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Definition

Mean curvature flow (MCF) for evolution of sets (Et)t≥0

Vt = −HEt on ∂Et .

Q: Don’t we know everything about it? Maybe yes, if E0 is mean
convex/no fattening (Hamilton, Huisken, White, Ilmanen, ....).

Vt normal velocity

Et ⊂ Rn+1
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Definition

Family of sets (Et)t∈[0,T ) is a classical solution to the MCF
starting from E0 ⊂ Rn+1 if there is a smooth family of diffeos
(Φt)t∈[0,T ) such that Φ0 = id , Et = Φt(E0) and

Vt = −HEt on ∂Et .

Gradient flow of the surface area: Decrease the perimeter of E0

continuously as fast as possible. To measure the continuity we
need to fix the metric.

Et
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Gradient flow of the surface area: Decrease the surface area of
E0 continuously as fast as possible. To measure the continuity we
need to fix the metric. If we choose

▶ L2-norm, we get the MCF

Vt = −HEt

▶ H−1-norm we get the surface diffusion

Vt = ∆∂EtHEt

▶ H−1/2-norm we get the Mullins-Sekerka

Vt ≃ ∆
1/2
∂Et

HEt

▶ L2-norm with volume constraint, we get the Volume
preserving mean curvature flow (VMCF)

Vt = −HEt + H̄Et
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Singularity

The classical solution (Et)t∈[0,T ) may form singularity: ET is not
diffeomorphic to E0 ⇒ T is a singular time.

This is either because ET is no longer homeomorphic to E0 or
because of lack of regularity.
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Weak solution

In order to continue the flow over the singular time we need to

▶ Operate a surgery (Huisken-Sinestrari, Huisken-Brendle)

▶ Consider a weak solution which is defined for all times

Possible notions of weak solutions for the MCF

▶ Brakke-flow (Brakke 78’).

▶ Level-set solution via viscosity theory (Chen-Giga-Goto 89’,
Evans-Spruck 91’). Needs comparison principle:
E0 ⊂ F0 ⇒ Et ⊂ Ft

▶ Distributional solution (e.g. Luckhaus-Stürzenhecker 95’)
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Weak solution for MCF: Vt = −HEt

If Et is a smooth solution to the MCF and φ ∈ C 1 then

d

dt

ˆ
∂Et

φ dHn =

ˆ
∂Et

(−H2
Et
φ+ ∂tφ+ HEt∇φ · νEt ) dHn.

Brakke solution: Replace ′′ =′′ with ′′ ≤′′ and ∂Et with varifold
Mt

Distributional solution: φ ∈ C 1
0 , multiply the equation by φ and

integrate by parts

ˆ ∞

0

ˆ
Et

∂tφ dxdt =

ˆ ∞

0

ˆ
∂Et

HEtφ dHndt.
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Methods to obtain the weak solution

▶ Viscosity solution via Perron’s method

▶ Phase-field approximation, MBO thresholding scheme,...

▶ Flat flow via minimizing movements scheme
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Weak solution by minimizing movement scheme:
Idea is to apply the implicit Euler method: Gradient flow for the
function F : Rn → R

d

dt
x(t) = −∇F (x(t)).

Fix a time step h > 0 and initial point xh0 = x0. For k choose the
next point xhk+1 as minimum of the function

F (x) +
|x − xhk |2

2h
.

⇒
xhk+1 − xhk

h
= −∇F (xhk+1).

Define xh(t) = xhk for t
h ∈ [k , k + 1). Passing h → 0 we get the

solution. (Why?)
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Weak solution to the VMCF by minimizing movement
scheme :

Fix a time step h > 0 and initial set Eh
0 = E0 ⊂ Rn+1. For k

choose the next set Eh
k+1 as (any) minimum of the functional

min
{
P(E ) +

1

h

ˆ
E
d̄Eh

k
dx : |E | = |E0|

}
Euler-Lagrange equation

d̄Eh
k

h
= −HEh

k+1
+ λh

k+1 on ∂Eh
k+1.

Define Eh
t = Eh

k for t
h ∈ [k, k + 1), which is called the

approximative flow. Any cluster point as h → 0 is a flat flow. It is
well defined for all times. Formally it solves

Vt = −HEt + H̄Et
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Flat flow for

▶ MCF (Almgren-Taylor-Wang, Luckhaus-Stürzenhecker 95’)

▶ Mullins-Sekerka (Luckhaus-Stürzenhecker 95’)

▶ VMCF (Mugnai-Seis-Spadaro 2016).

▶ Surface diffusion (Cahn-Taylor 94’) but the existence is not
known.

I will mostly concentrate on VMCF.

Questions:

▶ Uniqueness

▶ Partial regularity

▶ Does the flat flow solve the associated PDE in a weak sense?

▶ Asymptotic behavior
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Comment on uniqueness:

In general, there can be many weak solutions even for

Vt = −HEt .

This is called the fattening phenomenon. For example, choose
the initial E0 = B1(−e1) ∪ B1(e1) (Fusco-Julin-Morini (2020),
Bellettini-Paolini (2002))

e1−e1
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Regularity/Consistency: Consider the VMCF

Vt = −HEt + H̄Et .

If the initial set E0 is regular, say C 2, is the flat flow regular for a
short time? If yes, this implies consistency since smooth solutions
are unique.

Difficult: Recall that we got the flat flow as a limit of the
approximating flow (Eh

t ) as the time step h → 0. We do not know
that the limit solves any equation.

Idea: Prove regularity estimates for (Eh
t ) which are uniform in h.
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Vt = −HEt + H̄Et VMCF

Theorem (Julin-Niinikoski 2022)

Assume E0 ⊂ Rn+1 satisfies interior and exterior ball condition
(UBC) radius r0. Then for r < r0 there is T such that (Eh

t )
satisfies UBC with radius r for all t ≤ T and all h ≤ h0. This
condition is open in the sense that if Eh

t satisfies UBC with radius
r for all t ≤ T , then there is δ > 0 s.t. it satisfies UBC with radius
r/2 for all t < T + δ.
Moreover, for every m ∈ N it holds

sup
t∈(0,T ]

(
tm∥HEh

t
∥2
Hm(∂Eh

t )

)
≤ Cm.

The proof is inspired by Ishii-Lions (1990), also uses the two-point
function by Huisken.
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Corollary (Julin-Niinikoski 2022)

Assume that E0 ⊂ Rn+1 satisfies interior and exterior ball
condition. Then the flat flow agrees with the classical solution of
the VMCF starting from E0 as long as the latter exists.

Related result: Distributional solution agrees with the classical
solution, solutions obtain via phase-field approximation (Laux
2022).
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Partial Regularity:
The advantage of having a Brakke flow is that it implies partial
regularity. Can we have it for the flat flow? The following holds for
the MCF

Vt = −HEt .

Theorem (in preparation....Arya-Jeon-Julin)

Let (Et) be a flat flow solution (Eh
t the approximation) to MCF

and assume

(1) ∂Et ∩ B2 ⊂ {x ∈ Rn+1 : |xn+1| < ε} for all t ∈ [t0 − 1, t0]

(2) limh→0 P(E
h
t0−1;B1) ≤ (1 + ε)|Bn

1 |.
Then there is η ∈ (0, 1) such that ∂Et ∩ Bη is smooth for all
t ∈ (t0 − η2, t0].
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Asymptotic

Since the flat flow is defined for all times, we may study the
asymptotic limit of

Vt = −HEt + H̄Et

when t → ∞. Heuristically if Et → E∞ then

HE∞ = H̄E∞ = constant

and by Alexandrov theorem E∞ is union of balls.
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As an example, study the gradient flow of smooth uniformly
convex function F : Rn → R, minimum point at 0 with F (0) = 0.

d

dt
x(t) = −∇F (x(t)), x(0) = x0

Uniform convexity implies the Lojasiewicz inequality

cF (x) ≤ |∇F (x)|2

Therefore

d

dt
F (x(t)) = −|∇F (x(t))|2 ≤ −cF (x(t)).

which implies the exponential convergence

F (x(t)) ≤ F (x0)e
−c t .
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Analogue in the VMCF: Vt = −HEt + H̄Et .

d

dt
P(Et) =

ˆ
∂Et

HEtVt dHn = −
ˆ
∂Et

(HEt − H̄Et )
2 dHn

Integrate over (T ,∞)

ˆ ∞

T
∥HEt − H̄Et∥2L2 dt = P(ET )− P(E∞)

Assume that we know that E∞ = B1 and we have the Lojasiewicz
inequality, for all |E | = |B1|

P(E )− P(B1) ≤ C∥HE − H̄E∥2L2

Then

F (T ) :=

ˆ ∞

T
∥HEt − H̄Et∥2L2 dt = P(ET )− P(B1)

≤ C∥HET
− H̄ET

∥2L2 = −CF ′(T ).
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The key inequality is, |E | = |B1| with P(E ) ≤ C0

min
d∈N

|P(E )− Pd | ≤ C∥HE − H̄E∥2L2 (1)

The inequality (1) is related to so called quantitative Alexandrov
inequality, Ciraolo-Maggi 2017.... We know (1) in 2D
(Julin-Morini-Ponsiglione-Spadaro 2022, Kim-Kwon 2024). In
Rn+1 with n ≥ 3 we know nothing. In 3D we have...

Theorem (Julin-Niinikoski (2020))

For E ⊂ R3 with |E | = |B1| and P(E ) ≤ C0 it holds

min
d∈N

|P(E )− Pd | ≤ C∥HE − H̄E∥qL2

and there is a union of disjoint spheres ∂F =
⋃d

i=1 ∂Br (xi )

dH(∂E , ∂F ) ≤ C∥HE − H̄E∥qL2 .
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The non-sharp Alexandrov implies qualitative convergence of the
VMCF

Theorem (Julin-Niinikoski (2020))

Assume (Et)t≥0 with |Et | = |B1| is a flat flow solution to the
VMCF

Vt = −HEt + H̄Et

starting from an open and bounded set of finite perimeter E0 ⊂ R3.
Then there is d such that for every ε > 0 there is Tε such that ∂Et

is close to a union d many spheres ∂F (t) in Hausdorff

dH(∂Et , ∂F (t)) ≤ ε for all t ≥ Tε.

Note that ∂F (t) may depend on time. If d = 1 we may remove
this.
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Theorem (Julin-Morini-Oronzio-Spadaro (2024))

For E ⊂ R3 with |E | = |B1| and P(E ) ≤ 4π 3
√
2− δ0 it holds

|P(E )− P(B1)| ≤ C∥HE − H̄E∥2L2 .

Theorem (Julin-Morini-Oronzio-Spadaro (2024))

Assume (Et)t≥0 with |Et | = |B1| is a flat flow solution to the
VMCF

Vt = −HEt + H̄Et

starting from an open and bounded E0 ⊂ R3 with
P(E0) ≤ 4π 3

√
2− δ0. Then there is x0 ∈ R3 such that

dH(∂Et , ∂B1(x0)) ≤ Ce−ct .

The exponential convergence also holds if in the qualitative
convergence Et converges to union of balls with positive distance!
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A few words about the proof of: E ⊂ R3 with |E | = |B1| and
P(E ) ≤ 4π 3

√
2− δ0

P(E )− P(B1) ≤ C∥HE − H̄E∥2L2 = C

ˆ
∂E

H2
E − H̄2

E dH2. (2)

In R3 the Willmore energy
´
∂E H2

E dH2 is conformal invariant and
it holds ˆ

∂E
H2
E dH2 ≥

ˆ
∂B1

H2
B1

dH2 = 16π

The inequality (2) is stronger than the quantitative Willmore
inequality by Röger-Schätzle (2012)

P(E )− P(B1) ≤ C

(ˆ
∂E

H2
E dH2 − 16π

)
.
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We show that when ε0 > 0 is small the unique minimizer of the
Canham-Helfrich type energy

J(E ) :=

ˆ
∂E

(HE − H̄E )
2 dH2 − ε0P(E ) (3)

under the volume constraint |E | = |B1| and P(E ) ≤ 4π 3
√
2− δ0 is

the ball.

▶ Using apriori estimates from Julin-Niinikoski (2020) we write
the energy J(E ) in terms weak immersions of the sphere
S2 = ∂B1.

▶ Using results by Mondino, Riviere, Scharrer we obtain that the
minimizer E of (3) exists and is smooth.
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The Euler-Lagrange equation reads as

−∆∂EHE = |BE |2(HE − H̄E ) + other terms

Usually the PDE of type

−∆u = a(x)u3 + l.o.t

does not imply uniform regularity estimates. However, if you know
that u is small, then the solution is uniformly regular. Here the
situation is similar and we are able to prove that

∥∇2HE∥L2(∂E) ≤ C .

This gives uniform C 2,α-estimates which is enough to prove the
statement.
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Thank you!
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