Hodge decomposition in variable exponent spaces with applications to regularity

Anna Balci

www.annabalci.de

Based on join works with Swarnendu Sil and Mikhail Surnachev

Modelling, partial differential equations analysis and computational mathematics in material sciences

Prague, Czech Republic, September 22 - September 28

Faculty of Mathematics

Problems with differential forms

 ω is a differential form; $d\omega$ is an exterior derivative ; $\delta\omega$ is a co differential.

Hodge Laplacian first order "div-curl" systems Hodge-Dirac system "Bogovskii" type problems

$$\Delta \omega = d\delta \omega + \delta d\omega = f,$$

$$d\omega = f, \quad \delta \omega = g,$$

$$D = d + \alpha \delta, \ \alpha \in \mathbb{R} \setminus \{0\},$$

$$df = 0.$$

Goals: solvability and regularity theory in spaces with variable exponent $L^{p(x)}(\Lambda M)$. *M* is a compact *n*-dimential Riemanninan manifold with the boundary *bM*.

Goals for nonlinear problems:

• Nonlinear problems with p(x)-Laplacian $\delta(|d\omega|^{p(x)-2}du) = \delta F$.

Ø Finite element approximation for nonlinear problems with forms (curl-p-Laplacian).

Problems with differential forms

 ω is a differential form; $d\omega$ is an exterior derivative ; $\delta\omega$ is a co differential.

Hodge Laplacian first order "div-curl" systems Hodge-Dirac system "Bogovskii" type problems

$$\begin{split} \Delta \omega &= d\delta \omega + \delta d\omega = f, \\ d\omega &= f, \quad \delta \omega = g, \\ D &= d + \alpha \delta, \ \alpha \in \mathbb{R} \setminus \{0\}, \\ df &= 0. \end{split}$$

Goals: solvability and regularity theory in spaces with variable exponent $L^{p(x)}(\Lambda M)$. *M* is a compact *n*-dimential Riemanninan manifold with the boundary *bM*.

Goals for nonlinear problems:

- Nonlinear problems with p(x)-Laplacian $\delta(|d\omega|^{p(x)-2}du) = \delta F$.
- Ø Finite element approximation for nonlinear problems with forms (curl-p-Laplacian).

Regularity theory

M a compact *n*-dimential Riemanninan manifold with the boundary bM.

Problems

- for non-standard spaces one has to develop theory from scratch;
- 2 no elliptic estimtes avaliable;
- 8 work on nonorientable manifold.

Vocabulary: vectors

Vocabulary: vectors

 $u \wedge u = 0.$

k-vector in \mathbb{R}^n to n - k-vector

Sir W. V. D. Hodge

Vocabulary: vectors

Sir W. V. D. Hodge

The Notion of Differential Form

To define the differential forms and operations on them we need a lot of exterior algebra.

Naive definition

n = 1: the form is the object $\omega = f(x)dx$ in the integral $\int_a^b f(x)dx$ over the interval [a, b].

 $n \ge 1 - the dim of the space and we also need to consider <math>0 \le k \le n - the dim of the path (oriented surface or manifold) we integrate over.$

k = 0: scalar functions.

k = 1: integrate over oriented 1*d*-oriented curve in \mathbb{R}^n . Could be described as vector fields .

k = 2: integrate over oriented 2*d*-surface in \mathbb{R}^n .

k-form is an oriented density that can be integrated over an *k*-dimensional oriented manifold.

The Notion of Differential Form

To define the differential forms and operations on them we need a lot of exterior algebra.

Naive definition

n = 1: the form is the object $\omega = f(x)dx$ in the integral $\int_a^b f(x)dx$ over the interval [a, b].

 $n \ge 1$ – the dim of the space and we also need to consider $0 \le k \le n$ – the dim of the path (oriented surface or manifold) we integrate over.

k = 0: scalar functions.

k = 1: integrate over oriented 1*d*-oriented curve in \mathbb{R}^n . Could be described as vector fields .

k = 2: integrate over oriented 2*d*-surface in \mathbb{R}^n .

k-form is an oriented density that can be integrated over an k-dimensional oriented manifold.

Operations with differential forms

$$\begin{array}{ll} \text{Scalar functions} & \text{Differential forms} \\ (f,g) \to fg & \omega \wedge \eta = (-1)^{k\ell} \eta \omega \\ d(fg) = (df)g + f(dg) & d(\omega \wedge \eta) = (d\omega) \wedge \eta + (-1)^k \omega \wedge (d\eta). \end{array}$$

 $d(d\omega) = 0$ The operation $\omega
ightarrow d\omega$

 $\begin{array}{lll} \text{Order of } \omega & d\omega = \text{"usual operator"} \\ k = 0 & f \rightarrow \nabla f \\ k = 1 & f \rightarrow \text{curl } f \\ k = 2 & f \rightarrow \text{div } f \end{array}$

We work on sufficiently not necessary orientable smooth Riemanninan manifold.

We work on sufficiently **not necessary orientable** smooth Riemanninan manifold. So we need to consider even and odd forms. Let x = x(y) coordinate change and $J = \frac{\partial x}{\partial y}$. We have before change of coordinates:

$$\sum_{K} \omega_{K}(x) dx^{K}$$

after

 $\sum_{I} \omega_{I}'(y) dy'$

even
$$\omega_l'(y) = \sum \omega_k(x(y)) \frac{\partial x^k}{\partial y^l}.$$

at Oberwolfach

We work on sufficiently **not necessary orientable** smooth Riemanninan manifold. So we need to consider even and odd forms. Let x = x(y) coordinate change and $J = \frac{\partial x}{\partial y}$. We have before change of coordinates:

 $\sum_{K} \omega_{K}(x) dx^{K}$

after

$$\sum_{I} \omega'_{I}(y) dy'$$

even
$$\omega'_l(y) = \sum \omega_k(x(y)) \frac{\partial x^k}{\partial y'}.$$

odd $\omega_I = \frac{J}{|J|} \sum \omega_k(x(y)) \frac{\partial x^k}{\partial y^l}.$

The Boy Lurface, at Oberwolfach

Anna Balci

Balci Hodge decomposition in variable exponent spaces with applications to regularity 7

7/28

We work on sufficiently **not necessary orientable** smooth Riemanninan manifold. So we need to consider even and odd forms. Let x = x(y) coordinate change and $J = \frac{\partial x}{\partial y}$. We have before change of coordinates:

$$\sum_{K} \omega_{K}(x) dx^{K}$$

after

$$\sum_{l} \omega'_{l}(y) dy'$$

even
$$\omega_l'(y) = \sum \omega_k(x(y)) \frac{\partial x^k}{\partial y^l}.$$

The Boy Lurface, at Oberwolfach

Anna Balci Hodge decomposition in variable exponent spaces with applications to regularity 7/28

odd $\omega_I = \frac{J}{|J|} \sum \omega_k(x(y)) \frac{\partial x^k}{\partial y^l}.$

Bundle of differential forms

Following approach of De Rham: work with the totality ΩM of differential forms of all degrees $0, \ldots, \dim M$ and parities (odd/even). On an *n*-dimensional manifold each element of ΩM can be decomposed into 2(n + 1) homogeneous forms:

$$f = \sum_{r=0}^{n} f_{e}^{r} + \sum_{r=0}^{n} f_{o}^{r}, \quad \deg f_{e}^{k}, f_{o}^{k} = k, \quad k = 0, \dots, n$$

the forms f_e^k even and f_o^k are odd.

Example

$$\omega = 1 + xdy + zdxdy.$$

Bundle of differential forms

Following approach of De Rham: work with the totality ΩM of differential forms of all degrees $0, \ldots, \dim M$ and parities (odd/even). On an *n*-dimensional manifold each element of ΩM can be decomposed into 2(n + 1) homogeneous forms:

$$f = \sum_{r=0}^{n} f_{e}^{r} + \sum_{r=0}^{n} f_{o}^{r}, \quad \deg f_{e}^{k}, f_{o}^{k} = k, \quad k = 0, \dots, n$$

the forms f_e^k even and f_o^k are odd.

Example

$$\omega = 1 + xdy + zdxdy.$$

Properties of bundle

We set

$$\langle f,g\rangle = \sum_{r=0}^{n} \langle f_e^r,g_e^r\rangle + \sum_{r=0}^{n} \langle \varepsilon f_o^r,\varepsilon g_o^r\rangle,$$

where ε is an odd form of degree zero with values ± 1 in any coordinate system ("orientation"). On *r*-forms the scalar product $\langle \cdot, \cdot \rangle$ is defined in the standard way:

$$(\omega,\eta)=\sum_{I}\omega_{I}\eta^{I}=\sum_{IK}G^{IK}\omega_{I}\eta_{K}$$

where the summation is over ordered sets $I, K \in \mathcal{I}(r), \eta^{I} = g^{i_{1}j_{1}} \dots g^{i_{r}j_{r}} \eta_{j_{1}\dots j_{r}}$ with the summation over all *r*-tuples (j_{1}, \dots, j_{r}) , and G^{IK} is the determinant of the matrix at the intersection of rows I and columns K of the matrix $\{g^{ij}\}$. We denote $|\omega| = \sqrt{\langle \omega, \omega \rangle}$.

Generalized differential and codifferential

For k-forms f and g of the same parity we denote

$$(f,g)=\int\limits_M\langle f,g
angle\,dV=\int\limits_Mf\wedge *g.$$

 $\omega \in L^{1}_{loc}(M, \Lambda) \text{ has differential } d\omega = f \in L^{1}_{loc}(M, \Lambda) \text{ if for any } \varphi \in C^{1}_{o}(M, \Lambda)$ $(\omega, \delta\varphi)_{M} = (f, \varphi)_{M}.$ $\omega \in L^{1}_{loc}(M, \Lambda) \text{ has codifferential } \delta\omega = f \in L^{1}_{loc}(M, \Lambda) \text{ if for any } \varphi \in C^{1}_{o}(M, \Lambda)$ $(\omega, d\varphi) = (f, \varphi).$

Generalized differential and codifferential

For k-forms f and g of the same parity we denote

$$(f,g) = \int\limits_M \langle f,g
angle \, dV = \int\limits_M f \wedge *g.$$

 $\omega \in L^{1}_{loc}(M,\Lambda) \text{ has differential } d\omega = f \in L^{1}_{loc}(M,\Lambda) \text{ if for any } \varphi \in C^{1}_{o}(M,\Lambda)$ $(\omega, \delta\varphi)_{M} = (f,\varphi)_{M}.$ $\omega \in L^{1}_{loc}(M,\Lambda) \text{ has codifferential } \delta\omega = f \in L^{1}_{loc}(M,\Lambda) \text{ if for any } \varphi \in C^{1}_{o}(M,\Lambda)$ $(\omega, d\varphi) = (f,\varphi).$

Admissible coordinate system

An admissible boundary coordinate system on a manifold M with boundary bM of class $C^{s,\mu}$ is a coordinate system of class $C^{s,\mu}$: interior points of boundary coordinate neighbourhood are mapped into $x^n > 0$, image of bM belongs to $x^n = 0$, and metric is

$$ds^2 = \sum_{\gamma,\delta=1}^{p-1} g_{\gamma,\delta}(x'_n,0) dx^{\gamma} dx^{\delta} + (dx^n)^2 \quad ext{ on } \sigma.$$

Boundary values and the normal and tangent components are defined via admissible boundary coordinate system.

Normal in admissible coordinate system

$$\nu = -dx^n$$
.

Normal and tangential part

Components in admissible coordinate system

$$\begin{split} \omega &= \sum_{n \not\in I} \omega_I dx' + \sum_{n \in I} \omega_I dx' \\ \omega_I &\begin{cases} n \notin I \to \text{tangential part;} \\ n \in I \to \text{normal part.} \end{cases}, \end{split}$$

On the boundary form decompose

 $\omega = t\omega + n\omega.$

 $t\omega = 0 \Leftrightarrow \nu \wedge \omega = 0,$ $n\omega = 0 \Leftrightarrow \nu \lrcorner \omega = 0.$

Normal and tangential part

Components in admissible coordinate system

$$\omega = \sum_{n \notin I} \omega_I dx^I + \sum_{n \in I} \omega_I dx^I$$

$$\int_{I} n \notin I \rightarrow \text{tangential part;} \quad ,$$

$$^{\omega_I}\left\{ n\in I
ightarrow$$
 normal part.

On the boundary form decompose

$$\omega = t\omega + n\omega.$$

$$t\omega = 0 \Leftrightarrow \nu \land \omega = 0,$$

$$n\omega = 0 \Leftrightarrow \nu \lrcorner \omega = 0.$$

Harmonic fields

Let M be of the class $C^{s+2,1}$, $s \in \{0\} \cup \mathbb{N}$, and let $n = \dim M$. Introduce the spaces of even and odd harmonic fields (i.e. $W^{1,2}(M,\Lambda)$ forms with zero differential and codifferential) of degree r with vanishing tangential part on the boundary $\mathcal{H}_T(M,\Lambda_*^r)$, $* \in \{e,o\}$, the spaces of even and odd harmonic forms of degree r with vanishing normal part on the boundary $\mathcal{H}_N(M,\Lambda_*^r)$, $* \in \{e,o\}$. Then let

$$\mathcal{H}_{T}(M,\Lambda_{*}) = \bigoplus_{r=0}^{\dim M} \mathcal{H}_{T}(M,\Lambda_{*}^{r}), \quad * \in \{e,o\},$$
 $\mathcal{H}_{N}(M,\Lambda_{*}) = \bigoplus_{r=0}^{\dim M} \mathcal{H}_{N}(M,\Lambda_{*}^{r}), \quad * \in \{e,o\},$
 $\mathcal{H}_{T}(M) = \mathcal{H}_{T}(M,\Lambda_{e}) \bigoplus \mathcal{H}_{T}(M,\Lambda_{o}),$
 $\mathcal{H}_{N}(M) = \mathcal{H}_{N}(M,\Lambda_{e}) \bigoplus \mathcal{H}_{N}(M,\Lambda_{o}).$

Connection to the geometry

The dimensions of kernels satisfy:

$$\dim \mathcal{H}_T(\Lambda^r) = B_{n-r}, \quad \dim \mathcal{H}_N(\Lambda^r) = B_r,$$

where B_r is the *r*-th Betti number of M (rank of the *r*-th homology group of M), the number B_0 represents the number of connected components of M, $B_n = 0$, and if M is contractible then $B_r = 0$ for r = 1, ..., n - 1.

Nuclear pasta

Betti number of M (number is the number of r-dimensional holes)

Picture from Wikipedia Nuclear pasta

4 classical BVP for the Hodge Laplacian

 $\Delta u = f$.

- 1) $t\omega = t\varphi$, $n\omega = n\psi$;
- $e t\omega = t\varphi, \ t\delta\omega = t\psi;$
- \otimes $n\omega = n\varphi$, $nd\omega = n\psi$;

Hodge Laplacian with these boundary condition is formally symmetric.

 $(\Delta\omega,\eta) = (\omega,\Delta\eta)$

if both ω,η satisfies homogeneous boundary conditions

4 classical BVP for the Hodge Laplacian

 $\Delta u = f$.

- 1) $t\omega = t\varphi$, $n\omega = n\psi$;
- $e t\omega = t\varphi, \ t\delta\omega = t\psi;$
- \otimes $n\omega = n\varphi$, $nd\omega = n\psi$;

Hodge Laplacian with these boundary condition is formally symmetric.

$$(\Delta\omega,\eta)=(\omega,\Delta\eta)$$

if both ω, η satisfies homogeneous boundary conditions.

Variational problems $\mathcal{F}[\omega] = \frac{1}{2}(d\omega, d\omega) + \frac{1}{2}(\delta\omega, \delta\omega) - (\varphi, d\omega) - (\psi, \delta\omega) - (\eta, \omega) \rightarrow \min \text{ over } X,$ $n \in L^2$, $\varphi, \psi \in W^{1,2}$.

Variational problems $\mathcal{F}[\omega] = \frac{1}{2}(d\omega, d\omega) + \frac{1}{2}(\delta\omega, \delta\omega) - (\varphi, d\omega) - (\psi, \delta\omega) - (\eta, \omega) \rightarrow \text{min over } X,$ $\eta \in L^2, \ \varphi, \psi \in W^{1,2}.$ • $X = W_0^{1,2}(M, \Lambda), \ \omega \in W^{2,2}(M, \Lambda) \text{ and satisfies}$ $\triangle \omega = \eta + \delta \varphi + d\psi \quad \text{a.e. in } M, \quad t\omega = 0, \quad n\omega = 0.$

•
$$X = \mathcal{H}_T^{\perp} \cap W_T^{1,2}(M,\Lambda)$$
, $\omega \in W^{2,2}(M,\Lambda)$ and satisfies
 $\bigtriangleup \omega = \eta + \delta \varphi + d\psi$ a.e. in M , $t\omega = 0$, $t\delta \omega = t\psi$.

•
$$X = \mathcal{H}_N^{\perp} \cap W_N^{1,2}(M,\Lambda), \ \omega \in W^{2,2}(M,\Lambda) \text{ and satisfies}$$

 $\bigtriangleup \omega = \eta + \delta \varphi + d\psi \quad \text{a.e. in } M, \quad n\omega = 0, \quad nd\omega = n\varphi.$
• $X = (\mathcal{H} \cap L^2(M,\Lambda))^{\perp} \cap W^{1,2}(M,\Lambda), \ \omega \text{ in } W^{2,2}(M,\Lambda) \text{ and satisfies}$
 $\bigtriangleup \omega = \eta + \delta \varphi + d\psi \quad \text{a.e. in } M, \quad t\delta \omega = t\psi, \quad nd\omega = n\varphi.$

$\begin{aligned} & \text{Variational problems} \\ \mathcal{F}[\omega] = \frac{1}{2}(d\omega, d\omega) + \frac{1}{2}(\delta\omega, \delta\omega) - (\varphi, d\omega) - (\psi, \delta\omega) - (\eta, \omega) \rightarrow \text{min over } X, \\ \eta \in L^2, \ \varphi, \psi \in W^{1,2}. \\ \bullet \ X = W_0^{1,2}(M, \Lambda), \ \omega \in W^{2,2}(M, \Lambda) \text{ and satisfies} \\ & \bigtriangleup = \eta + \delta\varphi + d\psi \quad \text{a.e. in } M, \quad t\omega = 0, \quad n\omega = 0. \end{aligned}$

•
$$X = \mathcal{H}_T^{\perp} \cap W_T^{1,2}(M,\Lambda)$$
, $\omega \in W^{2,2}(M,\Lambda)$ and satisfies
 $\bigtriangleup \omega = \eta + \delta \varphi + d\psi$ a.e. in M , $t\omega = 0$, $t\delta \omega = t\psi$.

• $X=\mathcal{H}_N^\perp\cap W^{1,2}_N(M,\Lambda)$, $\omega\in W^{2,2}(M,\Lambda)$ and satisfies

 $\Delta \omega = \eta + \delta \varphi + d\psi$ a.e. in M, $n\omega = 0$, $nd\omega = n\varphi$.

• $X = (\mathcal{H} \cap L^2(M, \Lambda))^{\perp} \cap W^{1,2}(M, \Lambda), \omega \text{ in } W^{2,2}(M, \Lambda) \text{ and satisfies}$

 $\Delta \omega = \eta + \delta \varphi + d\psi \quad \text{a.e. in } M, \quad t\delta \omega = t\psi, \quad nd\omega = n\varphi.$

Variational problems $\mathcal{F}[\omega] = \frac{1}{2}(d\omega, d\omega) + \frac{1}{2}(\delta\omega, \delta\omega) - (\varphi, d\omega) - (\psi, \delta\omega) - (\eta, \omega) \rightarrow \text{min over } X,$ $\eta \in L^2, \ \varphi, \psi \in W^{1,2}.$ • $X = W_0^{1,2}(M, \Lambda), \ \omega \in W^{2,2}(M, \Lambda) \text{ and satisfies}$ $\triangle \omega = \eta + \delta \varphi + d\psi \quad \text{a.e. in } M, \quad t\omega = 0, \quad n\omega = 0.$

•
$$X = \mathcal{H}_T^{\perp} \cap W_T^{1,2}(M,\Lambda)$$
, $\omega \in W^{2,2}(M,\Lambda)$ and satisfies
 $\bigtriangleup \omega = \eta + \delta \varphi + d\psi$ a.e. in M , $t\omega = 0$, $t\delta \omega = t\psi$.

Variational problems $\mathcal{F}[\omega] = \frac{1}{2}(d\omega, d\omega) + \frac{1}{2}(\delta\omega, \delta\omega) - (\varphi, d\omega) - (\psi, \delta\omega) - (\eta, \omega) \rightarrow \text{min over } X,$ $\eta \in L^2, \ \varphi, \psi \in W^{1,2}.$ • $X = W_0^{1,2}(M, \Lambda), \ \omega \in W^{2,2}(M, \Lambda) \text{ and satisfies}$ $\triangle \omega = \eta + \delta \varphi + d\psi \quad \text{a.e. in } M, \quad t\omega = 0, \quad n\omega = 0.$

•
$$X = \mathcal{H}_T^{\perp} \cap W_T^{1,2}(M,\Lambda)$$
, $\omega \in W^{2,2}(M,\Lambda)$ and satisfies
 $\bigtriangleup \omega = \eta + \delta \varphi + d\psi$ a.e. in M , $t\omega = 0$, $t\delta \omega = t\psi$.

History

Linear theory: Hodge, De Rham, Kodaira, Duff, Spencer; Morrey later extended by R. Kress, Schwarz, Bolik, Mitrea(s)

Nonlinear theory :

Uhlenbeck; Hamburger

Sobolev spaces of differential forms Nonlinear Hodge Theory :

Modern development :

Partial regularity:

Variational method for *p*:

Calderon-Zygmund estimates :

Iwaniec, Scott, Strofollini '99

Csató, Dacorogna, Kneuss

Beck and Stroffolini '13

Sil '16,'19,'21

Lee, Ok, Pyo '24

Generalized Sobolev-Orlicz spaces

Lavrentiev gap: Balci, Surnachev '24 Anna Balci Hodge decomposition in variable exponent spaces with applications to regularity 18/28

Spaces with variable exponent $\omega \in L^{1}_{loc}, \ d\omega = f \in L^{1}_{loc} \text{ and } t\omega = 0 \text{ if}$ $(\omega, \delta \varphi) = (f, \varphi) \quad \forall \varphi \in C^{1}.$

$$\|\omega\|_{L^{p(\cdot)}(M,\Lambda)} = \inf\{\lambda > 0 \, : \, \|(|\omega|\lambda^{-1})^{p(\cdot)}\|_{L^1(M)} < \infty\}, \quad * \in \{e, o\}.$$

Let M be at least $C^{s,1}$, $s \in \mathbb{N}$ and $(U_{\alpha}, \varphi_{\alpha})$ be a finite atlas of M. On $\varphi_{\alpha}(U_{\alpha}) \subset \mathbb{R}^{n}$ we denote $p_{\alpha}(\cdot) = p(\varphi_{\alpha}^{-1}(\cdot))$.

We assume that p has the logarithmic modulus of continuity:

$$|p(x) - p(y)| \le \frac{L}{\log(e + (\operatorname{dist}(x, y))^{-1})}, \quad x, y \in M$$
 Zhikov '90s

In each coordinate system components belong to $W^{s,p_{\alpha}(\cdot)}(\varphi_{\alpha}(U_{\alpha}))$. The norm could be expressed in terms of covariant derivatives:

$\sum_{l=0}^{s} \| |\nabla' \omega_{e}| \|_{L^{p(\cdot)}(M,\Lambda)} + \sum_{l=0}^{s} \| |\nabla'(\varepsilon \omega_{o})| \|_{L^{p(\cdot)}(M,\Lambda)}.$

Spaces with variable exponent $\omega \in L^{1}_{loc}, \ d\omega = f \in L^{1}_{loc} \text{ and } t\omega = 0 \text{ if}$ $(\omega, \delta\varphi) = (f, \varphi) \quad \forall \varphi \in C^{1}.$

$$\|\omega\|_{L^{p(\cdot)}(M,\Lambda)} = \inf\{\lambda > 0 \ : \ \|(|\omega|\lambda^{-1})^{p(\cdot)}\|_{L^1(M)} < \infty\}, \quad * \in \{e, o\}.$$

Let M be at least $C^{s,1}$, $s \in \mathbb{N}$ and $(U_{\alpha}, \varphi_{\alpha})$ be a finite atlas of M. On $\varphi_{\alpha}(U_{\alpha}) \subset \mathbb{R}^{n}$ we denote $p_{\alpha}(\cdot) = p(\varphi_{\alpha}^{-1}(\cdot))$.

We assume that p has the logarithmic modulus of continuity:

$$|p(x) - p(y)| \leq rac{L}{\log(e + (\operatorname{dist}(x, y))^{-1})}, \quad x, y \in M$$
 Zhikov '90s

In each coordinate system components belong to $W^{s,p_{\alpha}(\cdot)}(\varphi_{\alpha}(U_{\alpha}))$. The norm could be expressed in terms of covariant derivatives:

$$\sum_{l=0}^{s} \| |\nabla^{l} \omega_{e}| \|_{L^{p(\cdot)}(M,\Lambda)} + \sum_{l=0}^{s} \| |\nabla^{l} (\varepsilon \omega_{o})| \|_{L^{p(\cdot)}(M,\Lambda)}.$$

Partial Spaces

We denote

$$W^{d,q}(M,\Lambda) = \{ \omega \in L^q(M,\Lambda) : d\omega \in L^q(M,\Lambda) \},$$

$$W^{d,q}_T(M,\Lambda) = \{ \omega \in L^q(M,\Lambda) : d\omega \in L^q(M,\Lambda) \text{ and } t\omega = 0 \},$$

$$W^{\delta,q}(M,\Lambda) = \{ \omega \in L^q(M,\Lambda) : \delta\omega \in L^q(M,\Lambda) \},$$

$$W^{\delta,q}_N(M,\Lambda) = \{ \omega \in L^q(M,\Lambda) : \delta\omega \in L^q(M,\Lambda) \text{ and } n\omega = 0 \}.$$

 $t\omega = 0$ $n\omega = 0$

here is understood in the sense

 $(\omega, d\varphi) = (d\omega, \varphi)$

for all $\varphi \in C^1(M)$.

Partial Spaces

We denote

$$W^{d,q}(M,\Lambda) = \{ \omega \in L^q(M,\Lambda) : d\omega \in L^q(M,\Lambda) \},$$

$$W^{d,q}_T(M,\Lambda) = \{ \omega \in L^q(M,\Lambda) : d\omega \in L^q(M,\Lambda) \text{ and } t\omega = 0 \},$$

$$W^{\delta,q}(M,\Lambda) = \{ \omega \in L^q(M,\Lambda) : \delta\omega \in L^q(M,\Lambda) \},$$

$$W^{\delta,q}_N(M,\Lambda) = \{ \omega \in L^q(M,\Lambda) : \delta\omega \in L^q(M,\Lambda) \text{ and } n\omega = 0 \}.$$

$$t\omega = 0$$
 $n\omega = 0$

here is understood in the sense

$$(\omega, d\varphi) = (d\omega, \varphi)$$

for all $\varphi \in C^1(M)$.

Lavrentiev Phenomenon and Density

Balci and Surnachev [CalcVar2024]:

• For generalized Sobolev-Orlicz spaces of differential forms W^{d,φ(·)}(Ω; Λ^k) we construct the examples on Lavrentiev gap and obtain nondensity result using fractals

 $H^{d,p(\cdot)}(\Omega,\Lambda) \neq W^{d,p(\cdot)}(\Omega,\Lambda).$

- Por the space W^{s,p(·)}(Ω, Λ) density is provided if p(x) is log-Holder continuous.
- Onstruction of fractal barriers is similar to Balci, Diening, Surnachev [CalcVar2021].

Function *u*

Lavrentiev Phenomenon and Density

Balci and Surnachev [CalcVar2024]:

For generalized Sobolev-Orlicz spaces of differential forms W^{d,φ(·)}(Ω; Λ^k) we construct the examples on Lavrentiev gap and obtain nondensity result using fractals

 $H^{d,p(\cdot)}(\Omega,\Lambda) \neq W^{d,p(\cdot)}(\Omega,\Lambda).$

- Por the space W^{s,p(·)}(Ω, Λ) density is provided if p(x) is log-Holder continuous.
- Onstruction of fractal barriers is similar to Balci, Diening, Surnachev [CalcVar2021].

Function u and exponent p

Dirichlet problem for Hodge Laplacian in Variable exponent spaces

Theorem [Balci, Sil, Surnachev]

Let $\eta \in W^{s,p(\cdot)}(M,\Lambda)$, $\varphi \in W^{s+2,p(\cdot)}(M,\Lambda)$, and $\psi \in W^{s+1,p(\cdot)}(M,\Lambda)$. Let $(\eta, h_T) = [\psi, h_T]$ for all $h_T \in \mathcal{H}_T(M)$. Then there exists a solution $\omega \in W^{s+2,p(\cdot)}(M,\Lambda)$ of the boundary value problem

$$riangle \omega = \eta, \quad t\omega = t\varphi, \quad t\delta\omega = t\psi,$$

such that

۱٨

$$\|\omega\|_{W^{s+2,p(\cdot)}(M,\Lambda)} \le C(\|\eta\|_{W^{s,p(\cdot)}(M,\Lambda)} + \|\varphi\|_{W^{s+2,p(\cdot)}(M,\Lambda)} + \|\psi\|_{W^{s+1,p(\cdot)}(M,\Lambda)})$$

where $C = C(p_{-}, p_{+}, c_{\log}(p), M, s).$

$$[f,g] = \int_{bM} \langle \nu \wedge f,g \rangle d\sigma = \int_{bM} \langle f,\nu \lrcorner g \rangle d\sigma = \int_{bM} f \wedge *g.$$

Hodge decomposition

Let $\omega \in W^{s,p(\cdot)}(M,\Lambda)$. Then there exist $\alpha, \beta \in W^{s+1,p(\cdot)}(M,\Lambda)$ and $h \in \mathcal{H}_{\mathcal{T}}(M)$ such that

$$\begin{split} \omega &= h + d\alpha + \delta\beta, \\ t\alpha &= 0, \quad \delta\alpha = 0, \quad t\beta = 0, \quad d\beta = 0, \\ \|\alpha\|_{W^{s+1,p(\cdot)}(M,\Lambda)}, \|\beta\|_{W^{s+1,p(\cdot)}(M,\Lambda)} \leq C \|\omega\|_{W^{s,p(\cdot)}(M,\Lambda)}. \end{split}$$

Let $\omega \in W^{s,p(\cdot)}(M,\Lambda)$, $s \in \mathbb{N} \cup \{0\}$. Then there exist $\alpha, \beta \in W^{s+1,p(\cdot)}(M,\Lambda)$ and $h \in \mathcal{H}_N(M)$ such that

$$\begin{split} \omega &= h + d\alpha + \delta\beta, \\ n\alpha &= 0, \quad \delta\alpha = 0, \quad n\beta = 0, \quad d\beta = 0, \\ \|\alpha\|_{W^{s+1,p(\cdot)}(M,\Lambda)}, \|\beta\|_{W^{s+1,p(\cdot)}(M,\Lambda)} \leq C \|\omega\|_{W^{s,p(\cdot)}(M,\Lambda)}. \end{split}$$

Hodge decomposition

Let $\omega \in W^{s,p(\cdot)}(M,\Lambda)$. Then there exist $\alpha, \beta \in W^{s+1,p(\cdot)}(M,\Lambda)$ and $h \in \mathcal{H}_T(M)$ such that

$$\begin{split} \omega &= h + d\alpha + \delta\beta, \\ t\alpha &= 0, \quad \delta\alpha = 0, \quad t\beta = 0, \quad d\beta = 0, \\ \|\alpha\|_{W^{s+1,p(\cdot)}(M,\Lambda)}, \|\beta\|_{W^{s+1,p(\cdot)}(M,\Lambda)} \leq C \|\omega\|_{W^{s,p(\cdot)}(M,\Lambda)}. \\ \omega &\in W^{s,p(\cdot)}(M,\Lambda), \ s \in \mathbb{N} \cup \{0\}. \text{ Then there exist } \alpha, \beta \in W^{s+1,p(\cdot)}(M,\Lambda) \end{split}$$

Let $\omega \in W^{s,p(\cdot)}(M,\Lambda)$, $s \in \mathbb{N} \cup \{0\}$. Then there exist $\alpha, \beta \in W^{s+1,p(\cdot)}(M,\Lambda)$ and $h \in \mathcal{H}_N(M)$ such that

$$\begin{split} \omega &= h + d\alpha + \delta\beta, \\ n\alpha &= 0, \quad \delta\alpha = 0, \quad n\beta = 0, \quad d\beta = 0, \\ \|\alpha\|_{W^{s+1,p(\cdot)}(M,\Lambda)}, \|\beta\|_{W^{s+1,p(\cdot)}(M,\Lambda)} \leq C \|\omega\|_{W^{s,p(\cdot)}(M,\Lambda)}. \end{split}$$

Methods

Diening and Růžička first results from 2003 Calderon-Zygmund operators in variable exponent spaces; estimates in half space. Diening, Harjulehto, Hästö, and Růžička 2011, Section 6.3 **Diening and Růžička 2003**, second order estimates for classical Laplacian in variable exponent spaces. Estimates for potentials in p(x) spaces+ Morrey approach We assume that $p: M \rightarrow [p_-, p_+]$

$$|p(x)-p(y)|\leq rac{C}{\lograc{1}{\operatorname{dist}(x,y)+e}}.$$

Methods are classical and contained in the book by Charles B. Morrey

Variable exponent problem with differential forms

$$d^*\left(a(x) |du|^{p(x)-2} du\right) = d^*F \qquad \text{in } \Omega.$$

 $u \in W^{1,1}\left(\Omega; \Lambda^k\right)$ is called a weak solution if $u \in W^{d,p(\cdot)}\left(\Omega; \Lambda^k\right)$ and satisfies

$$\int_{\Omega} \left\langle a\left(x\right) | du |^{(p(x)-2)} du, d\varphi \right\rangle = \int_{\Omega} \left\langle F, d\varphi \right\rangle \qquad \text{for every } \varphi \in W^{d,p(\cdot)}_{\mathcal{T}}\left(\Omega; \Lambda^k\right).$$

Higher intergrability and Hölder continuity

For k = 0 regularity goes back to Acerbi and Mingione.

Balci, Sil, Surnachev 2024

Let $n \geq 2$, $N \geq 1$ and $0 \leq k \leq n-1$ be integers and let $\Omega \subset \mathbb{R}^n$ be open, bounded subset with smooth boundary. Let $p : \Omega \to [\gamma_1, \gamma_2]$ be log-Holder with $1 < \gamma_1 \leq \gamma_2 < \infty$, and we set

$$\lim_{R o 0} \omega\left(R
ight) \log\left(rac{1}{R}
ight) := L_1 < +\infty.$$

Let $u \in W^{d,p(\cdot)}_{\mathsf{loc}}(\Omega; \Lambda^k)$ be a local weak solution to the system. Then

 $\begin{pmatrix} \int_{B_{R/2}} |du|^{p(x)(1+\sigma)} dx \end{pmatrix}^{\frac{1}{1+\sigma}} \leq \\ c \left(\int_{B_{R/2}} |du|^{p(x)} dx + 1 \right) + c \left(1 + \int_{B_{R/2}} |F - \xi|^{\frac{\gamma_1(1+\sigma)}{\gamma_1 - 1}} dx \right)^{\frac{1}{1+\sigma}}.$ Anna Balci Hodge decomposition in variable exponent spaces with applications to regularity

26/28

FEM for curl-p Laplacian

System arising from applied superconductivity [Wan and Laforest 2020, SIAM J. NUMER. ANAL.]

$$\operatorname{curl}(|\operatorname{curl} u|^{p-2}\operatorname{curl} u) = f,$$

 $\operatorname{div}(u) = 0.$

This is the Euler-Lagrange equation for the variational problem

$$\int_{\Omega} \frac{|\operatorname{curl} u|^p}{p} - fu \to \min$$

The corresponding energy space is $W^{1,p}(\text{curl})$ with div u = 0. [Balci, Kaltenbach in progress] Under realistic regularity assumptions we derive optimal error estimates in turms of natural distance. These estimates depend on the existence of an stable interpolation operator of Schöberl type.

FEM for curl-p Laplacian

System arising from applied superconductivity [Wan and Laforest 2020, SIAM J. NUMER. ANAL.]

$$\operatorname{curl}(|\operatorname{curl} u|^{p-2}\operatorname{curl} u) = f,$$

 $\operatorname{div}(u) = 0.$

This is the Euler-Lagrange equation for the variational problem

$$\int_{\Omega} \frac{|\operatorname{curl} u|^p}{p} - fu \to \min$$

The corresponding energy space is $W^{1,p}(\text{curl})$ with div u = 0. [Balci, Kaltenbach in progress] Under realistic regularity assumptions we derive optimal error estimates in turms of natural distance. These estimates depend on the existence of an stable interpolation operator of Schöberl type.

Summary

We study linear and nonlinear problems with differential forms. We obtain

- Generalised spaces with differential forms on smooth manifolds;
- Solvability and estimates for different boundary value problems for Hodge Laplacian in variable exponent spaces; Hodge decomposition;
- Solvability of first-order systems and Gaffney's inequality;
- Oslvability for Hodge-Dirac system and non-elliptic first order systems;
- 6 Higher intergrability and Hölder continuity for the variable exponent p-Laplacian for differential forms;
- 6 FEM for nonlinear problems;

These results obtained together with Swarnendu Sil and Mikhail Surnachev. And work in progress with Alex Kaltenbach.