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For u : Rn → Rn, we study the system of PDEs

− div(A(εu)) = f in Ω,

u = 0 on ∂Ω.

The system depends on the symmetric gradient εu := 1
2

(
∇u + (∇u)T

)
.

The nonlinear map A is given by, e.g.,

A(εu) :=
(
δ + |εu|

)p−2
εu,

where p ∈ (1,∞) and δ ≥ 0.

Application: Elasticity theory, model problem for the p-Stokes system

Goal: Regularity of the solution u near the boundary ∂Ω.
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u : Rn → Rn − div(|∇u|p−2∇u) = f in Ω,

u = 0 on ∂Ω

If f and Ω are regular enough, then

u ∈ C 1,α(Ω) and V (∇u) := |∇u|
p−2
2 ∇u ∈ W 1,2(Ω)

was shown by

Uhlenbeck; 1977: 2 ≤ p < ∞,

Acerbi, Fusco; 1989: 1 < p < 2,

DiBenedetto, Chen; 1989: Up to the boundary,

Diening, Stroffolini, Verde; 2009: For Orlicz-growth.

Balci, Cianchi, Diening, Maz’ya; 2022: |∇u|p−2∇u ∈ W 1,2(Ω) for p > 1.1715...
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Known results: p-Laplace system
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− div(|εu|p−2εu) = f in Ω,

u = 0 on ∂Ω.

Known results:

For n = 2: u ∈ C 1,α(Ω), even for the p-Stokes-system:
Kaplický, Málek, Stará; 1999, Diening, Kaplický, Schwarzacher; 2014

V (εu) := |εu|(p−2)/2εu ∈ W 1,2(Ω):

For 1 < p ≤ 2 near a flat boundary: Seregin, Shilkin; 1997
Extended to ∂Ω ∈ C 2,1 and parabolic systems: Berselli, R̊užička; 2017-2022

Open questions: u ∈ C 1,α(Ω) (for n ≥ 3)?

|εu|p−2εu ∈ W 1,2(Ω) (for p ̸= 2)?.
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Known results: symmetric p-Laplace system
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Theorem (Behn, Diening ’24)

Let Ω be a bounded C 2,1-domain, 1 < p < ∞ and f ∈ W 1,p′

0 (Ω). Then the system

− div(|εu|p−2εu) = f in Ω,

u = 0 on ∂Ω

has a unique weak solution u ∈ W 1,p(Ω) fulfilling V (εu) := |εu|
p−2
2 εu ∈ W 1,2(Ω) and

∥V (εu)∥2W 1,2(Ω) ≲ ∥f ∥p
′

W 1,p′ (Ω)
.

p ∈ (1, 2): u ∈ W
2,

np
n+p−2 (Ω)

p ∈ (2,∞): u ∈ W
1+

2
p ,p(Ω)
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Main theorem for p-growth
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We replace Jp(u) :=
1
p

�
Ω |εu|p dx by energies with more general φ-growth

Jφ(u) :=

�
Ω
φ(|εu|) dx .

Theorem (Behn, Diening ’24)

Let Ω be a bounded C 2,1-domain, φ a uniformly convex N-function and f ∈ W 1,φ∗

0 (Ω).
Then the system − div(A(εu)) = f in Ω,

u = 0 on ∂Ω

has a unique weak solution u ∈ W 1,φ(Ω) fulfilling V (εu) ∈ W 1,2(Ω) and

∥V (εu)∥2W 1,2(Ω) ≲
�
Ω
φ∗(|f |) + φ∗(|∇f |) dx .

A(Q) := φ′(|Q|) Q

|Q|
, V (Q) :=

√
φ′(|Q|)|Q| Q

|Q|
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Main theorem for Orlicz growth
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Clearly, |εu(x)| ≤ |∇u(x)|. However, |∇u(x)| ≰ c |εu(x)|.

Theorem (Korn’s inequality)

Let p ∈ (1,∞). Then there exists c > 0 such that for all u ∈ C∞
c (Rn,Rn) we have

∥∇u∥Lp(Rn) ≤ c∥εu∥Lp(Rn) ≤ c∥∇u∥Lp(Rn).

For p = 1 and p = ∞ this inequality fails to hold (Ornstein, 1962).

Thus (informally):

There are no problems coming from the function spaces involved!

Instead, the difficulty lies in the higher coupling of the system.
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For p = 2:

−∆u = f ⇐⇒ −∆ui = fi ∀ 1 ≤ i ≤ n (system decouples)

−∆symu := − div(εu) = −1
2∆u − 1

2∇ div u (system is highly coupled)

For −∆u = f ∈ L2 we can show u ∈ W 2,2 near the boundary by

1 For tangential directions α: Testing with ∂α∂αu. This gives ∂α∇u ∈ L2.

Does not work for the normal direction ∂n∇u !

2 Using the PDE: ∂n∂nu = f −
∑

α ∂α∂αu ∈ L2.

Main difficulty: The high coupling and nonlinear nature of the system.

To overcome this, we rely on the algebraic identity ∂ijuk = ∂iεjku + ∂jεiku − ∂kεiju.
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Coupling of the equation
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Theorem (Behn, Diening ’24)

Let Ω be a bounded C 2,1-domain, φ a uniformly convex N-function and f ∈ W 1,φ∗

0 (Ω).
Then the system

− div(A(εu)) = f in Ω,

u = 0 on ∂Ω

has a unique weak solution u ∈ W 1,φ(Ω) fulfilling V (εu) ∈ W 1,2(Ω) and

∥V (εu)∥2W 1,2(Ω) ≲
�
Ω
φ∗(|f |) + φ∗(|∇f |) dx .

For p-growth: p ≤ 2 : u ∈ W
2,

np
n+p−2 , p ≥ 2 : u ∈ W

1+
2
p ,p.

Thank you for your attention!
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Summary


