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Elastic rods and nonlinear solids evidencing new effects

Configurational forces/Penetrating blade/Torsional gun/ Dripping of an elastic rod/Fluttering rods/
S-shaped constraints/Elastic snaking/Elastica catapult/Tensile buckling/Elastica arm scale

Perturbative approach to shear bands/Cones of localized deformation/Folding of a continuum/
Rigid line inclusion/Shear band patterns/Dynamics & shear bands/Flutter of a solid
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Configurational structural mechanics
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Eshelby (1965) introduced the concept of configurational force to 
describe the motion of defects in solids through a release of energy

Total potential energy

Defect position
Configurational force

In similar vein, we have extended the concept to structural mechanics 



Configurational axial force
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Free fall does not occur in a sort of inverted Kapitza pendulum
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DANCING OF A ROD



The dynamic ‘dance’: theory vs experiment

7

Experiment                                                     Simulation



Another configurational force: snake locomotion
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…serpentine locomotion!

Snakes have only 4 ways of moving around!

(I)

(II)

(III)

(IV)



Elastica constrained in a smooth and frictionless channel
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Elastic flexural energy :

Kinetic energy:

The channel is frictionless:

Total potential energy

Propulsive force



Experiments on the snaking rod
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Euler spiral (clothoid):

…curve whose curvature changes linearly with 

its curve length!



Qualitative proof of the propulsion
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Configurational propulsive force vs experiments
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Tensile buckling: inspired from shear bands
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Tensile buckling
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BUCKLING IN TENSION!
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Fully nonlinear analysis confirms buckling 

1) Kinematic compatibility

2) Force orthogonal to the slider 4) Elastica for both rods

3) Equilibrium of the slider

slider

slider
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… and experiments also show tensile buckling
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1 DoF structure with 2 buckling loads: in tension and in compression

Compressive bucklingCo
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Tensile buckling
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Flutter: the Ziegler double pendulum

𝜔 = 𝛺𝑙ଵ

𝜌𝑙ଶ

𝑘ଶ
                 𝛾 =

𝑃 𝑙ଵ

𝑘ଶ

ideal case 𝛽 = 0 damped case 𝛽 ≠ 0
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1st Problem
How to provide the follower force?

Professor Warner T. Koiter:

“I propose the elimination of the abstraction of follower forces
as external loads from the physical and engineering literature on elastic stability”

Two important attempts:

G. Herrmann et al. (1966) and Y. Sugiyama et al. (1995)
- by a fluid flowing through a nozzle
- by a solid rocket motor mounted on the top of the structure

Can we do better?



The first experimental setup
The load P is proportional to the reaction R provided via a lever principle hanging 
the dead load W (Bigoni & Noselli, JMPS, 2012)
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Stability:  𝛾=0.622 Flutter:  𝛾=3.606 Divergence: 𝛾=10.017
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From a discrete to a continuous system 
Internal/external dampings (Detinko, 2003)

Linearized differential equation of motion

Boundary conditions
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Experiment vs Simulations
Record of some experiments and comparison with the numerical simulations



The experimental results
Flutter and the divergence thresholds
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This is the FIRST EXPERIMENTAL 
PROOF of the destabilization paradox!

THE ZIEGLER LOAD!
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The Reut column

The force P always acts along a line 
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Problem: how to provide the Reut’s load?
How to provide the follower force?

Always the same problem!

Two important attempts:

G. Herrmann et al. (1966) and Y. Sugiyama et al. (1995)
- an air jet impinging the structure

Can we do better?
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The Reut column: flutter instability experiment
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Another proof of the Ziegler paradox

THE REUT LOAD!
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Is it possible to get rid of friction?
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Non-holonomic constraints!

These constraints apply to the velocity, not to the position

For instance a wheel rolling without slip or a perfectly sliding skate 



Flutter has been related to non-conservative loads
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… but non-holonomic constraints perserve conservation of energy!!

Elishakoff: ‘Bolotin felt –if my memory serves me well!– that it should be impossible to produce Beck’s column 
experiment via a conservative system of forces.’

Anderson and Done: ‘Sometimes, the creation of a force like [a follower force] in the laboratory presents 
awkward practical problems, and the simulation of this force wherever possible by a conservative force would be 
very convenient. However, because of the differing nature of the fundamental properties of the conservative and 
non-conservative systems, the simulation could only work in a situation where the two systems behave in similar 
ways; that is when the conservative system is not operating in a regime of oscillatory instability. (The 
conservative system can not become dynamically instable since, by definition, it has no energy source from which 

to supply the extra kinetic energy involved in the instability).’

Koiter: ‘[...] it appears impossible to achieve any non-conservative loading conditions in the laboratory by purely 
mechanical means’, because ‘non-conservative external loads always require an external energy source, much as a 

fluid flow or an interaction with electro-dynamic phenomenon’. 
Singer: ‘An example in the field of elastic stability of what Drucker referred to as playing useless games was 
presented by Koiter, in his 1985 Prandtl lecture, where he discussed the physical significance of instability due to 
non-conservative, purely configuration-dependent, external loads.’

OOPS!
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Loads are conservative

Flutter instability, Ziegler’s paradox, Hopf bifurcation and limit cycle

occur

for conservative systems!!!!
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Loads through a dead force: viscoelastic system

Skate 
(Ziegler’s type)

Violin bow
(Reut’s type)

FLUTTER WITH CONSERVATIVE LOADS
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Two stable structures lead to an unstable compound structure
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Stable Stable Unstable!
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A stable 2 d.o.f. structure: video 
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Another stable 2 d.o.f. structure: video
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How to address the discontinuous problem?

Linearized dynamics with a piecewise smooth constraint
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Mechanical energy
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Instability for linearized equations
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Instability in the nonlinear range
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The instability of the compound structure
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2 STABLE = 1 UNSTABLE
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What is the lesson for continua? Hill  comparison solid in plasticity
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Hill

Elastic

A piecewise incrementally linear (thus nonlinear) problem
is simplified to 2 linear problems

THIS APPROXIMATION MAY NOT BE INCLUSIVE OF 
IMPORTANT INSTABILITY PHENOMENA!
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How to link structures to solids?
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Note: our structures are not intelligent at all, as they have to blindly 
follow our equations

USE HOMOGENIZATION THEORY!



42

Idea: artificial materials
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Periodic 2D grid of axially and flexurally deformable elastic rods, axially preloaded 
and subject to in-plane incremental deformation
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Time-harmonic dynamics of prestressed rods
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Matrix collecting prestress-dependent 
shape functions

Displacements & rotations
at the ends of the rod

Bending stiffness
Axial stiffness

Pre-load

Rotational inertia

Mass density
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Energies for the prestressed rod

44

1) Kinetic energy

2) Elastic energy

3) Potential energy
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Prestress dependent stiffness matrix
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The governing equations
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Bloch wave vector comps.
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Dispersion equation
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Dispersion equation

Wave vector
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Dispersion surfaces
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Euler-Bernulli Rayleigh (slender)

effects of rotational inertia become evident at high frequency                                                                                                         
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Completely flat band and Dirac cone
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Square lattice

Slenderness 6.192 

(infinite set of standing waves propagating at 1.971)

Dirac coneFlat band

Rectangular lattice ( l1/ l2=2)

Slenderness 
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Homogenization of a lattice of elastic rods
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Periodic 2D lattice of axially and flexurally deformable elastic rods, axially preloaded 
and subject to in-plane incremental deformation



51

The lattice is spatially periodic
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Unit cell

- In statics Cauchy-Born hypothesis

- In dynamics, Bloch theorem
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The equivalent continuum
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Incremental strain energy density
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In statics: 1° and 2° order matching of strain energy

53

First-order matching

Second-order matching
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In dynamics: match on asymptotics
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Solution of a sequence of linear systems

A framework already available in the literature, see N. Triantafyllidis, P. Ponte Castañeda, J.R. Willis
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Lattice homogenization & material instabilities
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DOES HOMOGENIZATION WORK?



56

Not always when instabilities are concerned!
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Microscopic bifurcation Macroscopic bifurcation

- Only macroscopic bifurcations are captured by homogenization 

- Macroscopic bifurcations coincide with loss of ellipticity in the equivalent solid

- Macroscopic bifurcations are localized into shear o dilatational bands

- Microscopic bifurcation is a microstructural response

These results are due to N. Triantafyllidis, P. Ponte Castañeda, and J.R. Willis
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Homogenization of a prestressed lattice: Results
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Linear spring
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Results 1: Prestress tensor in the equivalent solid
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Determined at first-order:
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Results at second-order: 10 components! 
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 kSl/A
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Uniqueness/stability domains

60

lattice bifurcation
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Perturbative approach to shear bands
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Green’s function for incremental deformation of a prestressed body
Bigoni & Capuani JMPS 2002
Bigoni & Capuani JMPS 2005
Piccolroaz, Bigoni & Willis JMPS 2006 

eigenvalues right and left eigenvectors
of the acoustic tensor
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Perturbative approach to shear bands
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Perturbative approach to shear bands
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THE ARCHITECTED MATERIAL SHOWS SHEAR BANDS 
OCCURRING WITHIN THE ELASTIC RANGE! THE SHEAR BANDS
CAN BE ACTIVATED OR INHIBITED WITH THE PRESTRESS
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Is the stability domain always unbounded?
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These two domains are open because structures do not 
buckle in tension

… but structures MAY buckle in tension!

Open in tension Open in tension
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Enhancing elastic rods with sliders
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Now buckling in tension occurs!
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Bounded stability domain
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Bordiga, G., Piccolroaz, A., Bigoni, D. (2023) Tensile material instabilities in elastic beam lattices lead to a closed stability domain. 
Philosophical Transactions of the Royal Society A, 380, 20210388.
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An elastic grid subject to follower forces
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Flutter instability in the equivalent solid
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Beyond hyperelasticity, 
a new & unknown world of architected materials

to be explored and conquered

ERC Advanced Grant «Beyond»
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Flutter instability in solids and structures is reality!

… Thanks for your attention!
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