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ω is a differential form; dω is an exterior derivative ; δω is a co differential.

Hodge Laplacian ∆ω = dδω + δdω = f ,
first order “div-curl” systems dω = f , δω = g ,
Hodge-Dirac system D = d + αδ, α ∈ R \ {0},
“Bogovskii” type problems df = 0.

Goals: solvability and regularity theory in spaces with variable exponent Lp(x)(ΛM).
M is a compact n-dimential Riemanninan manifold with the boundary bM.

Goals for nonlinear problems:
1 Nonlinear problems with p(x)-Laplacian δ(|dω|p(x)−2du) = δF .
2 Finite element approximation for nonlinear problems with forms (curl-p-Laplacian).
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M a compact n-dimential Riemanninan manifold with the boundary bM.
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e1

e2e3

Differential geometry

Function spaces p(x) Regularity

Problems
1 for non-standard spaces one has

to develop theory from scratch;
2 no elliptic estimtes avaliable;
3 work on nonorientable manifold.

Regularity theory
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W`e´d`g´e ¯p˚r`oˆd˚u`cˇt

~u

~v

~u ∧ ~v

u ∧ v = −v ∧ u,
u ∧ u = 0.
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~v
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To define the differential forms and operations on them we need a lot of exterior algebra.

Naive definition

n = 1: the form is the object ω = f (x)dx in the integral
∫ b
a f (x)dx over the interval

[a, b].
n ≥ 1 – the dim of the space and we also need to consider 0 ≤ k ≤ n – the dim of the
path (oriented surface or manifold) we integrate over.
k = 0: scalar functions.
k = 1: integrate over oriented 1d-oriented curve in Rn. Could be described as vector
fields .
k = 2: integrate over oriented 2d-surface in Rn.
k-form is an oriented density that can be integrated over an k-dimensional oriented
manifold.

Anna Balci Hodge decomposition in variable exponent spaces with applications to regularity 5/28
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Scalar functions Differential forms
(f , g)→ fg ω ∧ η = (−1)k`ηω
d(fg) = (df )g + f (dg) d(ω ∧ η) = (dω) ∧ η + (−1)kω ∧ (dη).

d(dω) = 0 The operation ω → dω

Order of ω dω = "usual operator"
k = 0 f → ∇f
k = 1 f → curl f
k = 2 f → div f

Anna Balci Hodge decomposition in variable exponent spaces with applications to regularity 6/28

Operations with differential forms
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We work on sufficiently not necessary orientable smooth Riemanninan manifold.
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T‚h`e B`o“y S̊u˚r˜f´a`c´e,
at Oberwolfach

Even and odd forms
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We work on sufficiently not necessary orientable smooth Riemanninan manifold.
So we need to consider even and odd forms. Let x = x(y) coordinate change and J = ∂x

∂y .
We have before change of coordinates:∑

K

ωK (x)dxK

after ∑
I

ω′I (y)dy I

even ω′I (y) =
∑

ωk(x(y))
∂xk

∂y I
.
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On the orientable manifold all forms are odd: J
|J| = Id .
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T‚h`e B`o“y S̊u˚r˜f´a`c´e,
at Oberwolfach

Even and odd forms
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Following approach of De Rham: work with the totality ΩM of differential forms of all
degrees 0, . . . , dimM and parities (odd/even).
On an n-dimensional manifold each element of ΩM can be decomposed into 2(n + 1)
homogeneous forms:

f =
n∑

r=0

f re +
n∑

r=0

f ro , deg f ke , f
k
o = k , k = 0, . . . , n

the forms f ke even and f ko are odd.

Example

ω = 1 + xdy + zdxdy .

Anna Balci Hodge decomposition in variable exponent spaces with applications to regularity 8/28

Bundle of differential forms
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Bundle of differential forms
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We set

〈f , g〉 =
n∑

r=0

〈f re , g r
e 〉+

n∑
r=0

〈εf ro , εg r
o〉,

where ε is an odd form of degree zero with values ±1 in any coordinate system
(“orientation”). On r -forms the scalar product 〈·, ·〉 is defined in the standard way:

(ω, η) =
∑
I

ωIη
I =

∑
IK

G IKωIηK

where the summation is over ordered sets I ,K ∈ I(r), ηI = g i1j1 . . . g ir jr ηj1...jr with the
summation over all r -tuples (j1, . . . , jr ), and G IK is the determinant of the matrix at the
intersection of rows I and columns K of the matrix {g ij}. We denote |ω| =

√
〈ω, ω〉.

Anna Balci Hodge decomposition in variable exponent spaces with applications to regularity 9/28

Properties of bundle
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For k-forms f and g of the same parity we denote

(f , g) =

∫
M

〈f , g〉 dV =

∫
M

f ∧ ∗g .

ω ∈ L1
loc(M,Λ) has differential dω = f ∈ L1

loc(M,Λ) if for any ϕ ∈ C 1
o (M,Λ)

(ω, δϕ)M = (f , ϕ)M .

ω ∈ L1
loc(M,Λ) has codifferential δω = f ∈ L1

loc(M,Λ) if for any ϕ ∈ C 1
o (M,Λ)

(ω, dϕ) = (f , ϕ).

Anna Balci Hodge decomposition in variable exponent spaces with applications to regularity 10/28

Generalized differential and codifferential
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Generalized differential and codifferential



������� �� �����������

An admissible boundary coordinate system on a manifold M with boundary bM of
class C s,µ is a coordinate system of class C s,µ: interior points of boundary coordinate
neighbourhood are mapped into xn > 0, image of bM belongs to xn = 0, and metric is

ds2 =

p−1∑
γ,δ=1

gγ,δ(x
′
n, 0)dxγdxδ + (dxn)2 on σ.

Boundary values and the normal and tangent components are defined via admissible
boundary coordinate system.
Normal in admissible coordinate system

ν = −dxn.

Anna Balci Hodge decomposition in variable exponent spaces with applications to regularity 11/28

Admissible coordinate system
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Components in admissible coordinate system

ω =
∑
n 6∈I

ωIdx
I +
∑
n∈I

ωIdx
I

ωI

{
n 6∈ I → tangential part;
n ∈ I → normal part.

,

On the boundary form decompose

ω = tω + nω.

tω = 0⇔ ν ∧ ω = 0,
nω = 0⇔ νyω = 0.

Anna Balci Hodge decomposition in variable exponent spaces with applications to regularity 12/28

Normal and tangential part
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Normal and tangential part
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Let M be of the class C s+2,1, s ∈ {0} ∪ N, and let n = dimM.
Introduce the spaces of even and odd harmonic fields (i.e. W 1,2(M,Λ) forms with zero
differential and codifferential) of degree r with vanishing tangential part on the boundary
HT (M,Λr

∗), ∗ ∈ {e, o}, the spaces of even and odd harmonic forms of degree r with
vanishing normal part on the boundary HN(M,Λr

∗), ∗ ∈ {e, o}. Then let

HT (M,Λ∗) =
dimM⊕
r=0

HT (M,Λr
∗), ∗ ∈ {e, o},

HN(M,Λ∗) =
dimM⊕
r=0

HN(M,Λr
∗), ∗ ∈ {e, o},

HT (M) = HT (M,Λe)
⊕
HT (M,Λo),

HN(M) = HN(M,Λe)
⊕
HN(M,Λo).

Anna Balci Hodge decomposition in variable exponent spaces with applications to regularity 13/28

Harmonic fields
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The dimensions of kernels satisfy:

dimHT (Λr ) = Bn−r , dimHN(Λr ) = Br ,

where Br is the r -th Betti number of M (rank of the r -th homology group of M), the
number B0 represents the number of connected components of M, Bn = 0, and if M is
contractible then Br = 0 for r = 1, . . . , n − 1.

Anna Balci Hodge decomposition in variable exponent spaces with applications to regularity 14/28

Connection to the geometry
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Betti number of M ( number is the number of r -dimensional holes)

Picture from Wikipedia Nuclear pasta
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Nuclear pasta
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∆u = f .

1 tω = tϕ, nω = nψ;
2 tω = tϕ, tδω = tψ;
3 nω = nϕ, ndω = nψ;
4 tδω = tϕ, ndω = nψ;

Hodge Laplacian with these boundary condition is formally symmetric.

(∆ω, η) = (ω,∆η)

if both ω, η satisfies homogeneous boundary conditions.

Anna Balci Hodge decomposition in variable exponent spaces with applications to regularity 16/28

4 classical BVP for the Hodge Laplacian
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4 classical BVP for the Hodge Laplacian
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1
2

(dω, dω) +
1
2

(δω, δω)− (ϕ, dω)− (ψ, δω)− (η, ω)→ min over X ,

η ∈ L2, ϕ,ψ ∈W 1,2.
• X = W 1,2

0 (M,Λ), ω ∈W 2,2(M,Λ) and satisfies

4ω = η + δϕ+ dψ a.e. in M, tω = 0, nω = 0.

• X = H⊥T ∩W 1,2
T (M,Λ), ω ∈W 2,2(M,Λ) and satisfies

4ω = η + δϕ+ dψ a.e. in M, tω = 0, tδω = tψ.

• X = H⊥N ∩W 1,2
N (M,Λ), ω ∈W 2,2(M,Λ) and satisfies

4ω = η + δϕ+ dψ a.e. in M, nω = 0, ndω = nϕ.

• X = (H ∩ L2(M,Λ))⊥ ∩W 1,2(M,Λ), ω inW 2,2(M,Λ) and satisfies

4ω = η + δϕ+ dψ a.e. in M, tδω = tψ, ndω = nϕ.

Anna Balci Hodge decomposition in variable exponent spaces with applications to regularity 17/28

Variational problems
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Linear theory: Hodge, De Rham, Kodaira, Duff, Spencer; Morrey later extended by
R. Kress, Schwarz, Bolik, Mitrea(s)

Nonlinear theory : Uhlenbeck; Hamburger

Sobolev spaces of differential forms
Nonlinear Hodge Theory : Iwaniec, Scott, Strofollini ’99

Modern development : Csató, Dacorogna, Kneuss

Partial regularity: Beck and Stroffolini ’13

Variational method for p: Sil ’16,’19,’21

Calderon-Zygmund estimates : Lee, Ok, Pyo ’24

Generalized Sobolev-Orlicz spaces
Lavrentiev gap: Balci, Surnachev ’24
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History
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loc , dω = f ∈ L1

loc and tω = 0 if

(ω, δϕ) = (f , ϕ) ∀ϕ ∈ C 1.

‖ω‖Lp(·)(M,Λ) = inf{λ > 0 : ‖(|ω|λ−1)p(·)‖L1(M) <∞}, ∗ ∈ {e, o}.

Let M be at least C s,1, s ∈ N and (Uα, ϕα) be a finite atlas of M. On ϕα(Uα) ⊂ Rn we
denote pα(·) = p(ϕ−1

α (·)).
We assume that p has the logarithmic modulus of continuity:

|p(x)− p(y)| ≤ L

log
(
e + (dist (x , y))−1

) , x , y ∈ M Zhikov ’90s

In each coordinate system components belong to W s,pα(·)(ϕα(Uα)). The norm could be
expressed in terms of covariant derivatives:

s∑
l=0

‖ |∇lωe | ‖Lp(·)(M,Λ) +
s∑

l=0

‖ |∇l(εωo)| ‖Lp(·)(M,Λ).
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We denote

W d ,q(M,Λ) = {ω ∈ Lq(M,Λ) : dω ∈ Lq(M,Λ)},

W d ,q
T (M,Λ) = {ω ∈ Lq(M,Λ) : dω ∈ Lq(M,Λ) and tω = 0},

W δ,q(M,Λ) = {ω ∈ Lq(M,Λ) : δω ∈ Lq(M,Λ)},

W δ,q
N (M,Λ) = {ω ∈ Lq(M,Λ) : δω ∈ Lq(M,Λ) and nω = 0}.

tω = 0 nω = 0

here is understood in the sense

(ω, dϕ) = (dω, ϕ)

for all ϕ ∈ C 1(M).
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Balci and Surnachev [CalcVar2024]:
1 For generalized Sobolev-Orlicz spaces

of differential forms W d ,ϕ(·)(Ω; Λk) we
construct the examples on Lavrentiev
gap and obtain nondensity result using
fractals

Hd ,p(·)(Ω,Λ) 6= W d ,p(·)(Ω,Λ).

2 For the space W s,p(·)(Ω,Λ) density is
provided if p(x) is log-Holder
continuous.

3 Construction of fractal barriers is
similar to Balci, Diening, Surnachev
[CalcVar2021].

Function u

Function u and exponent p

1
2

−1
2

000

Lavrentiev Phenomenon and Density
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Theorem [Balci, Sil, Surnachev]

Let η ∈W s,p(·)(M,Λ), ϕ ∈W s+2,p(·)(M,Λ), and ψ ∈W s+1,p(·)(M,Λ). Let
(η, hT ) = [ψ, hT ] for all hT ∈ HT (M). Then there exists a solution ω ∈W s+2,p(·)(M,Λ)
of the boundary value problem

4ω = η, tω = tϕ, tδω = tψ,

such that

‖ω‖W s+2,p(·)(M,Λ) ≤ C (‖η‖W s,p(·)(M,Λ) + ‖ϕ‖W s+2,p(·)(M,Λ) + ‖ψ‖W s+1,p(·)(M,Λ))

where C = C (p−, p+, clog(p),M, s).

[f , g ] =

∫
bM
〈ν ∧ f , g〉dσ =

∫
bM
〈f , νyg〉dσ =

∫
bM

f ∧ ∗g .
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Dirichlet problem for Hodge Laplacian in Variable
exponent spaces
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Let ω ∈W s,p(·)(M,Λ). Then there exist α, β ∈W s+1,p(·)(M,Λ) and h ∈ HT (M) such
that

ω = h + dα + δβ,

tα = 0, δα = 0, tβ = 0, dβ = 0,
‖α‖W s+1,p(·)(M,Λ), ‖β‖W s+1,p(·)(M,Λ) ≤ C‖ω‖W s,p(·)(M,Λ).

Let ω ∈W s,p(·)(M,Λ), s ∈ N ∪ {0}. Then there exist α, β ∈W s+1,p(·)(M,Λ) and
h ∈ HN(M) such that

ω = h + dα + δβ,

nα = 0, δα = 0, nβ = 0, dβ = 0,
‖α‖W s+1,p(·)(M,Λ), ‖β‖W s+1,p(·)(M,Λ) ≤ C‖ω‖W s,p(·)(M,Λ).
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Hodge decomposition
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Hodge decomposition
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Diening and Růžička first results from 2003 Calderon-Zygmund operators in variable
exponent spaces; estimates in half space.
Diening, Harjulehto, Hästö, and Růžička 2011, Section 6.3
Diening and Růžička 2003, second order estimates for classical Laplacian in variable
exponent spaces. Estimates for potentials in p(x) spaces+ Morrey approach
We assume that p : M → [p−, p+]

|p(x)− p(y)| ≤ C

log 1
dist(x ,y)+e

.

Methods are classical and contained in the book by
Charles B. Morrey
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d∗
(
a (x) |du|p(x)−2 du

)
= d∗F in Ω.

u ∈W 1,1 (Ω;Λk
)
is called a weak solution if u ∈W d ,p(·) (Ω;Λk

)
and satisfies

∫
Ω

〈
a (x) |du|(p(x)−2) du, dϕ

〉
=

∫
Ω
〈F , dϕ〉 for every ϕ ∈W

d ,p(·)
T

(
Ω;Λk

)
.
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Variable exponent problem with differential forms
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For k = 0 regularity goes back to Acerbi and Mingione.

Balci, Sil, Surnachev 2024
Let n ≥ 2, N ≥ 1 and 0 ≤ k ≤ n − 1 be integers and let Ω ⊂ Rn be open, bounded
subset with smooth boundary. Let p : Ω→ [γ1, γ2] be log-Holder with 1 < γ1 ≤ γ2 <∞,
and we set

lim
R→0

ω (R) log

(
1
R

)
:= L1 < +∞.

Let u ∈W
d ,p(·)
loc

(
Ω;Λk

)
be a local weak solution to the system. Then(∫

BR/2

|du|p(x)(1+σ) dx

) 1
1+σ

≤

c

(∫
BR

|du|p(x) dx + 1
)

+ c

(
1 +

∫
BR

|F − ξ|
γ1(1+σ)
γ1−1 dx

) 1
1+σ

.
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Higher intergrability and Hölder continuity
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System arising from applied superconductivity [Wan and Laforest 2020, SIAM J. NUMER.
ANAL.]

curl(|curl u|p−2 curl u) = f ,

div(u) = 0.

This is the Euler-Lagrange equation for the variational problem∫
Ω

|curl u|p

p
− fu → min

The corresponding energy space is W 1,p(curl) with div u = 0.
[Balci, Kaltenbach in progress] Under realistic regularity assumptions we derive optimal
error estimates in turms of natural distance. These estimates depend on the existence of
an stable interpolation operator of Schöberl type.
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FEM for curl-p Laplacian
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We study linear and nonlinear problems with differential forms.
We obtain

1 Generalised spaces with differential forms on smooth manifolds;
2 Solvability and estimates for different boundary valiue problems for Hodge Laplacian

in variable exponenet spaces; Hodge decomposition;
3 Solvability of first-order systems and Gaffney’s inequality;
4 Solvability for Hodge-Dirac system and non-elliptic first order systems;
5 Higher intergrability and Hölder continuity for the variable exponent p-Laplacian for

differential forms;
6 FEM for nonlinear problems;

These results obtained together with Swarnendu Sil and Mikhail Surnachev. And work in
progress with Alex Kaltenbach.
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Summary


