Modelling, simulation and benchmarking of fluid-structure interactions with contact

Stefan Frei

Modelling, PDE analysis and computational mathematics in materials science Prag, 25.09.2024

Joint work with

E. Burman (UCL London), M.A. Fernández (Inria Paris), T. Richter (OvGU Magdeburg)

Motivation

Typically fluid or gas between contacting structures before/after contact

Vessel valves

Ball bearing (Lubricant)

Experimental benchmark: Falling and bouncing elastic balls (PTFE, rubber) in a water-glycerine mixture

(HAGEMEIER, THEVENIN, RICHTER, Int J Multiphase Flow (2020) VON WAHL, RICHTER, F., HAGEMEIER, Phys Fluids (2021))

- 1 Fluid-structure interaction and contact
- 2 A model for seepage
- 3 Discretisation and numerical results

Fluid-structure interaction

Fluid problem

Incompr. Navier-Stokes equations in $\Omega_f(t)$

$$o_f(\partial_t u + u \cdot \nabla u) - \operatorname{div} \sigma_f(u, p) = f_f,$$

 $\operatorname{div} u = 0$

Boundary conditions (no-slip)

u = 0 on Γ_w + other bc

Solid problem

Linear elastic material in $\Omega_s(t)$

$$\rho_s(\partial_t \dot{d} + \dot{d} \cdot \nabla d) - \operatorname{div} \sigma_s(d) = f_s,$$
$$\partial_t d + \dot{d} \cdot \nabla d = \dot{d}$$

Coupling conditions (no-slip)

 $u = \dot{d}, \quad \sigma_f n = \sigma_s n \quad \text{on } \Gamma(t).$

No-collision paradox: The Navier-Stokes equations with no-slip boundary or interface conditions do not allow for contact (HILLAIRET/HESLA 2D; GERART-VARET, HILLAIRET AND WANG 3D)

Relaxed contact formulation

We impose the contact condition w.r.t to Γ_{ϵ} , such that a small fluid layer of size $\epsilon(h)$ remains

• The "no-penetration" condition reads

 $d_n \leq g_{\epsilon} := g_0 - \epsilon(h).$

• The contact conditions are formulated with a Lagrange multiplier λ

$$d_n \leq g_\epsilon$$
, $\lambda \leq 0$, $(d_n - g_\epsilon)\lambda = 0$

• Elimination of the Lagrange multiplier $(\lambda = \underbrace{\sigma_{s,nn} - \sigma_{f,nn}}_{[\sigma_{nn}]})$

$$d_n \leq g_{\epsilon}, \quad [\![\sigma_{nn}]\!] \leq 0, \quad (d_n - g_{\epsilon})[\![\sigma_{nn}]\!] = 0 \tag{1}$$

Problems

Relaxed contact formulation

$$d_n \leq g_{\epsilon}, \quad \llbracket \sigma_{nn} \rrbracket \leq 0, \quad (d_n - g_{\epsilon}) \llbracket \sigma_{nn} \rrbracket = 0$$

- The fluid forces $\sigma_{f,nn}$ in the fluid layer enter the contact dynamics
- As in particular the pressure *p* might take large values, these can have a non-physical impact on the contact dynamics
- We need a **physically motivated model** in the layer!

Idea:

- The layer appears due to surface roughness on a micro scale of thickness ϵ_p . We formulate a Darcy law in the layer and take $\epsilon_p \rightarrow 0$
- Similar ideas with a porous domain of thickness $\epsilon_p > 0$: Complex Biot-type equations (Ager, Schott, Vuong, Popp & Wall, 2019), Navier-Stokes-Brinkmann (Gerosa & Marsden, 2024)

Navier-Stokes-Darcy coupling

In the porous domain Ω_p, we assume a
 Darcy law

$$\begin{cases} u_{\rm l} + \mathbf{K} \nabla p_{\rm l} = 0 & \text{in} \quad \Omega_{\rm p}, \\ \nabla \cdot u_{\rm l} = 0 & \text{in} \quad \Omega_{\rm p}, \end{cases}$$

where $\boldsymbol{K} \in \mathbb{R}^{d \times d}$ with $\boldsymbol{K} \nabla p_{l} = K_{\tau} \nabla_{\tau} p_{l} + K_{n} \boldsymbol{\partial}_{n} p_{l}.$

 These equations are coupled to Navier-Stokes by means of the Beavers-Joseph-Saffman conditions

$$\begin{cases} \sigma_{f,n} = -p_{l} & \text{on } \gamma_{f}, \\ u_{n} = u_{l} \cdot \boldsymbol{n} & \text{on } \gamma_{f}, \\ \sigma_{f,n\tau} = -\frac{\alpha}{\sqrt{K_{\tau}\epsilon_{p}}}u_{\tau} & \text{on } \gamma_{f} \end{cases}$$

• For $\epsilon_p \rightarrow 0$, we obtain on the mid-surface Σ_p (MARTIN ET. AL, 2005)

$$\begin{split} & -\nabla_{\tau} \cdot (\epsilon_{p} K_{\tau} \nabla_{\tau} P_{l}) = u_{n} \quad \text{on} \quad \Sigma_{p}, \\ & \sigma_{f,nn} = -P_{l} - \frac{\epsilon_{p} K_{n}^{-1}}{4} u_{n} \quad \text{on} \quad \Sigma_{p}, \\ & \sigma_{f,n\tau} = -\frac{\alpha}{\sqrt{K_{\tau} \epsilon_{p}}} u_{\tau} \quad \text{on} \quad \Sigma_{p} \end{split}$$
where $P_{l} := \frac{1}{2} (p_{l} | \gamma_{f} + p_{l} | \gamma_{o}).$

Stefan Frei

Complete model

• Solid problem in $\Omega_s(t)$:

$$\begin{cases} \rho_{s}(\partial_{t}\dot{d} + \dot{d} \cdot \nabla \dot{d}) - \operatorname{div} \boldsymbol{\sigma}_{s}(d) = \rho_{s}\boldsymbol{f}_{s}, \\ \partial_{t}d + \dot{d} \cdot \nabla d = \dot{d}, \\ d = 0 \text{ on } \Gamma_{s}^{d}, \end{cases}$$

• Fluid problem in $\Omega_{\rm f}(t)$

$$\begin{cases} \rho_{f} (\partial_{t} u + u \cdot \nabla u) - \operatorname{div} \boldsymbol{\sigma}_{f} (u, p) = \rho_{f} \boldsymbol{f}_{f}, \\ \operatorname{div} u = 0, \\ u = 0 \text{ on } \Gamma_{f}^{d} \end{cases}$$

• **Porous layer** (seepage)

$$\begin{cases} -\nabla_{\tau} \cdot (\epsilon_{p} K_{\tau} \nabla_{\tau} P_{l}) = u_{n} & \text{on} \quad \Sigma_{p}, \\ \epsilon_{p} K_{\tau} \tau \cdot \nabla_{\tau} P_{l} = 0 & \text{on} \quad \partial \Sigma_{p}, \end{cases}$$

• Fluid-porous coupling conditions:

$$\begin{cases} \sigma_{f,nn} = -P_{l} - \frac{\epsilon_{p}K_{n}^{-1}}{4}u_{n} & \text{on} \quad \Sigma_{p}, \\ =: \sigma_{p} & \\ \sigma_{f,n\tau} = -\frac{\alpha}{\sqrt{K_{\tau}\epsilon_{p}}}u_{\tau} & \text{on} \quad \Sigma_{p}. \end{cases}$$

 We combine FSI and contact conditions on the joint interface-contact surface Γ(t) to

 $u = \dot{d}, \quad \llbracket \sigma_{nn} \rrbracket = -\gamma [P_{\gamma}(\llbracket \sigma_{nn} \rrbracket, d_n)]_+$

Variational formulation (Fully Eulerian)

Simultaneous imposition of FSI interface and contact conditions on a joint interface-contact surface $\Gamma(t)$ by means of Nitsche's method (BURMAN, FERNÁNDEZ, F., GEROSA, CMAME 2022)

Find $u(t) \in \mathcal{V}_h$, $p(t) \in \mathcal{Q}_h$, d(t), $\dot{d} \in \mathcal{W}_h$, $P_l \in \mathcal{S}_h$, such that

$$\begin{aligned} a_{f}(u, p; v, q) + a_{s}(d, \dot{d}; w, z) - (\sigma_{f}(u, p)\boldsymbol{n}, w - v)_{\Gamma(t)} - (\dot{d} - u, \sigma_{f}(v, -q)\boldsymbol{n})_{\Gamma(t)} \\ + \frac{\gamma_{fsi}}{h} (\dot{d} - u, w - v)_{\Gamma(t)} + \frac{\gamma_{c}}{h} ([P_{\gamma}(\llbracket \sigma_{nn} \rrbracket, d_{n})]_{+}, w_{n})_{\Gamma(t)} \\ - (\sigma_{p}, v_{n})_{\Sigma_{p}} + (\epsilon_{p} K_{\tau} \nabla_{\tau} P_{l}, \nabla_{\tau} q_{l})_{\Sigma_{p}} - (u_{n}, q_{l})_{\Sigma_{p}} + \frac{\alpha}{\sqrt{K_{\tau} \epsilon_{p}}} (u_{\tau}, v_{\tau})_{\Sigma_{p}} \\ = (f_{f}, v)_{\Omega_{f}(t)} + (f_{s}, w)_{\Omega_{s}(t)} \quad \forall v, q, w, z, q_{l} \in \mathcal{V}_{h} \times \mathcal{Q}_{h} \times \mathcal{W}_{h} \times \mathcal{W}_{h} \times \mathcal{S}_{h} \end{aligned}$$

where

$$a_f(u, p; v, q) := \rho_f \big(\partial_t u + u \cdot \nabla u, v\big)_{\Omega_f(t)} + (\sigma_f(u, p), \nabla v)_{\Omega_f(t)} + (\operatorname{div} u, q)_{\Omega_f(t)}$$

$$a_s(d, \dot{d}; w, z) := \big(\rho_s(\partial_t \dot{d} + \dot{d} \cdot \nabla \dot{d}), w\big)_{\Omega_s(t)} + (\sigma_s(d), \nabla w)_{\Omega_s(t)} + \big(\partial_t d + \dot{d} \cdot \nabla d - \dot{d}, z\big)_{\Omega_s(t)}$$

Advantages & mechanical consistency

The **relaxed contact formulation** greatly simplifies the implementation:

- The coupling is for all times structure-fluid and fluid-porous medium (never structure-porous medium)
- Topology changes are avoided

Mechanical consistency:

• If a part of $\Gamma(t)$ is in 'contact' with Σ_p (in the relaxed sense), it holds

 $\sigma_{\mathrm{f},nn}|_{\Gamma} \approx \sigma_{\mathrm{p}}|_{\Sigma_{\mathrm{p}}}.$

• This gives a physical meaning to the fluid forces $\sigma_{f,nn}$ in the layer.

Discretisation: Fitted (locally modified) finite elements

- Fixed regular patch mesh independent of the interface location
- Split interface patches into eight triangles to resolve the interface
- Combination of P_1 and Q_1 finite elements (F. & RICHTER, SINUM 2014)

- Equal-order locally mod. FE with anisotropic edge-oriented pressure stabilisation (F., IJNMF, 2019)
- Time discretisation: Modified dG(0) scheme (F., RICHTER, M2AN, 2017)

Numerical example

- Fall of an elastic PTFE ball within a waterglycerin mixture (2d)
- Porous medium

 $\epsilon_p = 10^{-4}$, $K_\tau = K_n = 10^{-2}$

• Contact parameters

$$\gamma_c=30\lambda_s$$
, $\epsilon_g=rac{h_{
m min}}{4}$

Adaptive time-stepping

$$\delta t \in \left[\frac{1}{16\,000}, \frac{1}{500}\right] \mathbf{s}$$
 (movie)

Variation of the porous conductivity K

Minimal distance d_{\min} to the ground over time for different conductivities K compared to a relaxation approach (without porous layer) with slip resp. no-slip conditions

Results with porous layer lie between slip (larger bounce) and no-slip conditions

Comparison to relaxation without porous layer

Minimal distance d_{\min} and zoom-in for different h

 d_{\min} in m (zoom 1)

Comparison with experimental benchmark (2.5d)

Falling rubber ball within water-glycerine mixture

(HAGEMEIER, THEVENIN, RICHTER, Int J Multiphase Flow (2020), VON WAHL, RICHTER, F., HAGEMEIER, Phys Fluids (2021))

- Solid parameters $\nu = 0.4999$, $E \in [1.7 \cdot 10^6, 2.1 \cdot 10^7]$
- Minimal distance *d*_{min} and zoom-in for different Young's moduli *E*:

Conclusion and outlook

Conclusion

- Mechanically consistent and easy implementable model for FSI and contact considering seepage
- Applied also to a thin elastic solid (beam model) in a mixed coordinate framework with unfitted finite elements (BURMAN, FERNÁNDEZ, F., GEROSA, CMAME 2021)

Outlook

Comparison of different numerical approaches for benchmark configuration (2d/2.5d)

Main references

- E. Burman, M.A. Fernández, S. Frei: <u>A Nitsche-based formulation for fluid-structure interactions with contact</u>, ESAIM M2AN 54(2), 531-564 (2020)
- S. Frei, F.M. Gerosa, E. Burman, M.A. Fernández: <u>A mechanically consistent model for fluid-structure interactions with</u> <u>contact including seepage</u>, Comp Methods Appl Mech Eng 392, 114637 (2022)
- H. von Wahl, T. Richter, S. Frei, T. Hagemeier: Falling balls in a viscous fluid with contact: Comparing numerical simulations with experimental data, Phys Fluids 33, 033304 (2021)