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(Guangzhou) , Ch. Zhu (Guangzhou)

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

Modelling, PDE analysis and computational mathematics in materials science, Praha
23 - 27 September, 2024



Navier–Stokes–Fourier system

Mass conservation
∂tϱ+ divx(ϱu) = 0

Momentum balance (Newton’ s second law)

∂t(ϱu) + divx(ϱu⊗ u) +∇xp(ϱ, ϑ) = divxS(Dxu) + ϱ∇xG

Internal energy balance (First law of thermodynamics)

∂tϱe(ϱ, ϑ)+divx(ϱe(ϱ, ϑ)u)+divxq(∇xϑ) = S(Dxu) : Dxu−p(ϱ, ϑ)divxu

Newton’s rheological law

S(Dxu) = µ

(
∇xu+∇t

xu− 2

d
divxuI

)
+ ηdivxuI, µ > 0, η ≥ 0

Fourier’s law

q(∇xϑ) = −κ∇xϑ, κ > 0



Thermodynamics

Gibbs’ law, Second law of thermodynamics

ϑDs = De + pD

(
1

ϱ

)
Entropy balance equation (Second law of thermodynamics)

∂t(ϱs(ϱ, ϑ))+divx(ϱs(ϱ, ϑ)u)+divx

(q

ϑ

)
=

1

ϑ

(
S(Dxu) : Dxu− q · ∇xϑ

ϑ

)

Thermodynamic stability

(ϱ,S ,m) 7→
[
1

2

|m|2

ϱ
+ ϱe(ϱ,S)

]
strictly convex, S = ϱs, m = ϱu

Boyle-Mariotte equation of state

p(ϱ, ϑ) = ϱϑ, e(ϱ, ϑ) = cvϑ, cv > 0, s(ϱ, ϑ) = cv log ϑ− log ϱ



Data

Physical space

Ω ⊂ Rd , d = 2, 3 (bounded) domain

Inhomogeneous (no–slip) conditions

u|∂Ω = uB , uB · n = 0 impermeable boundary

Boundary temperature vs. heat flux

Ω = ΓD ∪ ΓN , ϑ|∂ΓD = ϑB , q · n|ΓN = 0

Initial state of the system

ϱ(0, ·) = ϱ0, ϑ(0, ·) = ϑ0, ϱ0 > 0, ϑ0 > 0, u(0, ·) = u0

+ compatibility conditions



Initial/boundary value problem

Existence of local–in–time strong solutions

Valli, Valli–Zajaczkowski [1986], Kagei–Kawashima [2006]

ϱ0 ∈ W k,2(Ω), ϑ0 ∈ W k,2(Ω), u0 ∈ W k,2(Ω;Rd), k ≥ 3

Cho–Kim [2006]

ϱ0 ∈ W 1,p(Ω), ϑ0 ∈ W 2,2(Ω), u0 ∈ W 2,2(Ω;Rd), 3 < p ≤ 6

uB = 0, q · n|∂Ω = 0

Kotschote [2015]

ϱ0 ∈ W 1,p(Ω), ϑ0 ∈ W 2− 1
p
,p(Ω), u0 ∈ W 2− 1

p
,p(Ω;Rd), p > 3



Conditional regularity results, I.

John F. Nash
[1928-2015]

Nash’s conjecture: Probably one should first try to prove a con-
ditional existence and uniqueness theorem for flow equations. This
should give existence, smoothness, and unique continuation (in
time) of flows, conditional on the non-appearance of certain gross
types of singularity, such as infinities of temperature or density.

EF, Wen, Zhu [2022] [Cho–Kim regularity class]

uB = 0, q · n|∂Ω = 0

sup
t∈[0,T )

(
sup
Ω

ϱ(t, ·) + sup
Ω

ϑ(t, ·)
)

< ∞ ⇒ Tmax > T

Basarić, EF, Mizerová [2023] [Valli–Zajaczkowski regularity
class]

uB · n = 0, ϑ|∂Q = ϑB

sup
t∈[0,T )

(
sup
Ω

ϱ(t, ·) + sup
Ω

ϑ(t, ·) + sup
Ω

|u(t, ·)|
)

< ∞ ⇒ Tmax > T



Conditional regularity results, II.

Abbatiello, Basarić, Chaudhuri, EF [2024]

uB · n = 0, ϑ|ΓD = ϑB , q · n|ΓN = qB

Lp − Lq class of solutions

3 < q < ∞,
2q

2q − 3
< p < ∞

ϱ0 ∈ W 1,q(Ω), ϑ0 ∈ B
2(1− 1

p
)

q,p (Ω), u0 ∈ B
2(1− 1

p
)

q,p (Ω;R3)

Blow–up criterion
Either Tmax = ∞ or

lim sup
t→(Tmax)−

∥(ϱ, ϑ, u)(t, ·)∥C(Ω;R5) = ∞.

The blow-up time is the same for Cho-Kim, Valli–Zajaczkowski, and
Kotschote class



Lax equivalence principle in numerical analysis

Peter D. Lax

Formulation for LINEAR problems

• Stability - uniform bounds of approximate solutions

• Consistency - vanishing approximation error

=⇒

• Convergence - approximate solutions converge to
exact solution



Lax equivalence principle - nonlinear version

• Stability - uniform L∞ bounds of approximate solutions

• Consistency - vanishing approximation error

=⇒

• Convergence - approximate solutions converge to a generalized solution
measure–valued solution
• Weak–strong uniqueness - the measure valued solution coincides with
the strong solution on its life span [0,T )max

• Conditional regularity - Tmax = ∞ as long as the solution remains
bounded

=⇒

• Unconditional convergence of bounded consistent approximations



Numerical problems with uncertain data

Probability space

{Ω;B,P}, Ω measurable space

B σ − algebra of measurable sets, P− complete probability measure

Random data

ω ∈ Ω 7→ D ∈ XD Borel measurable mapping

Solutions as random variables

Tmax = Tmax[D]− random variable

D 7→ (ϱ, ϑ, u)[D] random variable

Statistical solution

strong sense: ω ∈ Ω 7→ (ϱ, ϑ, u)(t, ·)[D], t ∈ [0,Tmax)

weak sense: L[(ϱ, ϑ, u)(t, ·)[D]]

L - law (distribution) of (ϱ, ϑ, u)(t, ·) in W 3,2(Q)×W 3,2(Q)×W 3,2(Q;Rd)



Convergence of consistent approximations

Strong data convergence

Dn = [ϱD,n, ϑD,n, uD,n] → D = [ϱD , ϑD , uD ] in XD

P− a.s.

Consistent approximation

(ϱn, ϑn, un) = (ϱ, ϑ, u)hn [Dn] a sequence of consistent approximations

Hypothesis of boundedness in probability
For any ε > 0, there exists M > 0 such that

lim sup
n→∞

P

{
sup

(0,T )×Q

ϱn[Dn] + sup
(0,T )×Q

ϑn[Dn] + sup
(0,T )×Q

|un[Dn]| > M

}
< ε



Convergence of consistent approximations, I

1 Apply Skorokhod representation theorem to the sequence
(Dn, ϱn, ϑnun,Λn)

∞
n=1,

Λn = sup
(0,T )×Q

ϱn[Dn] + sup
(0,T )×Q

ϑn[Dn] + sup
(0,T )×Q

|un[Dn]|

2 New sequence of data D̃n with the same law on the standard
probability space,

D̃n → D̃ in Xd , dy surely.

Λ̃n = sup
(0,T )×Q

ϱn[D̃n] + sup
(0,T )×Q

ϑn[D̃n] + sup
(0,T )×Q

|un[D̃n]| → Λ̃

dy surely

ϱnk [D̃nk ] → ϱ̃ weakly-(*) in L∞((0,T )× Q)

ϑnk [D̃nk ] → ϑ̃ weakly-(*) in L∞((0,T )× Q)

unk [D̃nk ] → ũ weakly-(*) in L∞((0,T )× Q;Rd)

dy surely



Convergence of consistent approximations, II

4 Show the limit is a measure–valued solution with the data D̃ in the
sense of Březina, EF, Novotný [2020], see also Chaudhuri [2022]

5 Apply the weak–strong uniqueness principle to conclude the (ϱ̃, ϑ̃, ũ)

is the unique strong solution associated to the data D̃,

(ϱ̃, ϑ̃, ũ) = (ϱ, ϑ, u)[D̃].

Conclude there is no need of subsequence, Tmax[D̃] > T , and
convergence is strong for in Lq for any finite q.

6 Pass to the original space using Gyöngy–Krylov theorem

Conclusion – unconditional convergence of consistent approximations

Tmax[D] > T a.s.

(ϱ, ϑ, u)hn [Dn] → (ϱ, ϑ, u)[D]

in Lq((0,T )× Q;Rd+2) for any 1 ≤ q < ∞

in probability


