(\cdot, \mathbf{D}\mathbf{v}) + \operatorname{div}(\mathbf{v} \otimes \mathbf{v}) + \nabla q = \mathbf{f} & \text{in } \Omega, \\ \\ \operatorname{div} \mathbf{v} = \mathbf{0} & \text{in } \Omega, \\ \\ \mathbf{v} = \mathbf{0} & \text{on } \partial\Omega, \end{array} \right\}$$
 (p(x)-NSE)

where for $p \in C^{0,\alpha}(\overline{\Omega})$, $\alpha \in (0, 1]$, with $p^- := \min_{x \in \overline{\Omega}} p(x) > \frac{3d}{d+2}$ and $\delta > 0$, we have that

$$\mathbf{S}(\cdot, \mathbf{D}\mathbf{v}) \coloneqq (\delta + |\mathbf{D}\mathbf{v}|)^{p(\cdot)-2}\mathbf{D}\mathbf{v}$$

- Functional analytical framework:
 - → Energy estimate:

$$|\mathbf{Dv}| \in L^{p(\cdot)}(\Omega) \coloneqq \{z \in L^0(\Omega) \mid |z|^{p(\cdot)} \in L^1(\Omega)\}.$$

Energy spaces:

$$\begin{split} \mathbf{v} &\in \left(W_0^{1,p(\cdot)}(\Omega)\right)^d \coloneqq \left\{ \mathbf{z} \in \left(W_0^{1,1}(\Omega)\right)^d \mid \nabla \mathbf{z} \in \left(L^{p(\cdot)}(\Omega)\right)^{d \times d} \right\}, \\ & q \in L^{p'(\cdot)}(\Omega) \,, \end{split}$$

where $p' \in C^{0,\alpha}(\overline{\Omega})$ is defined by $p'(x) \coloneqq \frac{p(x)}{p(x)-1}$ for all $x \in \Omega$.

Continuous problem: Seek $(\mathbf{v}, q)^{\top} \in (W_0^{1, p(\cdot)}(\Omega))^d \times (L^{p'(\cdot)}(\Omega)/\mathbb{R})$ such that

$$\begin{split} (\mathbf{S}(\cdot,\mathbf{D}\mathbf{v}),\mathbf{D}\mathbf{z})_{\Omega} &-(\mathbf{v}\otimes\mathbf{v},\mathbf{D}\mathbf{z})_{\Omega} - (q,\operatorname{div}\mathbf{z})_{\Omega} = (\mathbf{f},\mathbf{z})_{\Omega}\,,\\ (\operatorname{div}\mathbf{v},z)_{\Omega} &= 0\,, \end{split}$$

for all $(\mathbf{z}, z)^{\top} \in (W_0^{1, p(\cdot)}(\Omega))^d \times L^{p'(\cdot)}(\Omega)$.

Continuous and discrete formulation

Continuous problem: Seek $(\mathbf{v},q)^{\top} \in (W_0^{1,p(\cdot)}(\Omega))^d \times (L^{p'(\cdot)}(\Omega)/\mathbb{R})$ such that

$$\begin{split} (\mathbf{S}(\cdot,\mathbf{D}\mathbf{v}),\mathbf{D}\mathbf{z})_{\Omega} &-(\mathbf{v}\otimes\mathbf{v},\mathbf{D}\mathbf{z})_{\Omega} - (q,\text{div}\,\mathbf{z})_{\Omega} = (\mathbf{f},\mathbf{z})_{\Omega} \\ & (\text{div}\,\mathbf{v},z)_{\Omega} = \mathbf{0}\,, \end{split}$$

for all $(\mathbf{z}, z)^{\top} \in (W_0^{1, p(\cdot)}(\Omega))^d \times L^{p'(\cdot)}(\Omega).$

Discretized extra-stress tensor:

$$\begin{split} \mathbf{S} & \longleftrightarrow & \mathbf{S}_h \\ \text{where } \mathbf{S}_h \colon \Omega \times \mathbb{R}^{d \times d}_{\text{sym}} \to \mathbb{R}^{d \times d}_{\text{sym}}, \text{ for every } \mathcal{T} \in \mathcal{T}_h, \text{ is defined by} \\ \mathbf{S}_h(x, \cdot) \coloneqq \mathbf{S}(\xi_T, \cdot) \quad \text{ for all } x \in \mathcal{T}, \end{split}$$

where $\xi_T \in T$ is an arbitrary quadrature point.

Continuous problem: Seek $(\mathbf{v},q)^{\top} \in (W_0^{1,p(\cdot)}(\Omega))^d \times (L^{p'(\cdot)}(\Omega)/\mathbb{R})$ such that

$$\begin{split} (\mathbf{S}(\cdot,\mathbf{D}\mathbf{v}),\mathbf{D}\mathbf{z})_{\Omega} &-(\mathbf{v}\otimes\mathbf{v},\mathbf{D}\mathbf{z})_{\Omega}-(q,\text{div}\,\mathbf{z})_{\Omega}=(\mathbf{f},\mathbf{z})_{\Omega}\,,\\ (\text{div}\,\mathbf{v},z)_{\Omega}&=\mathbf{0}\,, \end{split}$$

for all $(\mathbf{z}, z)^{\top} \in (W_0^{1, p(\cdot)}(\Omega))^d \times L^{p'(\cdot)}(\Omega).$

Discretized extra-stress tensor:

 $\mathbf{S} \iff \mathbf{S}_h$ where $\mathbf{S}_h : \Omega \times \mathbb{R}^{d \times d}_{sym} \to \mathbb{R}^{d \times d}_{sym}$, for every $T \in \mathcal{T}_h$, is defined by $\mathbf{S}_h(x, \cdot) \coloneqq \mathbf{S}(\xi_T, \cdot) \quad \text{ for all } x \in T,$ where $\xi_T \in T$ is an arbitrary quadrature point.
Discrete problem: Seek $(\mathbf{v}_h, q_h)^\top \in V_h \times (Q_h/\mathbb{R})$ such that $(\mathbf{S}_h(\cdot, \mathbf{D}\mathbf{v}_h), \mathbf{D}\mathbf{z}_h)_\Omega - \frac{1}{2}(\mathbf{v}_h \otimes \mathbf{v}_h, \mathbf{D}\mathbf{z}_h)_\Omega + \frac{1}{2}(\mathbf{z}_h \otimes \mathbf{v}_h, \mathbf{D}\mathbf{v}_h)_\Omega - (q_h, \operatorname{div} \mathbf{z}_h)_\Omega = (\mathbf{f}, \mathbf{z}_h)_\Omega,$ $(\operatorname{div} \mathbf{v}_h, z_h)_\Omega = 0,$

for all $(\mathbf{z}_h, z_h)^\top \in V_h \times Q_h$, where (V_h, Q_h) is a discretely inf-sup stable FE couple (e.g., MINI, P2P0, Taylor-Hood...). • 'Natural' regularity on the velocity: $(F(\cdot, Dv) := (\delta + |Dv|)^{\frac{p(\cdot)-2}{2}}Dv)$

→ 'Full' regularity: (cf. [1, Acerbi, Mingone, '02])

 $p \in C^{0,1}(\overline{\Omega}) \qquad \Rightarrow \qquad \mathbf{F}(\cdot, \mathbf{D}\mathbf{v}) \in (W^{1,2}_{\text{loc}}(\Omega))^{d \times d}.$

• 'Natural' regularity on the velocity: $(F(\cdot, Dv) := (\delta + |Dv|)^{\frac{p(\cdot)-2}{2}}Dv)$

→ 'Full' regularity: (cf. [1, Acerbi, Mingone, '02])

 $p \in C^{0,1}(\overline{\Omega}) \qquad \Rightarrow \qquad \mathbf{F}(\cdot, \mathbf{D}\mathbf{v}) \in (W^{1,2}_{\text{loc}}(\Omega))^{d \times d}.$

→ Fractional regularity: (cf. [6, Diening, Ettwein, '08])

 $p \in C^{0,\alpha}(\overline{\Omega}) \qquad \Rightarrow \qquad \mathbf{F}(\cdot,\mathbf{Dv}) \in (N^{\alpha,2}_{\mathrm{loc}}(\Omega))^{d \times d}.$

• 'Natural' regularity on the velocity: $(F(\cdot, Dv) := (\delta + |Dv|)^{\frac{p(\cdot)-2}{2}}Dv)$

→ 'Full' regularity: (cf. [1, Acerbi, Mingone, '02])

 $p \in C^{0,1}(\overline{\Omega}) \qquad \Rightarrow \qquad \mathbf{F}(\cdot, \mathbf{D}\mathbf{v}) \in (W^{1,2}_{\mathrm{loc}}(\Omega))^{d \times d}.$

→ Fractional regularity: (cf. [6, Diening, Ettwein, '08])

 $p \in C^{0,\alpha}(\overline{\Omega}) \qquad \Rightarrow \qquad \mathbf{F}(\cdot,\mathbf{D}\mathbf{v}) \in (N^{\alpha,2}_{\mathrm{loc}}(\Omega))^{d \times d}.$

'Natural' regularity on the pressure:

→ 'Full' regularity: (cf. [3, Berselli, K., '23+])

$$p \in C^{0,1}(\overline{\Omega}) \quad \& \quad \mathbf{F}(\cdot, \mathbf{D}\mathbf{v}) \in (W^{1,2}(\Omega))^{d \times d} \qquad \Rightarrow \qquad q \in W^{1,p'(\cdot)}(\Omega) \,.$$

• 'Natural' regularity on the velocity: $(F(\cdot, Dv) := (\delta + |Dv|)^{\frac{p(\cdot)-2}{2}}Dv)$

→ 'Full' regularity: (cf. [1, Acerbi, Mingone, '02])

 $p \in C^{0,1}(\overline{\Omega}) \qquad \Rightarrow \qquad \mathbf{F}(\cdot, \mathbf{D}\mathbf{v}) \in (W^{1,2}_{\mathrm{loc}}(\Omega))^{d \times d}.$

Fractional regularity: (cf. [6, Diening, Ettwein, '08])

 $p \in C^{0,\alpha}(\overline{\Omega}) \qquad \Rightarrow \qquad \mathbf{F}(\cdot,\mathbf{D}\mathbf{v}) \in (N^{\alpha,2}_{\mathrm{loc}}(\Omega))^{d \times d}.$

'Natural' regularity on the pressure:

→ 'Full' regularity: (cf. [3, Berselli, K., '23+])

 $p \in C^{0,1}(\overline{\Omega}) \quad \& \quad \mathbf{F}(\cdot, \mathbf{D}\mathbf{v}) \in (W^{1,2}(\Omega))^{d \times d} \quad \Rightarrow \quad q \in W^{1,p'(\cdot)}(\Omega) \,.$

3

→ Fractional regularity:

 $p \in C^{0,\alpha}(\overline{\Omega}) \quad \& \quad \mathbf{F}(\cdot, \mathbf{Dv}) \in (N^{\alpha,2}(\Omega))^{d \times d}$

• 'Natural' regularity on the velocity: $(F(\cdot, Dv) := (\delta + |Dv|)^{\frac{p(\cdot)-2}{2}}Dv)$

→ 'Full' regularity: (cf. [1, Acerbi, Mingone, '02])

 $p \in C^{0,1}(\overline{\Omega}) \qquad \Rightarrow \qquad \mathbf{F}(\cdot, \mathbf{D}\mathbf{v}) \in (W^{1,2}_{\mathrm{loc}}(\Omega))^{d \times d}.$

→ Fractional regularity: (cf. [6, Diening, Ettwein, '08])

 $p \in C^{0,\alpha}(\overline{\Omega}) \qquad \Rightarrow \qquad \mathbf{F}(\cdot,\mathbf{D}\mathbf{v}) \in (N^{\alpha,2}_{\mathrm{loc}}(\Omega))^{d \times d}.$

'Natural' regularity on the pressure:

→ 'Full' regularity: (cf. [3, Berselli, K., '23+])

 $p \in C^{0,1}(\overline{\Omega}) \quad \& \quad \mathbf{F}(\cdot, \mathbf{D}\mathbf{v}) \in (W^{1,2}(\Omega))^{d \times d} \quad \Rightarrow \quad q \in W^{1,p'(\cdot)}(\Omega) \,.$

→ Fractional regularity:

 $p \in C^{0,\alpha}(\overline{\Omega}) \quad \& \quad \mathbf{F}(\cdot, \mathbf{D}\mathbf{v}) \in (N^{\alpha,2}(\Omega))^{d \times d} \qquad \stackrel{\checkmark}{\to} \qquad q \in H^{\alpha,p'(\cdot)}(\Omega) \,,$

where the fractional variable Hajlasz-Sobolev space is defined by

$$H^{\alpha,p'(\cdot)}(\Omega) \coloneqq \left\{ u \in L^{p'(\cdot)}(\Omega) \mid G_{\alpha}(u) \neq \emptyset \right\},$$

$$G_{\alpha}(u) \coloneqq \left\{ g \in L^{p'(\cdot)}(\Omega) \mid |u(x) - u(y)| \le (g(x) + g(y))|x - y|^{\alpha} \text{ for a.e. } x, y \in \Omega \right\}$$

Theorem (a priori error estimate for the velocity)

If $p \in C^{0,\alpha}(\overline{\Omega})$, $\mathbf{F}(\cdot, \mathbf{Dv}) \in (N^{\alpha,2}(\Omega))^{d \times d}$, $q \in H^{\alpha,p'(\cdot)}(\Omega)$, and $\|\nabla \mathbf{v}\|_{2 \wedge p(\cdot),\Omega} \ll 1$, then

 $\|\mathbf{F}(\cdot,\mathbf{D}\mathbf{v}_h)-\mathbf{F}(\cdot,\mathbf{D}\mathbf{v})\|_{2,\Omega}^2 \lesssim h^{\min\{2,(p^+)'\}\alpha}.$

Theorem (a priori error estimate for the velocity)

If $p \in C^{0,\alpha}(\overline{\Omega})$, $\mathbf{F}(\cdot, \mathbf{Dv}) \in (N^{\alpha,2}(\Omega))^{d \times d}$, $q \in H^{\alpha,p'(\cdot)}(\Omega)$, and $\|\nabla \mathbf{v}\|_{2 \wedge p(\cdot),\Omega} \ll 1$, then $\|\mathbf{F}(\cdot, \mathbf{Dv}_h) - \mathbf{F}(\cdot, \mathbf{Dv})\|_{2,\Omega}^2 \lesssim h^{\min\{2,(p^+)'\}\alpha}$.

Proof.

→ 1. Step: (Best-approximation type estimate)

$$\begin{split} \|\mathbf{F}(\cdot,\mathbf{D}\mathbf{v})-\mathbf{F}(\cdot,\mathbf{D}\mathbf{v}_{h})\|_{2,\Omega}^{2} \lesssim \|(\varphi_{|\mathbf{D}\mathbf{v}|})^{*}(|\mathbf{S}(\cdot,\mathbf{D}\mathbf{v})-\mathbf{S}_{h}(\cdot,\mathbf{D}\mathbf{v})|)\|_{1,\Omega} \\ &+\inf_{\mathbf{z}_{h}\in V_{h}}\{\|\mathbf{F}(\cdot,\mathbf{D}\mathbf{v})-\mathbf{F}(\cdot,\mathbf{D}\mathbf{z}_{h})\|_{2,\Omega}^{2}\} \\ &+\inf_{z_{h}\in Q_{h}}\{\|(\varphi_{|\mathbf{D}\mathbf{v}|})^{*}(|q-z_{h}|)\|_{1,\Omega}\}, \end{split}$$

where $(\varphi_{|\mathbf{Dv}|})^*(\cdot, t) \sim ((\delta + |\mathbf{Dv}|)^{p(\cdot)-1} + t)^{p'(\cdot)-2}t^2$ uniformly for all $t \ge 0$.

Theorem (a priori error estimate for the velocity)

If $p \in C^{0,\alpha}(\overline{\Omega})$, $\mathbf{F}(\cdot, \mathbf{Dv}) \in (N^{\alpha,2}(\Omega))^{d \times d}$, $q \in H^{\alpha,p'(\cdot)}(\Omega)$, and $\|\nabla \mathbf{v}\|_{2 \wedge p(\cdot),\Omega} \ll 1$, then $\|\mathbf{F}(\cdot, \mathbf{Dv}_h) - \mathbf{F}(\cdot, \mathbf{Dv})\|_{2,\Omega}^2 \lesssim h^{\min\{2,(p^+)'\}\alpha}$.

Proof.

→ 1. Step: (Best-approximation type estimate)

$$\begin{split} \|\mathbf{F}(\cdot,\mathbf{D}\mathbf{v})-\mathbf{F}(\cdot,\mathbf{D}\mathbf{v}_{h})\|_{2,\Omega}^{2} \lesssim \|(\varphi_{|\mathbf{D}\mathbf{v}|})^{*}(|\mathbf{S}(\cdot,\mathbf{D}\mathbf{v})-\mathbf{S}_{h}(\cdot,\mathbf{D}\mathbf{v})|)\|_{1,\Omega} \\ &+\inf_{\mathbf{z}_{h}\in V_{h}}\{\|\mathbf{F}(\cdot,\mathbf{D}\mathbf{v})-\mathbf{F}(\cdot,\mathbf{D}\mathbf{z}_{h})\|_{2,\Omega}^{2}\} \\ &+\inf_{\mathbf{z}_{h}\in Q_{h}}\{\|(\varphi_{|\mathbf{D}\mathbf{v}|})^{*}(|\mathbf{q}-\mathbf{z}_{h}|)\|_{1,\Omega}\}, \end{split}$$

where $(\varphi_{|\mathbf{Dv}|})^*(\cdot,t) \sim ((\delta + |\mathbf{Dv}|)^{p(\cdot)-1} + t)^{p'(\cdot)-2}t^2$ uniformly for all $t \ge 0$.

→ 2. Step: (Oszillation/Expressivity estimates)

$$\begin{split} \|(\varphi_{|\mathsf{D}\mathbf{v}|})^*(|\mathbf{S}(\cdot,\mathsf{D}\mathbf{v})-\mathbf{S}_h(\cdot,\mathsf{D}\mathbf{v})|)\|_{1,\Omega} \lesssim h^{2\alpha} ,\\ \inf_{\mathbf{z}_h \in V_h} \{\|\mathbf{F}(\cdot,\mathsf{D}\mathbf{v})-\mathbf{F}(\cdot,\mathsf{D}\mathbf{z}_h)\|_{2,\Omega}^2\} \lesssim h^{2\alpha} ;\\ \inf_{\mathbf{z}_h \in Q_h} \{\|(\varphi_{|\mathsf{D}\mathbf{v}|})^*(|q-z_h|)\|_{1,\Omega}\} \lesssim h^{\min\{2,(p^+)'\}\alpha} \end{split}$$

Experimental setup: Let d = 2, $\Omega = (0, 1)^2$, $\delta = 1e-5$, $\alpha \in (0, 1]$,

$$p \coloneqq \left(1 - \frac{|\cdot|^{\alpha}}{2^{\alpha/2}}\right) p^{+} + \frac{|\cdot|^{\alpha}}{2^{\alpha/2}} p^{-}, \quad \mathbf{v} \coloneqq |\cdot|^{2\frac{\alpha-1}{p}+\delta} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} (\cdot), \quad q \coloneqq |\cdot|^{\alpha-\frac{2}{p'}+\delta}.$$

ip	1.5	1.75	2.0	2.25	2.5	2.75			
α	1.0								
4	0.750	0.719	0.695	0.676	0.659	0.645			
5	0.801	0.757	0.725	0.701	0.681	0.665			
6	0.824	0.774	0.739	0.713	0.692	0.674			
7	0.833	0.782	0.746	0.718	0.696	0.678			
8	0.835	0.785	0.749	0.721	0.699	0.680			
9	0.836	0.786	0.750	0.722	0.700	0.681			
theory	0.833	0.786	0.750	0.722	0.700	0.682			
α	0.5								
4	0.573	0.512	0.439	0.381	0.346	0.327			
5	0.530	0.473	0.413	0.369	0.345	0.331			
6	0.503	0.451	0.400	0.366	0.346	0.335			
7	0.486	0.438	0.393	0.365	0.348	0.338			
8	0.476	0.430	0.390	0.365	0.350	0.339			
9	0.470	0.425	0.388	0.365	0.350	0.341			
theory	0.417	0.393	0.375	0.361	0.350	0.341			

Table: Experimental order of convergence (MINI element): $\text{EOC}_i (\|\mathbf{F}(\cdot, \mathbf{Dv}) - \mathbf{F}(\cdot, \mathbf{Dv}_{h_i})\|_{2,\Omega}), i = 4, ..., 9.$

Numerical experiments: velocity error

• Experimental setup: Let $d = 2, \Omega = (0, 1)^2$ $kaltenback karken k V = 10^{10}$

$p = (1 2^{\alpha/2})^{p} + 2^{\alpha/2}^{p}, n = 1 + 1 + 2^{\alpha/2} + 0$										
ip	1.5	1.75	2.0	2.25	-ul.tu-be	rli.				
α	1.0 1.0									
4	0.750	0.719	0.695	0.676	0.659	0.0				
5	0.801	0.757	0.725	0.701	0.681	0.665				
б	0.824	0.774	0.739	0.713	0.692	0.674				
7	0.833	0.782	0.746	0.718	0.696	0.678				
8	0.835	0.785	0.749	0.721	0.699	0.680				
9	0.836	0.786	0.750	0.722	0.700	0.681				
theory	0.833	0.786	0.750	0.722	0.700	0.682				
α	0.5									
4	0.573	0.512	0.439	0.381	0.346	0.327				
5	0.530	0.473	0.413	0.369	0.345	0.331				
б	0.503	0.451	0.400	0.366	0.346	0.335				
7	0.486	0.438	0.393	0.365	0.348	0.338				
8	0.476	0.430	0.390	0.365	0.350	0.339				
9	0.470	0.425	0.388	0.365	0.350	0.341				
theory	0.417	0.393	0.375	0.361	0.350	0.341				

Table: Experimental order of convergence (MINI element): $\text{EOC}_i(||\mathbf{F}(\cdot, \mathbf{Dv}) - \mathbf{F}(\cdot, \mathbf{Dv}_{h_i})||_{2,\Omega}), i = 4, ..., 9.$

 $\alpha - \frac{2}{p'} + \delta$

References i

E. Acerbi and G. Mingione.

Regularity results for stationary electro-rheological fluids.

Arch. Ration. Mech. Anal., 164(3):213-259, 2002.

L. C. Berselli, D. Breit, and L. Diening.

Convergence analysis for a finite element approximation of a steady model for electrorheological fluids.

Numer. Math., 132(4):657-689, 2016.

L. C. Berselli and A. Kaltenbach.

Error analysis for a finite element approximation of the steady $p(\cdot)$ -Navier–Stokes equations, 2023.

Image: D. Breit, L. Diening, and S. Schwarzacher.Finite element approximation of the $p(\cdot)$ -Laplacian.SIAM J. Numer. Anal., 53(1):551–572, 2015.

L. M. Del Pezzo, A. L. Lombardi, and S. Martínez. Interior penalty discontinuous Galerkin FEM for the p(x)-Laplacian. SIAM J. Numer. Anal., 50(5):2497–2521, 2012.

L. Diening and F. Ettwein. Fractional estimates for non-differentiable elliptic systems with general growth.

Forum Math., 20(3):523-556, 2008.

S. Ko, P. Pustějovská, and E. Süli.

ESAIM, Math. Model. Numer. Anal., 52(2):509-541, 2018.

S. Ko and E. Süli.

Finite element approximation of steady flows of generalized Newtonian fluids with concentration-dependent power-law index.

Math. Comput., 88(317):1061-1090, 2019.