Elastic axisymmetric necking in a stretched circular membrane

Yibin Fu

Department of Mathematics, Keele University

in collaboration with

Xiang Yu, Mi Wang, Lishuai Jin

Funding: EPSRC, NSFC

- ▲ 문 ► ▲ 문 ►

In hard materials, necking is usually induced/accompanied by plastic deformations:

Elastic necking/bulging may also occur in soft materials subject to mechanical as well as non-mechanical fields (surface tension, electric field, etc).

e.g. hydro-gels, nerve fibres, nanofibers during electrospinning, etc.

Fu, Jin & Goriely (JMPS, 2021).

A D b 4 A b

Localized bulging in an inflated rubber tube:

fixed axial force

fixed ends/length

æ

Wang et al. (JMPS, 2019)

Dielectric elastomer actuators (DEAs):

Electric field *E* vs electric displacement *D*:

Based on the above curve, it is commonly believed that when *E* reaches the maximum, rapid but uniform thinning will take place, that leads to electric breakdown.

Current study: explore failure through axisymmetric necking

æ

A typical Abaqus simulation

Outline

- 1. Governing equations and linear analysis
- 2. Weakly nonlinear analysis
- 3. Abaqus simulations: fully nonlinear regime
- 4. 1D reduced model
- 5. Summary

∢ 臣 ≯

Purely mechanical case

Mi Wang, Lishuai Jin & Yibin Fu: Axisymmetric necking versus Treloar-Kearsley instability in a hyperelastic sheet under equibiaxial stretching, *Math. Mech. Solids* **27** (2022), 1610-1631.

Electroelastic case

Yibin Fu & Xiang Yu: Axisymmetric necking of a circular electrodes-coated dielectric membrane, *Mechanics of Materials* **181** (2023), 104645.

1D reduced model

Xiang Yu & Yibin Fu : A 1D reduced model for the axisymmetric necking of a circular electrodes-coated dielectric membrane, to submit

Will focus on the purely mechanical case in order to simplify presentation.

1

Governing equations

& Linear analysis

Governing equations

$$\boldsymbol{S} = \frac{\partial W}{\partial \boldsymbol{F}} - \boldsymbol{p} \boldsymbol{F}^{-1}, \quad \text{Div } \boldsymbol{S} = \boldsymbol{0}.$$

Deformation gradient F:

 $d\mathbf{x} = \bar{\mathbf{F}} d\mathbf{X}, \quad d\tilde{\mathbf{x}} = \tilde{\mathbf{F}} d\mathbf{X}.$ $\implies \tilde{F} = \bar{F} + \eta \bar{F}$, where $\eta = \text{grad } \boldsymbol{u}$. Eigenvalues of $\sqrt{\bar{F}\bar{F}}^{T}$ are $\lambda_1, \lambda_2, \lambda_3$. Incompressibility: $\lambda_1\lambda_2\lambda_3 = 1$.

Nominal stresses:

$$ar{m{S}}=m{S}(ar{m{F}},ar{p}),~~ar{m{S}}=m{\widetilde{S}}(m{\widetilde{F}},m{\widetilde{p}}).$$

< ロ > < 同 > < 三 >

Convention: (r, θ, z) corresponds to (1, 2, 3).

Primary deformation:

$$\bar{\boldsymbol{F}} = \lambda \, \boldsymbol{e}_r \otimes \boldsymbol{e}_r + \lambda \, \boldsymbol{e}_\theta \otimes \boldsymbol{e}_\theta + \lambda^{-2} \, \boldsymbol{e}_z \otimes \boldsymbol{e}_z,$$

and \bar{p} is determined from $\bar{S}_{33} = 0$.

The bifurcation parameter is λ .

Incremental displacement: $\boldsymbol{u} = u(r, z) \boldsymbol{e}_r + v(r, z) \boldsymbol{e}_z$.

Define χ through

$$\boldsymbol{\chi}^{\mathrm{T}} = oldsymbol{ar{F}}(oldsymbol{\tilde{S}} - oldsymbol{ar{S}}), \quad oldsymbol{
ho}^{*} = oldsymbol{ ilde{
ho}} - oldsymbol{ar{
ho}}.$$

We expand to obtain

$$\chi_{ij} = \mathcal{A}_{jilk}\eta_{kl} - \boldsymbol{p}^*\delta_{ji} + (\bar{\boldsymbol{p}} + \boldsymbol{p}^*)(\eta_{ji} - \eta_{jm}\eta_{mi}) + rac{1}{2}\mathcal{A}^2_{jilknm}\eta_{kl}\eta_{mn} + \cdots,$$

where

$$\boldsymbol{\eta} = \operatorname{grad} \boldsymbol{u} = \frac{\partial \boldsymbol{u}}{\partial r} \boldsymbol{e}_r \otimes \boldsymbol{e}_r + \frac{\boldsymbol{u}}{r} \boldsymbol{e}_{\theta} \otimes \boldsymbol{e}_{\theta} + \frac{\partial \boldsymbol{u}}{\partial z} \boldsymbol{e}_r \otimes \boldsymbol{e}_z + \frac{\partial \boldsymbol{v}}{\partial r} \boldsymbol{e}_z \otimes \boldsymbol{e}_r + \frac{\partial \boldsymbol{v}}{\partial z} \boldsymbol{e}_z \otimes \boldsymbol{e}_z.$$

Equilibrium equation is $\operatorname{div} \boldsymbol{\chi}^{\mathrm{T}} = \boldsymbol{0},$ i.e.

$$\chi_{1j,j} + \frac{1}{r}(\chi_{11} - \chi_{22}) = 0, \quad \chi_{3j,j} + \frac{1}{r}\chi_{31} = 0.$$

Incompressibility

 $\det\left(l+\eta\right)=0.$

BCs: $\chi_{33} = \chi_{13} = 0$ on top and bottom surfaces.

Image: A matrix and a matrix

-∢ ≣ →

Bifurcation condition

Methods used for two well-known localisation problems:

tube inflation

solitary water waves

Both involve a bifurcation from a uniform state into a homoclinic orbit

Both have translational invariance in the direction of localization

Such bifurcations can be analysed using

center manifold reduction (e.g. Kirchgässner 1988) or normal mode approach (e.g. Fu 2001)

Center manifold reduction:

$$\frac{\partial \boldsymbol{u}}{\partial x_1} = \mathcal{L}(\frac{\partial}{\partial x_2})\boldsymbol{u} = \boldsymbol{A}\boldsymbol{u} + \boldsymbol{N}(\boldsymbol{u}).$$

Look for a solution of the form $\boldsymbol{u}(x_1, x_2) = \boldsymbol{w}(x_2)e^{\alpha x_1}$, then localization takes place when 0 becomes a triple eigenvalue

However, current problem cannot be written in the form

$$\frac{\partial \boldsymbol{u}}{\partial r} = \mathcal{L}(\frac{\partial}{\partial z})\boldsymbol{u}.$$

Bifurcation condition for localised necking

lf

$$u=rac{1}{r}\phi_z, \quad v=-rac{1}{r}\phi_r,$$

then

$$\alpha\left(\phi_{rrrr}-\frac{2}{r}\phi_{rrr}+\frac{3}{r^{2}}\phi_{rr}-\frac{3}{r^{3}}\phi_{r}\right)+2\beta\left(\phi_{rrzz}-\frac{1}{r}\phi_{rzz}\right)+\gamma\phi_{zzzz}=0,$$

where

$$\alpha = \mathcal{A}_{2323} > \mathbf{0}, \quad \mathbf{2}\beta = \mathcal{A}_{2222} + \mathcal{A}_{3333} - \mathbf{2}\mathcal{A}_{2233} - \mathbf{2}\mathcal{A}_{2332}, \quad \gamma = \mathcal{A}_{3232} > \mathbf{0}.$$

There is no translational invariance in the *r*-direction, hence use normal mode approach.

Look for a solution $\phi(r, z) = rJ_1(kr)S(kz)$.

The bifurcation condition can be factorised:

Bifurcation condition for extensional modes

Bifurcation condition for flexural modes

Expanding (A) to order $(kh)^2$, we obtain

$$\gamma(\beta+\gamma)+\frac{1}{24}\left\{\alpha\gamma-(2\beta+\gamma)^2\right\}(kh)^2+\cdots=0.$$

Conjecture: the bifurcation condition is

$$\gamma(\beta + \gamma) = \mathbf{0}, \implies \beta + \gamma = \mathbf{0}.$$

(*B*)

(A)

Interpretation of the bifurcation condition

General biaxial tension of a membrane:

$$S_1 = \frac{\partial}{\partial \lambda_1} w(\lambda_1, \lambda_2), \qquad S_2 = \frac{\partial}{\partial \lambda_2} w(\lambda_1, \lambda_2), \quad S_3 = 0,$$

where $w(\lambda_1, \lambda_2) = W(\lambda_1, \lambda_2, \lambda_1^{-1}\lambda_2^{-1}).$

Equibiaxial tension (\equiv all-round tension) corresponds to $\lambda_1 = \lambda_2 \equiv \lambda$.

The bifurcation condition for necking, $\beta + \gamma = 0$, is equivalent to

$$\frac{\partial S_1(\lambda_1,\lambda_2)}{\partial \lambda_1}\bigg|_{\lambda_1=\lambda_2=\lambda}=0.$$

Note that

LHS
$$\neq \frac{dS_1(\lambda,\lambda)}{d\lambda}$$
.

Thus, the condition for necking does not coincide with the limit point in all-round tension.

ヘロト 人間 ト 人目 ト 人 ヨ トー

3

Comparison with localized bulging in a rubber tube

fixed axial force

fixed ends/length

A D > A P

ъ

The bifurcation condition is J(P, N) = 0 where

$$J(P,N) = \begin{vmatrix} \frac{\partial P}{\partial v} & \frac{\partial P}{\partial \lambda_z} \\ \\ \frac{\partial N}{\partial v} & \frac{\partial N}{\partial \lambda_z} \end{vmatrix}$$

which reduces to

$$\frac{dP}{dv} = 0$$
 when N is fixed or $\frac{dN}{d\lambda_z} = 0$ when P is fixed.

For biaxial tension, we may compute

$$J(S_1, S_2) = \begin{vmatrix} \frac{\partial S_1}{\partial \lambda_1} & \frac{\partial S_1}{\partial \lambda_2} \\ \\ \frac{\partial S_2}{\partial \lambda_1} & \frac{\partial S_2}{\partial \lambda_2} \end{vmatrix}$$

٠

< ⊒ >

Does the bifurcation condition for localized necking correspond to $J(S_1, S_2) = 0$ at $\lambda_1 = \lambda_2$?

No, since the latter gives

TK instability = Treloar & Kearsley instability:

Treloar (1948, PRS), Kearsley (1986, IJSS) plane-strain version by Ogden (1985, IJSS) A typical strain energy function admitting necking solutions:

$$W = 8\mu_1(\lambda_1^{1/2} + \lambda_2^{1/2} + \lambda_3^{1/2} - 3) + \frac{2\mu_2}{m_2^2}(\lambda_1^{m_2} + \lambda_2^{m_2} + \lambda_3^{m_2} - 3).$$

0

with $\mu_2 = \frac{1}{12}\mu_1, \ m_2 = 2$:

$$\lambda_{
m necking1} = 2.32, \quad \lambda_{
m necking2} = 7.49$$

Yibin Fu Prague-2024

2

Weakly nonlinear analysis

∢ 臣 ≯

Weakly nonlinear analysis

From linear results we deduce that $k^2 \sim (\lambda - \lambda_{cr})$ for small *k*, and

$$u = kJ_1(kr)S'(kz) \sim kJ_1(kr),$$
$$v = -\frac{1}{r} \left\{ J_1(kr) + krJ_1'(kr) \right\} S(kz) \sim k^2 G(kr).$$

Thus, if $\lambda = \lambda_{cr} + \epsilon \lambda_0$, then $k = O(\sqrt{\epsilon})$ and dependence on *r* is through $\xi = \sqrt{\epsilon r}$, and the near-critical solution takes the form

$$u = \sqrt{\epsilon} \left\{ A(\xi) + \epsilon u^{(2)}(\xi, z) + \cdots \right\},$$
$$v = \epsilon \left\{ v^{(1)}(\xi, z) + \epsilon v^{(2)}(\xi, z) + \cdots \right\}.$$

$$u = \sqrt{\epsilon} \left\{ A(\xi) + \epsilon u^{(2)}(\xi, z) + \cdots \right\},$$
$$v = \epsilon \left\{ v^{(1)}(\xi, z) + \epsilon v^{(2)}(\xi, z) + \cdots \right\}.$$

Amplitude equation:

$$\frac{d}{d\xi}\frac{1}{\xi}\frac{d}{d\xi}\xi P'(\xi)+c_1\lambda_0 P'(\xi)+c_2\frac{d}{d\xi}P^2(\xi)+c_3A''(\xi)\left(A'(\xi)-\frac{1}{\xi}A(\xi)\right)=0,$$

where $P(\xi)$ is defined by

$$P(\xi) = \frac{1}{\xi} (\xi A(\xi))' = \frac{2}{h} v^{(1)}(\xi, -\frac{h}{2}) \propto \text{ deformed thickness.}$$

BCs:

as
$$\xi \to 0$$
, $A(\xi), A''(\xi) \to 0$

as
$$\xi \to \infty$$
, $A(\xi) \to \frac{a_2}{\xi} - a_1 K_1(-c_1 \lambda_0 \xi)$.

・ロト ・聞 ト ・ ヨト ・ ヨトー

Planar limit:

Setting all terms multiplied by $\frac{1}{\xi}, \frac{1}{\xi^2}$, etc to zero, we obtain

$$P'' + c_1 \lambda^* P + \frac{1}{2} c_2^* P^2 = 0, \quad P = A'(\xi),$$

which has an explicit localised solution $P(\xi) \sim \operatorname{sech}^2(*)$.

General case:

Finite difference solution: (initial guess = planar solution divided by $1 + \xi^2$)

Squares given by

$$P(\xi) = \frac{a}{b\xi^2 + 1} \operatorname{sech}^2(c\xi).$$

3

Abaqus simulations

・ロト ・聞 と ・ ヨ と ・ ヨ と ・

Fully nonlinear numerical simulations

Imperfections at the centre or edge:

$$W = \frac{2\mu_1}{m_1^2} (\lambda_1^{\frac{1}{2}} + \lambda_2^{\frac{1}{2}} + \lambda_3^{\frac{1}{2}} - 3) + \frac{\mu_2}{8} (\lambda_1^4 + \lambda_2^4 + \lambda_3^4 - 3),$$

with $\mu_2/\mu_1 = 1/80$.

≣≯

Comparison between theory and simulations:

$$W = 8\mu_1(\lambda_1^{1/2} + \lambda_2^{1/2} + \lambda_3^{1/2} - 3) + \frac{2\mu_2}{m_2^2}(\lambda_1^{m_2} + \lambda_2^{m_2} + \lambda_3^{m_2} - 3).$$

문 🛌 문

Initiation \rightarrow growth \rightarrow propagation (Maxwell state):

・ロン・西方・ ・ ヨン・

A typical Abaqus simulation video

・ロト ・聞 ト ・ ヨト ・ ヨトー

Necking propagation (Maxwell state)

- transition region replaced by a sharp interface at $R = R_i$
- λ_z^- and λ_z^+ are both constant

A uniform circular region ("- phase") surrounded by an annular outer region ("+ phase").

Total energy:

$$\mathcal{E} = \frac{1}{2} R_i^2 w(\frac{1}{\sqrt{\lambda_z^-}}, \frac{1}{\sqrt{\lambda_z^-}}) + \int_{R_i}^A w(\lambda_1, \frac{1}{\lambda_1 \lambda_z^+}) R dR - P A^2 \lambda_1|_{R=A}.$$

Require \mathcal{E} to be stationary w.r.t. λ_z^- , λ_z^+ and R_i :

$$rac{\partial \mathcal{E}}{\partial \lambda_z^-} = 0, \quad rac{\partial \mathcal{E}}{\partial \lambda_z^+} = 0, \quad rac{\partial \mathcal{E}}{\partial R_i} = 0.$$

< • • • • • •

2

4

1D reduced model

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

1D reduced model

Variational-asymptotic method first proposed by Berdichevskii (1979). See also Audoly & Hutchinson (JMPS, 2016), ...

Homogeneous solution: $r = \mu R$, $z = \lambda Z$, and so

$$\lambda_1 = \lambda_2 = \mu, \quad \lambda_3 = \lambda.$$

At least in the early stage of necking formation, we may assume that

$$r = \mu(S)R, \quad z = \lambda(S)Z, \quad S = \epsilon R,$$
 (*)

★ 문 ► ★ 문 ►

where $\lambda(S)$ is found from the incompressibility condition.

For a consistent solution, we add correction terms:

$$r(R,Z) = \varepsilon^{-1}\mu(S)S + \varepsilon u^*(S,Z) + O(\varepsilon^3),$$

$$z(R,Z) = \lambda(S)Z + \varepsilon^2 v^*(S,Z) + O(\varepsilon^4).$$

Step 1: Fix μ and minimize w.r.t. u^* and v^* . The result is

$$\mathcal{E}_{1d}[\mu] = \int_0^A L(\boldsymbol{R},\mu,\mu',\mu'') d\boldsymbol{R},$$

where

$$L(\boldsymbol{R}, \boldsymbol{\mu}, \boldsymbol{\mu}', \boldsymbol{\mu}'') = \left(\boldsymbol{w}(\lambda, \boldsymbol{\mu}) + \frac{H^2 \boldsymbol{w}_1(\lambda, \boldsymbol{\mu})}{24\lambda} \lambda'(\boldsymbol{R})^2\right) \boldsymbol{R}.$$

Step 2: Minimize w.r.t. μ ; the associated Euler–Lagrange equation then yields the 1D model:

$$\frac{\partial L}{\partial \mu} - \frac{d}{dR} \left(\frac{\partial L}{\partial \mu'} \right) + \frac{d^2}{dR^2} \left(\frac{\partial L}{\partial \mu''} \right) = 0.$$

This equations recovers the bifurcation condition and the weakly nonlinear theory exactly.

イロン イロン イヨン イヨン

- Axisymmetric necking analysed for the first time;
- The entire necking process, from initiation, growth, to propagation, can be described analytically or semi-analytically;
- Bifurcation condition for axisymmetric necking derived, not given by $J(S_1, S_3) = 0$;
- Near-critical analysis conducted, amplitude equation solved using FD;
- A 1D model derived, with predictions in excellent agreement with Abaqus simulations;
- Current work: experimental verification.

- Axisymmetric necking analysed for the first time;
- The entire necking process, from initiation, growth, to propagation, can be described analytically or semi-analytically;
- Bifurcation condition for axisymmetric necking derived, not given by $J(S_1, S_3) = 0$;
- Near-critical analysis conducted, amplitude equation solved using FD;
- A 1D model derived, with predictions in excellent agreement with Abaqus simulations;
- Current work: experimental verification.

- Axisymmetric necking analysed for the first time;
- The entire necking process, from initiation, growth, to propagation, can be described analytically or semi-analytically;
- Bifurcation condition for axisymmetric necking derived, not given by $J(S_1, S_3) = 0$;
- Near-critical analysis conducted, amplitude equation solved using FD;
- A 1D model derived, with predictions in excellent agreement with Abaqus simulations;
- Current work: experimental verification.

-∢ ≣ →

- Axisymmetric necking analysed for the first time;
- The entire necking process, from initiation, growth, to propagation, can be described analytically or semi-analytically;
- Bifurcation condition for axisymmetric necking derived, not given by $J(S_1, S_3) = 0$;
- Near-critical analysis conducted, amplitude equation solved using FD;
- A 1D model derived, with predictions in excellent agreement with Abaqus simulations;
- Current work: experimental verification.

★ Ξ ► ★ Ξ ►

- Axisymmetric necking analysed for the first time;
- The entire necking process, from initiation, growth, to propagation, can be described analytically or semi-analytically;
- Bifurcation condition for axisymmetric necking derived, not given by $J(S_1, S_3) = 0$;
- Near-critical analysis conducted, amplitude equation solved using FD;
- A 1D model derived, with predictions in excellent agreement with Abaqus simulations;
- Current work: experimental verification.

글 > < 글 >

- Axisymmetric necking analysed for the first time;
- The entire necking process, from initiation, growth, to propagation, can be described analytically or semi-analytically;
- Bifurcation condition for axisymmetric necking derived, not given by $J(S_1, S_3) = 0$;
- Near-critical analysis conducted, amplitude equation solved using FD;
- A 1D model derived, with predictions in excellent agreement with Abaqus simulations;
- Current work: experimental verification.