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In hard materials, necking is usually induced/accompanied by plastic
deformations:

Elastic necking/bulging may also occur in soft materials subject to mechanical
as well as non-mechanical fields (surface tension, electric field, etc).

e.g. hydro-gels, nerve fibres, nanofibers during electrospinning, etc.

injected in cylindrical moulds made of cellular polystyrene.
These moulds are fabricated using two cuboid pieces of
cellular polystyrene (3� 0:5� 0:5 cm3). One of the larger
faces of each piece is heated just above the glass transition
temperature of polystyrene. The two hot sides are then
assembled and a 3 cm long copper wire of a desired
diameter is inserted between them. This wire is removed
after cooling at room temperature, leaving a hollow cylin-
der of the same dimensions within the polystyrene block.
We have checked by optical microscopy that the roughness
of the surface is less than 4 �m. The mould is then pre-
heated in order to prevent partial gelation before the liquid
is completely injected.

After injecting the agar solution and cooling for 5 h at
room temperature, the mould is dissolved in liquid toluene.
Total dissolution takes about 3 min. The strand of agar gel
is then released in toluene. The agar gel—toluene surface
tension � is roughly equal to the water-toluene surface
tension; this value is used in further computations. To
prevent the agar cylinder from wrapping up, the two ends
are fixed in a frame before releasing. This yields strands
measuring about 2 cm long floating in toluene. Depending
on the mould, their radius lies in the range 150–260 �m.

Depending on the initial strand radius �0 and the shear
modulus � of the agar gel, the growth of a surface insta-
bility takes place during the mould dissolution. The final
steady pattern is seen after dissolution is complete. Strands
of agar gel with a high concentration and/or a large radius
retain a cylindrical shape after the mould dissolution [Fig. 2
(a)]. Strands with a low concentration and a small radius are
systematically breaking into two during the dissolution. For
intermediate strands, surface undulations develop just after
dissolution and remain permanently [Figs. 2(b)–2(d)].
When an unstable filament is gently stretched in the middle,
and then released, it recovers its length and shape, thereby
demonstrating that the undulation pattern is stable. On the
contrary, if pure water is injected into the moulds instead of

the agar gel, the released strand breaks, as expected, into
separate spherical droplets.
We used toluene saturated with water to prevent shrink-

ing. This makes a fundamental difference between our
experiments and those reported by Matsuo and Tanaka
[8]. In their case, the instability is driven by diffusion of
the gel solvent into the miscible outer fluid. The slowly
developing instability they observe cannot be linked to a
RPI, because there is no sharp interface and so no surface
tension in their experiment.
Within the setup we used, the resolution for the ampli-

tude of the modulations is about 15 �m. To obtain the
critical elastic modulus (at a fixed radius) below which
cylinders remain straight, the amplitude is plotted as a
function of the elastic modulus and fitted by the power law

fð�Þ ¼ �ð���cÞ� (1)

with adjustable parameters �, �, and �c (Fig. 3); �c is the
shear modulus at the instability threshold. In this way, we
succeed in separating unambiguously the cases where a
cylinder is either stable or not. Figure 4 summarizes the
experimental stability data in the �� �0 plane. The plane
is divided into two areas, one corresponding to stable
straight cylinders and the other to unstable ones.
Just above the threshold [Fig. 2(b)], the instability leads

to a varicose shape. Farther away from the threshold, the
shape becomes more complicated, with large constant-
radius areas interrupted by constrictions [Fig. 2(d)]. In
the following, we focus on the physics near the threshold
[Figs. 2(a) and 2(b)]. The analysis far beyond the insta-
bility threshold requires a nonlinear theory that will be the
subject of future work.
Suppose that the surface of a cylinder is perturbed by a

small axisymmetric modulation from a constant radius �0

to �ðzÞ ¼ �0 þ �ðzÞ, where z is the coordinate along the
axis and �ðzÞ � �0 (Fig. 5). The mean curvature � of the
surface changes from 1=�0 to 1=�0 � �ðzÞ=�2

0 � �00ðzÞ.
This yields a Laplace pressure contribution �� to be added
to the boundary conditions (bc) for the normal stress on the
surface of the cylinder.

FIG. 2. Equilibrium shape of agar gel cylinders for different
values of the shear modulus. Radius is � ¼ 240 �m, surface
tension is � ’ 36:5 mN=m. Shear modulus varies from 12 to
27 Pa. Note the RPI instability for values of �=ð��Þ larger
than 6.2.

FIG. 1. Linear rheological properties of a 0.18% agar gel
hydrogel. The curves are obtained by dynamic oscillatory shear
tests, using a strain controlled rheometer (ARES-RFS from
TAInstruments) in Couette geometry. Left: Evolution of the
storage and loss moduli as functions of time. Right: Storage
and loss moduli as functions of the angular frequency 5 h after
cooling.
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mechanoporation, has been suggested as a possible mecha-

nism of axonal injury (Kilinc et al., 2008). Mechanoporation is

believed to occur in response to a rapid increase in axonal strain,

which has been shown using in vitro stretch models of axonal

injury. In these experiments, a 30% uni-axial strain applied at a

rate of 10 s�1 resulted in brief tearing of the membrane that is

observed through the cellular uptake of a membrane imperme-

able marker (Geddes et al., 2003). It is proposed that transient

membrane tearing causes a loss in cellular homeostasis that ini-

tiates a cascade of secondary events that ultimately result in DAI.

Previous studies have suggested that cytoskeletal abnormal-

ities occur due to impaired axonal transport, causing an accu-

mulation of vesicles and organelles leading to axonal swelling

(Gennarelli et al., 1982; Povlishock, 1992). This disruption is

thought to result from the action of cysteine proteases, such

as calpains and caspases that degrade the cytoskeleton (CSK)

(Büki et al., 1999). The hypothesized involvement of protease

activation in CSK disruption is suggested by improved injury out-

comes in rats that were administered protease inhibitors prior to

or following experimental brain injury (Saatman et al., 1996).

Pathological activation of proteases has been linked to an influx

of ions, such as Ca2+ and Na+, that occurs due to mechanopora-

tion (Geddes-Klein et al., 2006; Kilinc et al., 2008). As such, one

therapeutic candidate, poloxamer 188, has shown the potential

to treat DAI by promoting membrane resealing. Although polox-

amer 188 has exhibited neuroprotective effects following TBI

in animal models, it has yet to be tested in humans (Serbest

et al., 2006).

While membrane poration has been linked to aspects of the

secondary injury cascade associated with DAI in experimental

models, its role as the sole injury mechanism is not without con-

troversy. Evidence of CSK breakdown, as indicated by calpain-

mediated proteolysis (Farkas et al., 2006; Wolf et al., 2001), as

well as impaired axonal transport (Stone et al., 2004), has been

reported to occur without evidence of membrane poration, chal-

lenging the membrane poration hypothesis. Additional injury

markers such as neurofilament compaction have also been

shown to occur in different cell populations than impaired axonal

transport, implicating the existence of multiple injury mecha-

nisms (DiLeonardi et al., 2009). Additional injury mechanisms,

such as traumatic mechanical failure of microtubules (Tang-

Schomer et al., 2010), impaired sodium channel function (Iwata

et al., 2004), and mechanical activation of NMDA receptors

(Tang-Schomer et al., 2010) have also been linked to the second-

ary injury cascades associated with DAI. So while a variety of

injury mechanisms have been identified when considering DAI,

themajority of these reports are exploring the effects of mechan-

ical forces at the extreme of the spectrum of forces associated

with nonlethal brain injury. If one considers mechanical forces

just greater than those routinely exerted in the brain microenvi-

ronment, the pathological activation of physiological signaling

pathways may represent additional mechanisms of injury that

are more amenable to pharmacological intervention. Cells have

specialized protein networks, the CSK, that maintain their struc-

tural integrity while serving as a substrate for biochemical

reactions and propagating information, encoded as mechanical

forces, from the extracellular environment to the intracellular

space. These mechanical networks are the basis of cellular

mechanotransduction and have been the subject of intense

study the last quarter century in non-neuronal cells.

Mechanobiology and the Cellular Microenvironment

of the Brain

The Cytoskeletal and Extracellular Matrix Networks Maintain

Neuronal Network Architectures. In the brain, two massively

parallel protein networks, one in the extracellular space and

the other in the intracellular space, maintain the structural integ-

rity of cell networks and cells themselves. In the intracellular

space, the CSK consists of multiple filamentous polymers

including actin, microtubules, and neurofilaments that form a

protein polymer network continuous with extracellular struc-

tures, such as the extracellular matrix (ECM), or neighboring

cells, through specialized adhesion proteins located in the cell

membrane (Figure 4). Actin filaments are 5–9 nm in diameter

and, with cross-linking proteins, bear tensile loads within the

cell (Burridge, 1981). Microtubules are �25 nm in diameter

and form rigid structures with stiffness measurements of �100

MPa that can bear compressive loads (Kis et al., 2002). Interme-

diate filaments are�10 nm in diameter and have shown the abil-

ity to resist tensile forces by stretching up to 3.5-fold (Kreplak

et al., 2005). The networked interaction of these tensile and

compressive load bearing elements has been theorized to form

a tensegrity structure that, in addition to providing mechanical

support, may provide the architectural basis of cellular mecha-

notransduction (Ingber, 1997). The tensegrity theory of cellular

architecture offers an explanation for how cells sense and

respond to exogenous forces at the molecular level, as well as

how these interactions can scale to affect cell behavior (Ingber,

2003a).

The specialized transmembrane structures that maintain me-

chanical continuity between the intracellular and extracellular

Figure 3. DAI Is Characterized by Axonal
Swelling
Identification of DAI following head injury is readily
detected by the presence of punctate, swollen
axons.
(A) This hallmark morphology can be identified
in histological tissue slices stained with markers
such as amyloid precursor protein (APP) that
depict the punctate nature of swollen axons.
(B) Similar changes in morphology can be reca-
pitulated in vitro when neurons are subjected to
mechanical trauma.
(A) is adapted from Mac Donald et al. (2007) with
permission.
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3.1. Viscosity

Fig. 1 shows the representative images of beads and
beaded fibers for solutions with a range of viscosity
(samples 1–8). Beads and beaded fibers are less likely to
be formed for the more viscous solutions. The diameter of
the beads become bigger and the average distance between
beads on the fibers longer as the viscosity increases. Mean-
while, the shape of the beads gradually changes from sphe-
rical to spindle-like.

3.2. Net charge density

The net charge density carried by the moving jet (C/l),

was determined from the electrical current and the mass of
dry polymer collected on the aluminum foil as follows:

Net charge density� (jet current)× (collecting time)×
(PEO concentration)× (solution density)/(mass of dry
polymer)

The net charge density correlates with the formation of
beaded fibers in a way that is similar to increasing the
solution viscosity, as shown in Fig. 2. The net charge
density was inversely proportional to the resistivity in this
experiment.

Experimental results show that the addition of NaCl to the
PEO solution increases the net charge density carried by the
moving jet. The decrease in the resistivity of the solution is

H. Fong et al. / Polymer 40 (1999) 4585–45924588

                 2a: 1.23 Coulomb/liter  2b: 1.77 Coulomb/liter

                 2c: 3.03 Coulomb/liter 2d: 6.57 Coulomb/liter

           2e: 8.67 Coulomb/liter 2f: 28.8 Coulomb/liter

Fig. 2. Variation of beaded fibers as net charge density changes due to the addition of NaCl. Electric field is 0.7 kV/cm. Weight fraction of PEO is 3.0%. The
length of the horizontal edge of each of the images is 20 microns long.

Mora et al (2010) Hemphill et al (2015) Fong et al (1999)

Fu, Jin & Goriely (JMPS, 2021).
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Localized bulging in an inflated rubber tube:

 
 

fixed axial force fixed ends/length

Wang et al. (JMPS, 2019)
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Dielectric elastomer actuators (DEAs):

Wiranata et al (2021, Adv. Eng. Mater.)

Electric field E vs electric displacement D:

0.5 5 50
D/ ϵ μ

0.2

0.3

0.4

0.5

0.6

(ϵ/μ)E

Based on the above curve, it is commonly believed that when E reaches the
maximum, rapid but uniform thinning will take place, that leads to electric
breakdown.
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Current study: explore failure through axisymmetric necking
 

E A y
D

7

D

D

a D

d
d

E s

E t

A typical Abaqus simulation
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Outline

1. Governing equations and linear analysis

2. Weakly nonlinear analysis

3. Abaqus simulations: fully nonlinear regime

4. 1D reduced model

5. Summary
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Based on three papers:

Purely mechanical case

Mi Wang, Lishuai Jin & Yibin Fu: Axisymmetric necking versus
Treloar-Kearsley instability in a hyperelastic sheet under equibiaxial
stretching, Math. Mech. Solids 27 (2022), 1610-1631.

Electroelastic case

Yibin Fu & Xiang Yu: Axisymmetric necking of a circular electrodes-coated
dielectric membrane, Mechanics of Materials 181 (2023), 104645.

1D reduced model

Xiang Yu & Yibin Fu : A 1D reduced model for the axisymmetric necking of a
circular electrodes-coated dielectric membrane, to submit

Will focus on the purely mechanical case in order to simplify presentation.
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1

Governing equations

&

Linear analysis
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Governing equations

S =
∂W
∂F

− pF−1, Div S = 0.

O o o

X x = x(X ) x̃ = x + u(x)

Br
Be Bt

Deformation gradient F :

dx = F̄dX , d x̃ = F̃dX .

=⇒ F̃ = F̄ + ηF̄ , where η = grad u.

Eigenvalues of
√

F̄ F̄ T are λ1, λ2, λ3. Incompressibility: λ1λ2λ3 = 1.

Nominal stresses:
S̄ = S(F̄ , p̄), S̃ = S̃(F̃ , p̃).
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Convention: (r , θ, z) corresponds to (1, 2, 3).

Primary deformation:

F̄ = λ er ⊗ er + λ eθ ⊗ eθ + λ−2 ez ⊗ ez ,

and p̄ is determined from S̄33 = 0.

The bifurcation parameter is λ.

 

E A y
D

7

D

D
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d
d
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Incremental displacement: u = u(r , z) er + v(r , z) ez .
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Define χ through
χT = F̄ (S̃ − S̄), p∗ = p̃ − p̄.

We expand to obtain

χij = Ajilkηkl − p∗δji + (p̄ + p∗)(ηji − ηjmηmi) +
1
2
A2

jilknmηklηmn + · · · ,

where

η = grad u =
∂u
∂r

er ⊗ er +
u
r

eθ ⊗ eθ +
∂u
∂z

er ⊗ ez +
∂v
∂r

ez ⊗ er +
∂v
∂z

ez ⊗ ez .

Equilibrium equation is divχT = 0, i.e.

χ1j,j +
1
r
(χ11 − χ22) = 0, χ3j,j +

1
r
χ31 = 0.

Incompressibility
det (I + η) = 0.

BCs: χ33 = χ13 = 0 on top and bottom surfaces.
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Bifurcation condition

Methods used for two well-known localisation problems:

 

c

tube inflation solitary water waves

Both involve a bifurcation from a uniform state into a homoclinic orbit

Both have translational invariance in the direction of localization

Such bifurcations can be analysed using

center manifold reduction (e.g. Kirchgässner 1988)
or
normal mode approach (e.g. Fu 2001)
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Center manifold reduction:

∂u
∂x1

= L( ∂

∂x2
)u = Au + N(u).

Look for a solution of the form u(x1, x2) = w(x2)eαx1 ,
then localization takes place when 0 becomes a triple eigenvalue

Re α

Im α

α1 α2−α1−α2

Re α

Im α

α2−α2

Re α

Im α

α1

α2

−α1

−α2

(a) (b) (c)

Figure 1: Movement of the five eigenvalues that are initially real as the azimuthal stretch increases. The

three plots (a), (b) and (c) correspond to when the azimuthal stretch is smaller than, equal to, or greater than

its critical value, respectively. Localized bulging occurs when α1 vanishes, making zero a triple eigenvalue.

that we consider an axially symmetric perturbation superimposed on a uniformly inflated

cylindrical tube. The incremental boundary value problem is readily available from the

classical paper by Haughton & Ogden (1979b). Suppose now further that the perturbation

depends on the axial coordinate z through eαz. Then the incremental boundary value prob-

lem reduces to the form given by (3.2) and (3.3). This is an eigenvalue problem and we may

look for eigenvalues of α such that non-trivial solutions can be found. We observe that part

of Haughton & Ogden (1979b)’s numerical computation was concerned with solutions of this

eigenvalue problem when α is replaced by −iα where i =
√
−1. It can be shown that the

distribution of eigenvalues is symmetric with respect to both axes in the complex α-plane.

Suppose that we characterize the uniform inflation using the azimuthal stretch λa on the

inner surface. When λa is increased only slightly above 1, it can be shown that there are

five real eigenvalues of α of the form 0,±α1,±α2 such that 0 < α1 < α2; see Fig.1(a). As

λa increases, the two real eigenvalues ±α1 will move towards the origin. When they even-

tually coalesce at the origin, zero becomes a triple eigenvalue which signals the initiation of

a bifurcation into a localized solitary-wave type solution (Kirchgässner, 1982; Mielke, 1991;

Haragus & Iooss, 2011). When λa is increased further, the two eigenvalues ±α1 would move

onto the imaginary axis. The exponential eαz then becomes sinusoidal, and this is the situa-

tion addressed by Haughton & Ogden (1979b). It is clear from this deduction that localized

bulging must necessarily occur before any bifurcation into periodic patterns. This fact is

consistent with all experimental observations (Kyriakides & Chang, 1990, 1991; Pamplona

et al., 2006; Goncalves et al., 2008).

Thus, determination of the initiation pressure is reduced to finding the condition under

which zero becomes a triple eigenvalue of the eigenvalue problem (3.2) and (3.3). Since

it is known that when the membrane theory is used and in the case of fixed axial force,

this coalescence of eigenvalues at the origin corresponds precisely to when the pressure in

uniform inflation reaches its maximum, it is natural to ask whether this correspondence can

3

However, current problem cannot be written in the form

∂u
∂r

= L( ∂

∂z
)u.
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Bifurcation condition for localised necking

If
u =

1
r
ϕz , v = −1

r
ϕr ,

then

α

(
ϕrrrr −

2
r
ϕrrr +

3
r 2 ϕrr −

3
r 3 ϕr

)
+ 2β

(
ϕrrzz −

1
r
ϕrzz

)
+ γϕzzzz = 0,

where

α = A2323 > 0, 2β = A2222 +A3333 − 2A2233 − 2A2332, γ = A3232 > 0.

There is no translational invariance in the r -direction, hence use normal
mode approach.

Look for a solution ϕ(r , z) = rJ1(kr)S(kz).
5 10 15 20 25

r

-0.2

0.2

0.4

0.6

J1(r)
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The bifurcation condition can be factorised:

Bifurcation condition for extensional modes (A)

Bifurcation condition for flexural modes (B)

Expanding (A) to order (kh)2, we obtain

γ(β + γ) +
1
24

{
αγ − (2β + γ)2

}
(kh)2 + · · · = 0.

Conjecture: the bifurcation condition is

γ(β + γ) = 0, =⇒ β + γ = 0.
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Interpretation of the bifurcation condition

General biaxial tension of a membrane:

S1 =
∂

∂λ1
w(λ1, λ2), S2 =

∂

∂λ2
w(λ1, λ2), S3 = 0,

where w(λ1, λ2) = W (λ1, λ2, λ
−1
1 λ−1

2 ).

Equibiaxial tension (≡ all-round tension) corresponds to λ1 = λ2 ≡ λ.

The bifurcation condition for necking, β + γ = 0, is equivalent to

∂S1(λ1, λ2)

∂λ1

∣∣∣∣
λ1=λ2=λ

= 0.

Note that
LHS ̸= dS1(λ, λ)

dλ
.

Thus, the condition for necking does not coincide with the limit point in
all-round tension.
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Comparison with localized bulging in a rubber tube

 
 

fixed axial force fixed ends/length

The bifurcation condition is J(P,N) = 0 where

J(P,N) =

∣∣∣∣∣∣
∂P
∂v

∂P
∂λz

∂N
∂v

∂N
∂λz

∣∣∣∣∣∣
which reduces to

dP
dv

= 0 when N is fixed or
dN
dλz

= 0 when P is fixed.
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For biaxial tension, we may compute

J(S1,S2) =

∣∣∣∣∣∣∣
∂S1
∂λ1

∂S1
∂λ2

∂S2
∂λ1

∂S2
∂λ2

∣∣∣∣∣∣∣ .
Does the bifurcation condition for localized necking correspond to
J(S1,S2) = 0 at λ1 = λ2?

No, since the latter gives(
∂S1

∂λ1
− ∂S2

∂λ1

)
λ1=λ2

= 0, or
(
∂S1

∂λ1
+

∂S1

∂λ2

)
λ1=λ2

=
dS1(λ, λ)

dλ
= 0.

↓ ↓
TK instability Limit point

TK instability = Treloar & Kearsley instability:

Treloar (1948, PRS), Kearsley (1986, IJSS)

plane-strain version by Ogden (1985, IJSS)
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A typical strain energy function admitting necking solutions:

W = 8µ1(λ
1/2
1 + λ

1/2
2 + λ

1/2
3 − 3) +

2µ2

m2
2 (λ

m2
1 + λ

m2
2 + λ

m2
3 − 3).

with µ2 = 1
12µ1, m2 = 2:

λnecking1 = 2.32, λnecking2 = 7.49

2 4 6 8 10
λ

1.7

1.8

1.9

2.0

2.1

S1(λ,λ)

Necking

TK
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2

Weakly nonlinear analysis
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Weakly nonlinear analysis

From linear results we deduce that k2 ∼ (λ− λcr) for small k , and

u = kJ1(kr)S′(kz) ∼ kJ1(kr),

v = −1
r
{

J1(kr) + krJ ′
1(kr)

}
S(kz) ∼ k2G(kr).

Thus, if λ = λcr + ϵλ0, then k = O(
√
ϵ) and dependence on r is through

ξ =
√
ϵr , and the near-critical solution takes the form

u =
√
ϵ
{

A(ξ) + ϵu(2)(ξ, z) + · · ·
}
,

v = ϵ
{

v (1)(ξ, z) + ϵv (2)(ξ, z) + · · ·
}
.
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u =
√
ϵ
{

A(ξ) + ϵu(2)(ξ, z) + · · ·
}
,

v = ϵ
{

v (1)(ξ, z) + ϵv (2)(ξ, z) + · · ·
}
.

Amplitude equation:

d
dξ

1
ξ

d
dξ

ξP′(ξ) + c1λ0P′(ξ) + c2
d
dξ

P2(ξ) + c3A′′(ξ)

(
A′(ξ)− 1

ξ
A(ξ)

)
= 0,

where P(ξ) is defined by

P(ξ) =
1
ξ
(ξA(ξ))′ =

2
h

v (1)(ξ,−h
2
) ∝ deformed thickness.

BCs:
as ξ → 0, A(ξ),A′′(ξ) → 0

as ξ → ∞, A(ξ) → a2

ξ
− a1K1(−c1λ0ξ).
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Planar limit:

Setting all terms multiplied by 1
ξ
, 1
ξ2 , etc to zero, we obtain

P′′ + c1λ
∗P +

1
2

c∗
2 P2 = 0, P = A′(ξ),

which has an explicit localised solution P(ξ) ∼ sech2(∗).

General case:

Finite difference solution:
( initial guess = planar solution divided by 1 + ξ2)

□
□

□

□

□

□

□

□
□

□ □ □ □ □ □ □ □ □ □ □ □
4 6

ξ

P(ξ)

A(ξ) Squares given by

P(ξ) =
a

b ξ2 + 1
sech2(c ξ).
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3

Abaqus simulations
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Fully nonlinear numerical simulations

Imperfections at the centre or edge:

(b)

(c)

λ=2.25 λ=2.36 λ=2.60

λ=2.25 λ=2.36 λ=2.60

(a)

3

2

1

Ho

Hi

Log. Strain

W =
2µ1

m2
1
(λ

1
2
1 + λ

1
2
2 + λ

1
2
3 − 3) +

µ2

8
(λ4

1 + λ4
2 + λ4

3 − 3),

with µ2/µ1 = 1/80.
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Comparison between theory and simulations:

(a) (b)

50 100 150 200
µ1/µ2

2.1

2.2

2.3

2.4

2.5

2.6
Theoretical
FEA

2

2.2

2.4

2.6

2.8

3
Theoretical
FEA

µ1/µ2

0 10 20 30 40

λc

m2=2 m2=4

λc

W = 8µ1(λ
1/2
1 + λ

1/2
2 + λ

1/2
3 − 3) +

2µ2

m2
2 (λ

m2
1 + λ

m2
2 + λ

m2
3 − 3).
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Initiation → growth → propagation (Maxwell state):

-20 -15 -10 -5 5 10 15 20

r0.05

0.1
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0.25

propagation

growth
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A typical Abaqus simulation video
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Necking propagation (Maxwell state)

00

+

−
• transition region replaced by a sharp interface at

R = Ri

• λ−
z and λ+

z are both constant

A uniform circular region (“− phase") surrounded by an annular outer region
(“+ phase").

Total energy:

E =
1
2

R2
i w(

1√
λ−

z

,
1√
λ−

z

) +

∫ A

Ri

w(λ1,
1

λ1λ
+
z
)RdR − PA2λ1|R=A.

Require E to be stationary w.r.t. λ−
z , λ+

z and Ri :

∂E
∂λ−

z
= 0,

∂E
∂λ+

z
= 0,

∂E
∂Ri

= 0.
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4

1D reduced model
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1D reduced model

Variational-asymptotic method first proposed by Berdichevskii (1979).
See also Audoly & Hutchinson (JMPS, 2016), ...

Homogeneous solution: r = µR, z = λZ , and so

λ1 = λ2 = µ, λ3 = λ.

At least in the early stage of necking formation, we may assume that

r = µ(S)R, z = λ(S)Z , S = ϵR, (∗)

where λ(S) is found from the incompressibility condition.

For a consistent solution, we add correction terms:

r(R,Z ) = ε−1µ(S)S + εu∗(S,Z ) + O(ε3),

z(R,Z ) = λ(S)Z + ε2v∗(S,Z ) + O(ε4).
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Step 1: Fix µ and minimize w.r.t. u∗ and v∗. The result is

E1d[µ] =

∫ A

0
L(R, µ, µ′, µ′′)dR,

where

L(R, µ, µ′, µ′′) =
(

w(λ, µ) +
H2w1(λ, µ)

24λ
λ′(R)2

)
R.

Step 2: Minimize w.r.t. µ; the associated Euler–Lagrange equation then
yields the 1D model:

∂L
∂µ

− d
dR

( ∂L
∂µ′

)
+

d2

dR2

( ∂L
∂µ′′

)
= 0.

This equations recovers the bifurcation condition and the weakly nonlinear
theory exactly.
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Conclusion

• Axisymmetric necking analysed for the first time;

• The entire necking process, from initiation, growth, to propagation, can
be described analytically or semi-analytically;

• Bifurcation condition for axisymmetric necking derived, not given by
J(S1,S3) = 0;

• Near-critical analysis conducted, amplitude equation solved using FD;

• A 1D model derived, with predictions in excellent agreement with
Abaqus simulations;

• Current work: experimental verification.
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