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Motivation - blood flows

Examples

▶ Flows in aneurysms - predicting
problematic cases

▶ Flows in carotids - plaque deposition
and stenosis

▶ Flows in aorta - artificial replacemnts,
pathological wall changes



MPDE2024

Motivation - typical work pipeline
using your favorite tools: Vascular Modelling Toolkit www.vmtk.org,
Itk-SNAP www.itksnap.org...

www.vmtk.org
www.itksnap.org
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Model Problem - Descending Aorta

ρ(∇v)v− divT(v,p) = 0 in Ω

T(v,p) = −p I+ 2µD(v) in Ω

div v = 0 in Ω

v = vin on Γin

(T(v,p)n) · n =
1
2 ρ (v · n)2− and vt = 0 on Γout

θ vt + γ∗(1− θ)(T(v,p)n)t = 0 and v · n = 0 on Γwall

Γwall

ΓoutΓin
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Why to use Navier slip boundary condition:
▶ for blood suggested by some experiment [Nubar (1973), Hershey

(1965)]
▶ possible bc for models based on mixture/suspension
▶ compensation of geometry uncertainity [Nolte (2019)]
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Model Problem - Descending Aorta

ρ(∇v)v− divT(v,p) = 0 in Ω

T(v,p) = −p I+ 2µD(v) in Ω

div v = 0 in Ω
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▶ µ, ρ: use tabular data or patient specific measurements
▶ θ, vin: difficult or impossible to measure directly
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Discretization

▶ time discretization: BDF-k, Crank-Nicholson scheme (TS object in
PETSc)

▶ space discretization: FEM P+1 /P1 (MINI), P2/P1 (Taylor-Hood) or
stabilized P1/P1 on tetrahedrons

▶ nonlinear solver - Newton method, NGMRES with nonlinear
preconditioning by quasi-Newton with laged Jacobian (SNES/NPC
objects from PETSc)

▶ Core problem: Solve large, sparse, non-symmetric, indefinite linear
system of equations. (direct sparse multifrontal method - MUMPS)
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Aneurysm challenge

Results from 26 groups on the prescribed plane for the second case
16 groups used plug flow, 12 groups used Ansys software

G. Janiga et al. (2015): The Computational Fluid Dynamics Rupture
Challenge 2013
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Hemodynamic risk indicators

▶ Wall shear stress (WSS): the tangential part of the traction force

WSS = (Tn)τ = Tn− (Tn · n)n,

▶ Oscillatory shear index (OSI): measures WSS oscillations
▶ Oscillatory velocity index (OVI): measures oscillations of velocity

OIa =
1
2

1−
∣∣∣∫ T
0 a dt

∣∣∣∫ T
0 |a| dt
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Ruptured aneurysms

Correlation of hemodynamic parameters to the site of the rupture.
A. Hejčl et al. (2019): Hemodynamics in ruptured intracranial aneurysms
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Comparison - non-Newtonian vs Navier slip

OSI/OVI for two different models (Newtonian and Carreau–Yasuda) and
slip parameters (no-slip and partial slip with θ = 0.95).
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Flow in descending aorta

▶ Geometry segmented from
MRI image

▶ Available velocity image from
MRI

Figure: 4D-PC MRI data Figure: Geometry segmentation
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Model Problem - Descending Aorta

ρ(∇v)v− divT(v,p) = 0 in Ω

T(v,p) = −p I+ 2µD(v) in Ω

div v = 0 in Ω

v = vin on Γin

(T(v,p)n) · n =
1
2 ρ (v · n)2− and vt = 0 on Γout

θ vt + γ∗(1− θ)(T(v,p)n)t = 0 and v · n = 0 on Γwall

▶ µ, ρ: use tabular data or patient specific measurements
▶ θ, vin: difficult or impossible to measure directly
▶ Simplified notation:

▶ unknown parameters: m = (θ, vin)
▶ PDE solution: w = (p, v)
▶ model: F(w,m) = 0
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Inverse Problem

Boundary condi-
tion parameters
m = (θ, vin)

Model F(w,m) = 0

Forward problem
Velocity and
pressure
w = (p, v)

Measured
Data dMRI

Model F(w,m) = 0

Inverse problem
Boundary condi-
tion parameters
m = (θ, vin)
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Variational Data Assimilation

Physical pro-
cess (blood flow)

Measurement
data (MRI) dMRI

Simulated mea-
surement
T (w)

Model (governing
bulk and bound-
ary equations)

physical measurement
(MRI acquisition) measurement operator T

▶ minimize an error functional J

R

subject to PDE F(w,m) = 0

J

R

(w,m) =
1
2 ||T (w)− dMRI||2

+
α

2 ||m||2

▶ α: Tikhonov regularization weight
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Adjoint Based Approach

Data: m0

for i = 0, 1, 2 . . . do
if stopping criterion is fulfilled then

stop the optimization
else

find w(mi) by solving the PDE equations F(w,m) = 0 withmi;
find λi by solving the adjoint equations

(
∂F
∂w

)∗
(λi) = ∂JR

∂w formi and
w(mi);
evaluate ĴR(mi) = JR(w(mi),mi);
compute ∂ĴR

∂m (mi) = −
〈
λi, ∂F

∂m
〉
+ ∂JR

∂m ;
determinemi+1 using the chosen optimization algorithm;
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Application to descending aorta flow problem

▶ Controls: m = (θ, vin), PDE solution: w = (v,p)

JR ((v,p), (θ, vin)) =
1
2 ℓ3 ||v− dMRI||2L2(Ω)

+
α

2 ||∇vin||
2
L2(Γin) +

β

2 ℓ2 ||vin − vanalytic(V, θ)||2L2(Γin)

▶ vanalytic(V, θ): analytic solution for Poiselle flow
for given V and θ

dMRI:

▶ finite elements: P1P1 + IP stabilization, MINI or Hood-Taylor
▶ Picard/Newton iterations
▶ optimization algorithm: L-BGFS-B (from scipy library) or IPOPT (box

constraint for θ ∈ [0, 1])
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Experiments on Artificial Data in 3D: Setup

▶ A. Jarolímová, JH (2024), Determination of Navier’s slip parameter
using variational data assimilation, arXiv::2402.04766

▶ reference velocity computed for θ ∈ [0.2, 0.5, 0.8, 1.0], V = 0.1
▶ inf-sup stable element, vin = vanalytic(V, θ)
▶ interpolation to shorter and coarser mesh
▶ addition of Gaussian noise
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Experiments on Artificial Data in 3D

SNR = ∞ SNR = 2 SNR = 1 SNR = 0.5

da
ta

θ
=
0.
5

as
sim

ila
tio
n

θ
=
0.
5

θopt = 0.488 θopt = 0.488 θopt = 0.483 θopt = 0.469
JR = 2.29 · 10−4 JR = 5.50 · 10−4 JR = 5.39 · 10−3 JR = 8.28 · 10−2

▶ low sensitivity to the amount of Gaussian noise
▶ results independent of initial guess
▶ P1P1 with IP stabilization - sensitive to the stabilization weight αv



MPDE2024

Experiments on Real Data

no-slip Navier’s slip non-const. Navier’s slip
ve
lo
cit
y

pr
es
su
re

θ = 1.0 θopt = 0.216 avg(θopt) = 0.415
JR = 0.44218 JR = 0.16389 JR = 0.15996
iterations: 50 iterations: 125 iterations: 681

MRI data interpolated data θopt
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Summary

▶ Blood flow simulations almost exclusively done with no-slip
boundary condition. However there are substantial reasons to
consider slip boundary condition.

▶ The slip parameter almost imposlible to measure - can be deduced
from velocity mesurements (4D-PC MRI - can give velocity field).

▶ Slip parameter determination robust with respect to data noise.
▶ The local amount of slip on boundary can possibly indicate either

physical state of the wall (inflamation, calcification) or just error in
boundary segmentation

▶ Firedrake/dolfin-adjoint - tool for easy implmentation of the whole
pde-constraint minimization problem.


