Sharp Interface Limit of a Navier-Stokes/Allen-Cahn System with Vanishing Mobility

Helmut Abels (U Regensburg)

based joint work with: Julian Fischer and Maximilian Moser (ISTA Klosterneuburg)

J. Fischer and M. Moser recieved funding from ERC grant 948819

September 23, 2024

H. Abels (U Regensburg)	

1 Sharp Interface Limit for a Navier-Stokes/Allen-Cahn System

2 Relative Entropy Method for $m_{\varepsilon} = m_0 \varepsilon^k$, $k \in (0,2)$

1 Sharp Interface Limit for a Navier-Stokes/Allen-Cahn System

2 Relative Entropy Method for $m_{\varepsilon} = m_0 \varepsilon^k$, $k \in (0,2)$

Diffuse Interface Models for Two-Phase Flows of Incompressible Fluids We assume $\rho \equiv const.$ and consider

$$\rho(\partial_t \boldsymbol{v}_{\varepsilon} + \boldsymbol{v}_{\varepsilon} \cdot \nabla \boldsymbol{v}_{\varepsilon}) - \operatorname{div}(2\nu(c_{\varepsilon})D\boldsymbol{v}_{\varepsilon}) + \nabla p_{\varepsilon} = -\varepsilon \operatorname{div}(\nabla c_{\varepsilon} \otimes \nabla c_{\varepsilon})$$
(NSt1)
$$\operatorname{div} \boldsymbol{v}_{\varepsilon} = 0$$
(NSt2)

coupled with an Allen-Cahn equation

$$\partial_t c_{\varepsilon} + \mathbf{v}_{\varepsilon} \cdot \nabla c_{\varepsilon} = -\frac{m_{\varepsilon}}{\varepsilon} \underbrace{(-\varepsilon \Delta c_{\varepsilon} + \frac{1}{\varepsilon} f'(c_{\varepsilon}))}_{=DE_{\varepsilon}(c_{\varepsilon}) = :\mu_{\varepsilon}}, \tag{AC}$$

cf. e.g. Jiang, Li & Liu '17 together with suitable boundary and initial conditions, where $f : \mathbb{R} \to \mathbb{R}$ is a suitable double well potential and $m_{\varepsilon} > 0$.

Diffuse Interface Models for Two-Phase Flows of Incompressible Fluids We assume $\rho \equiv const.$ and consider

$$\rho(\partial_t \boldsymbol{v}_{\varepsilon} + \boldsymbol{v}_{\varepsilon} \cdot \nabla \boldsymbol{v}_{\varepsilon}) - \operatorname{div}(2\nu(c_{\varepsilon})D\boldsymbol{v}_{\varepsilon}) + \nabla p_{\varepsilon} = -\varepsilon \operatorname{div}(\nabla c_{\varepsilon} \otimes \nabla c_{\varepsilon})$$
(NSt1)
$$\operatorname{div} \boldsymbol{v}_{\varepsilon} = 0$$
(NSt2)

coupled with an Allen-Cahn equation

$$\partial_t c_{\varepsilon} + \mathbf{v}_{\varepsilon} \cdot \nabla c_{\varepsilon} = -\frac{m_{\varepsilon}}{\varepsilon} \underbrace{\left(-\varepsilon \Delta c_{\varepsilon} + \frac{1}{\varepsilon} f'(c_{\varepsilon})\right)}_{=DE_{\varepsilon}(c_{\varepsilon}) = :\mu_{\varepsilon}}, \tag{AC}$$

cf. e.g. Jiang, Li & Liu '17 together with suitable boundary and initial conditions, where $f : \mathbb{R} \to \mathbb{R}$ is a suitable double well potential and $m_{\varepsilon} > 0$.

Diffuse Interface Models for Two-Phase Flows of Incompressible Fluids We assume $\rho \equiv const.$ and consider

$$\rho(\partial_t \boldsymbol{v}_{\varepsilon} + \boldsymbol{v}_{\varepsilon} \cdot \nabla \boldsymbol{v}_{\varepsilon}) - \operatorname{div}(2\nu(c_{\varepsilon})D\boldsymbol{v}_{\varepsilon}) + \nabla p_{\varepsilon} = -\varepsilon \operatorname{div}(\nabla c_{\varepsilon} \otimes \nabla c_{\varepsilon})$$
(NSt1)
div $\boldsymbol{v}_{\varepsilon} = 0$ (NSt2)

coupled with an Allen-Cahn equation

$$\partial_t c_{\varepsilon} + \mathbf{v}_{\varepsilon} \cdot \nabla c_{\varepsilon} = -\frac{m_{\varepsilon}}{\varepsilon} \underbrace{(-\varepsilon \Delta c_{\varepsilon} + \frac{1}{\varepsilon} f'(c_{\varepsilon}))}_{=DE_{\varepsilon}(c_{\varepsilon}) =: \mu_{\varepsilon}}, \tag{AC}$$

cf. e.g. Jiang, Li & Liu '17 together with suitable boundary and initial conditions Energy dissipation: For smooth solutions one has

$$\begin{split} \frac{d}{dt} E(c_{\varepsilon}(t), \mathbf{v}_{\varepsilon}(t)) &= -\int_{\Omega} \nu(c_{\varepsilon}) |D\mathbf{v}_{\varepsilon}|^{2} dx - \int_{\Omega} \frac{m_{\varepsilon}}{\varepsilon} |\mu_{\varepsilon}|^{2} dx \quad \text{with} \\ E(c_{\varepsilon}(t), \mathbf{v}_{\varepsilon}(t)) &= E_{\varepsilon}(c_{\varepsilon}(t)) + \int_{\Omega} \rho \frac{|\mathbf{v}_{\varepsilon}(x, t)|^{2}}{2} dx, \\ E_{\varepsilon}(c_{\varepsilon}(t)) &= \frac{\varepsilon}{2} \int_{\Omega} |\nabla c_{\varepsilon}(x, t)|^{2} dx + \frac{1}{\varepsilon} \int_{\Omega} f(c_{\varepsilon}(x, t)) dx \end{split}$$

Formal Asymptotics for Navier-Stokes/Allen-Cahn system Bulk equations: In $\Omega^{\pm}(t)$ we have

$$\rho \partial_t \boldsymbol{v} + \rho \boldsymbol{v} \cdot \nabla \boldsymbol{v} - \operatorname{div}(2\nu^{\pm} D \boldsymbol{v}) + \nabla p = 0$$

div $\boldsymbol{v} = 0$

Interface equations: Case I: $m_{\varepsilon} = \varepsilon m_0$: On Γ_t we have

$$-\left[\boldsymbol{n}_{\Gamma_{t}}\cdot(2\nu^{\pm}D\boldsymbol{v}-\boldsymbol{p}\mathbf{I})\right]=\sigma H\boldsymbol{n}_{\Gamma_{t}}$$
$$V_{\Gamma_{t}}=\boldsymbol{n}_{\Gamma_{t}}\cdot\boldsymbol{v}|_{\Gamma_{t}}$$

where $[u](x) = \lim_{\varepsilon \to 0+} (u(x + \varepsilon \boldsymbol{n}_{\Gamma_t}) - u(x - \varepsilon \boldsymbol{n}_{\Gamma_t})).$

Formal Asymptotics for Navier-Stokes/Allen-Cahn system Bulk equations: In $\Omega^{\pm}(t)$ we have

$$\rho \partial_t \boldsymbol{v} + \rho \boldsymbol{v} \cdot \nabla \boldsymbol{v} - \operatorname{div}(2\nu^{\pm} D \boldsymbol{v}) + \nabla p = 0$$

div $\boldsymbol{v} = 0$

Interface equations: Case I: $m_{\varepsilon} = \varepsilon m_0$: On Γ_t we have

$$-\left[\boldsymbol{n}_{\Gamma_{t}}\cdot(2\nu^{\pm}D\boldsymbol{v}-\boldsymbol{p}\mathbf{I})\right]=\sigma H\boldsymbol{n}_{\Gamma_{t}}$$
$$V_{\Gamma_{t}}=\boldsymbol{n}_{\Gamma_{t}}\cdot\boldsymbol{v}|_{\Gamma_{t}}$$

where $[u](x) = \lim_{\varepsilon \to 0+} (u(x + \varepsilon \boldsymbol{n}_{\Gamma_t}) - u(x - \varepsilon \boldsymbol{n}_{\Gamma_t})).$

Case II: $m_{\varepsilon} = m_0 > 0$: On Γ_t we have

$$-\left[\boldsymbol{n}_{\Gamma_{t}}\cdot(2\nu^{\pm}D\boldsymbol{v}-\boldsymbol{\rho}\mathbf{I})\right]=\sigma H_{\Gamma_{t}}\boldsymbol{n}_{\Gamma_{t}}$$
$$V_{\Gamma_{t}}=\boldsymbol{n}_{\Gamma_{t}}\cdot\boldsymbol{v}|_{\Gamma_{t}}+\boldsymbol{m}_{0}H_{\Gamma_{t}}$$

cf. A. '22 together with A., Garcke, Grün '12. Here $\sigma = \int_{-1}^{1} \sqrt{2f(s)} ds$.

Overview of Rigorous Analytic Results $(m_{\varepsilon} = m_0 \varepsilon^k)$

Asymptotic Expansion Method (De Mottoni, Schatzman '89 for Allen-Cahn equation):

- A. & Y. Liu '18: Convergence for small times with convergence rates in T² for Stokes/Allen-Cahn system with same viscosities and k = 0.
- A. & Fei '22: Extension to Navier-Stokes/Allen-Cahn system with variable viscosities and k = 0, d = 2.
- A., Fei, Moser '23: Convergence for Navier-Stokes/Allen-Cahn system with variable viscosities and k = ¹/₂, d = 2.

Overview of Rigorous Analytic Results $(m_{\varepsilon} = m_0 \varepsilon^k)$

Asymptotic Expansion Method (De Mottoni, Schatzman '89 for Allen-Cahn equation):

- A. & Y. Liu '18: Convergence for small times with convergence rates in T² for Stokes/Allen-Cahn system with same viscosities and k = 0.
- A. & Fei '22: Extension to Navier-Stokes/Allen-Cahn system with variable viscosities and k = 0, d = 2.
- A., Fei, Moser '23: Convergence for Navier-Stokes/Allen-Cahn system with variable viscosities and k = ¹/₂, d = 2.

Relative Entropy Method (Fischer, Laux, Simon '20 for Allen-Cahn eq.):

- S. Hensel & Y. Liu '22: Convergence in Ω ⊆ ℝ^d, d = 2,3, for Navier-Stokes/Allen-Cahn system with same viscosities and k = 0 using a relative entropy method.
- A., Fischer, Moser '23: Convergence for Navier-Stokes/Allen-Cahn system with constant viscosities and k ∈ (0,2), d = 2,3 using a relative entropy method.

Remark: There is a counterexample for convergence if $m_{\varepsilon} = o(\varepsilon^2)$ with inflow boundary condition. (A. '22 together with A. & Lengeler '14)

Preliminaries: Signed Distance Function

Moreover, let

$$d_{\Gamma_t}(x) = egin{cases} {\mathsf{dist}}(x,\Gamma_t) & ext{ if } x\in\overline{\Omega^+(t)} \ -\operatorname{\mathsf{dist}}(x,\Gamma_t) & ext{ if } x\in\Omega\setminus\overline{\Omega^+(t)}=:\Omega^-(t) \end{cases}$$

be the signed distance function to Γ_t .

Remark: If Γ_t is at least C^2 , there is some $\delta > 0$ such that d_{Γ_t} is as smooth as Γ_t on

$$\Gamma_t(\delta) := \{ x \in \mathbb{R}^d : \mathsf{dist}(x, \Gamma_t) < \delta \}.$$

Preliminaries: Signed Distance Function

Moreover, let

$$d_{\Gamma_t}(x) = egin{cases} {\mathsf{dist}}(x, \Gamma_t) & ext{ if } x \in \overline{\Omega^+(t)} \ -\operatorname{\mathsf{dist}}(x, \Gamma_t) & ext{ if } x \in \Omega \setminus \overline{\Omega^+(t)} =: \Omega^-(t) \end{cases}$$

be the signed distance function to Γ_t .

Remark: If Γ_t is at least C^2 , there is some $\delta > 0$ such that d_{Γ_t} is as smooth as Γ_t on

$$\Gamma_t(\delta) := \{ x \in \mathbb{R}^d : \operatorname{dist}(x, \Gamma_t) < \delta \}.$$

Important properties:

$$\partial_t d_{\Gamma_t} = -V_{\Gamma_t}, \quad \nabla d_{\Gamma_t} = \boldsymbol{n}_{\Gamma_t}, \quad \Delta d_{\Gamma_t} = -H_{\Gamma_t} \quad \text{on } \Gamma_t,$$

where V_{Γ_t} is the normal velocity, H_{Γ_t} is the mean curvature, \mathbf{n}_{Γ_t} is a normal. Finally, let $P_{\Gamma_t} : \Gamma_t(\delta) \to \Gamma_t$ be the orthogonal projection onto Γ_t .

D Sharp Interface Limit for a Navier-Stokes/Allen-Cahn System

2 Relative Entropy Method for $m_{\varepsilon} = m_0 \varepsilon^k$, $k \in (0,2)$

Sharp Interface Limit for a Navier-Stokes/Allen-Cahn System Let $m_{\varepsilon} = m_0 \varepsilon^k$, $k \in (0, 2)$. We consider the sharp interface limit $\varepsilon \to 0$ for

$$\partial_{t} \boldsymbol{v}_{\varepsilon} + \boldsymbol{v}_{\varepsilon} \cdot \nabla \boldsymbol{v}_{\varepsilon} - \operatorname{div}(2\nu(c_{\varepsilon})D\boldsymbol{v}_{\varepsilon}) + \nabla p_{\varepsilon} = -\varepsilon \operatorname{div}(\nabla c_{\varepsilon} \otimes \nabla c_{\varepsilon}), \qquad (\mathsf{NSAC1})$$
$$\operatorname{div} \boldsymbol{v}_{\varepsilon} = 0, \qquad (\mathsf{NSAC2})$$

$$\partial_t c_arepsilon + oldsymbol{v}_arepsilon \cdot
abla c_arepsilon = m_arepsilon (\Delta c_arepsilon - rac{1}{arepsilon^2} f'(c_arepsilon)),$$

(NSAC3)

in $\Omega \times [0, T_0]$, which formally converges to

$$\begin{aligned} \partial_t \boldsymbol{v} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} - \nu^{\pm} \Delta \boldsymbol{v} + \nabla p &= 0 & \text{in } \Omega^{\pm}(t), t \in [0, T_0], \\ \text{div } \boldsymbol{v} &= 0 & \text{in } \Omega^{\pm}(t), t \in [0, T_0], \\ - \left[\boldsymbol{n}_{\Gamma(t)} \cdot (2\nu^{\pm} D \boldsymbol{v} - pI) \right] &= \sigma H_{\Gamma(t)} \boldsymbol{n}_{\Gamma(t)} & \text{on } \Gamma(t), t \in [0, T_0], \\ V_{\Gamma(t)} - \boldsymbol{n}_{\Gamma(t)} \cdot \boldsymbol{v}|_{\Gamma(t)} &= 0 & \text{on } \Gamma(t), t \in [0, T_0], \end{aligned}$$

in a bounded, smooth domain $\Omega \subseteq \mathbb{R}^d$, d = 2, 3, together with Dirichlet boundary conditions.

Relative Entropy Method

Idea: construct energy/entropy-like functionals with suitable coercivity properties and error control. Show Gronwall-type estimate

Relative Entropy Method

Idea: construct energy/entropy-like functionals with suitable coercivity properties and error control. Show Gronwall-type estimate

Idea goes back to conservation laws (Dafermos '79, DiPerna '79), recently adapted for curvature driven interface evolution problems by Fischer, Hensel, Laux, Simon. Some results:

- Fischer, Hensel '20: Weak-strong uniqueness for two-phase Navier-Stokes equation with surface tension
- Fischer, Laux, Simon '20: Sharp interface limit for Allen-Cahn equation towards mean curvature flow
- Hensel, Liu '22: Navier-Stokes/Allen Cahn with constant mobility (*k* = 0 above) towards Navier-Stokes/mean curvature flow system

Theorem (A., Fischer, Moser '23)

Let $m_{\varepsilon} := m_0 \varepsilon^k > 0$, where $m_0 > 0$ and $k \in (0,2)$ are fixed, d = 2,3 and

- Let T₀ > 0 be such that the two-phase Navier-Stokes system with surface tension has a smooth solution (v, p, Γ) on [0, T₀].
- 2 Let (v_ε, p_ε, c_ε) be weak solutions to Navier-Stokes/Allen-Cahn on [0, T₀] for ε > 0 small, mobility m_ε and for well-prepared initial data (i.e. entropy functionals small at initial time with certain rate).

Then for $\varepsilon > 0$ small and a.e. $T \in [0, T_0]$ it holds

$$\|(oldsymbol{v}_{arepsilon}-oldsymbol{v})(.,T)\|_{L^{2}(\Omega)}+\|\sigma\chi_{\Omega_{T}^{+}}-\psi_{arepsilon}(.,T)\|_{L^{1}(\Omega)}\leq C\left(rac{arepsilon}{\sqrt{m_{arepsilon}}}+m_{arepsilon}
ight),$$

where $\psi_{\varepsilon} := \psi \circ c_{\varepsilon}$ with $\psi(r) := \int_{-1}^{r} \sqrt{2f(s)} \, ds$.

Remark: In the case k > 2 there is a counter-example for convergence. (A. '22 together with A. & Lengeler '14)

Theorem (A., Fischer, Moser '23)

Let $m_{\varepsilon} := m_0 \varepsilon^k > 0$, where $m_0 > 0$ and $k \in (0, 2)$ are fixed, d = 2, 3 and

- Let T₀ > 0 be such that the two-phase Navier-Stokes system with surface tension has a smooth solution (ν, p, Γ) on [0, T₀].
- 2 Let $(\mathbf{v}_{\varepsilon}, p_{\varepsilon}, c_{\varepsilon})$ be weak solutions to Navier-Stokes/Allen-Cahn on $[0, T_0]$ for $\varepsilon > 0$ small, mobility m_{ε} and for well-prepared initial data (i.e. entropy functionals small at initial time with certain rate).

Then for $\varepsilon > 0$ small and a.e. $T \in [0, T_0]$ it holds

$$\|(\mathbf{v}_{\varepsilon}-\mathbf{v})(.,T)\|_{L^{2}(\Omega)}+\|\sigma\chi_{\Omega_{T}^{+}}-\psi_{\varepsilon}(.,T)\|_{L^{1}(\Omega)}\leq C\left(rac{arepsilon}{\sqrt{m_{arepsilon}}}+m_{arepsilon}
ight),$$

where $\psi_{\varepsilon} := \psi \circ c_{\varepsilon}$ with $\psi(r) := \int_{-1}^{r} \sqrt{2f(s)} \, ds$.

Idea: compare with strong solution ($\mathbf{v}^{m_{\varepsilon}}, p^{m_{\varepsilon}}, \Gamma^{m_{\varepsilon}}$) to a modified two-phase Navier-Stokes system, where interface evolution is replaced by

$$V_{\Gamma_t^{m_{\varepsilon}}} = \boldsymbol{n}_{\Gamma_t^{m_{\varepsilon}}} \cdot \boldsymbol{v}_{m_{\varepsilon}}^{\pm} + m_{\varepsilon} H_{\Gamma_t^{m_{\varepsilon}}} \quad \text{on } \Gamma_t^{m_{\varepsilon}}, t \in [0, T_0].$$

Relative Energy Functionals

- Notation: **n** (by projection extended) normal of $\Gamma^{m_{\varepsilon}}$, $d_{\Gamma^{m_{\varepsilon}}}$ signed distance of $\Gamma^{m_{\varepsilon}}$ and $\Gamma^{m_{\varepsilon}}(\delta)$ tubular neighbourhood, $\delta > 0$ small.
- We define the relative entropy functional as

$$\begin{split} E[\mathbf{v}_{\varepsilon}, c_{\varepsilon} | \mathbf{v}^{m_{\varepsilon}}, \Gamma^{m_{\varepsilon}}](t) &:= \int_{\Omega} \frac{1}{2} | \mathbf{v}_{\varepsilon} - \mathbf{v}^{m_{\varepsilon}} |^{2}(., t) \, dx + E[c_{\varepsilon} | \Gamma^{m_{\varepsilon}}](t), \\ E[c_{\varepsilon} | \Gamma^{m_{\varepsilon}}](t) &:= \int_{\Omega} \frac{\varepsilon}{2} | \nabla c_{\varepsilon} |^{2}(., t) + \frac{1}{\varepsilon} f(c_{\varepsilon}(., t)) - (\xi \cdot \nabla \psi_{\varepsilon})(., t) \, dx, \end{split}$$

where $\xi := \overline{\eta}(\frac{d_{\Gamma}m_{\varepsilon}}{\delta})\boldsymbol{n}$ and $\overline{\eta}$ is a cutoff with quadratic decay and $\psi_{\varepsilon} := \psi \circ c_{\varepsilon}$.

Relative Energy Functionals

- Notation: **n** (by projection extended) normal of $\Gamma^{m_{\varepsilon}}$, $d_{\Gamma^{m_{\varepsilon}}}$ signed distance of $\Gamma^{m_{\varepsilon}}$ and $\Gamma^{m_{\varepsilon}}(\delta)$ tubular neighbourhood, $\delta > 0$ small.
- We define the relative entropy functional as

$$\begin{split} & E[\boldsymbol{v}_{\varepsilon},c_{\varepsilon}|\boldsymbol{v}^{m_{\varepsilon}},\boldsymbol{\Gamma}^{m_{\varepsilon}}](t) := \int_{\Omega} \frac{1}{2}|\boldsymbol{v}_{\varepsilon}-\boldsymbol{v}^{m_{\varepsilon}}|^{2}(.,t)\,dx + E[c_{\varepsilon}|\boldsymbol{\Gamma}^{m_{\varepsilon}}](t),\\ & E[c_{\varepsilon}|\boldsymbol{\Gamma}^{m_{\varepsilon}}](t) := \int_{\Omega} \frac{\varepsilon}{2}|\nabla c_{\varepsilon}|^{2}(.,t) + \frac{1}{\varepsilon}f(c_{\varepsilon}(.,t)) - (\xi\cdot\nabla\psi_{\varepsilon})(.,t)\,dx, \end{split}$$

where $\xi := \overline{\eta}(\frac{d_{\Gamma}m_{\varepsilon}}{\delta})\mathbf{n}$ and $\overline{\eta}$ is a cutoff with quadratic decay and $\psi_{\varepsilon} := \psi \circ c_{\varepsilon}$. • We define the bulk error functional by

$$\mathsf{E}_{\mathsf{bulk}}[c_arepsilon|\Gamma^{m_arepsilon}](t) := \int_\Omega \left(\sigma\chi_{\Omega^{m_arepsilon,+}_t} - \psi_arepsilon(.,t)
ight)artheta(.,t)
ight)artheta,$$

where $\vartheta : \overline{\Omega} \times [0, T_0] \to [0, 1]$ is smooth, proportional to $d_{\Gamma^{m_{\varepsilon}}}$ close to $\Gamma^{m_{\varepsilon}}$ and cut off to ± 1 outside.

Relative Energy Functionals

- Notation: **n** (by projection extended) normal of $\Gamma^{m_{\varepsilon}}$, $d_{\Gamma^{m_{\varepsilon}}}$ signed distance of $\Gamma^{m_{\varepsilon}}$ and $\Gamma^{m_{\varepsilon}}(\delta)$ tubular neighbourhood, $\delta > 0$ small.
- We define the relative entropy functional as

$$\begin{split} & E[\boldsymbol{v}_{\varepsilon},c_{\varepsilon}|\boldsymbol{v}^{m_{\varepsilon}},\boldsymbol{\Gamma}^{m_{\varepsilon}}](t) := \int_{\Omega} \frac{1}{2}|\boldsymbol{v}_{\varepsilon}-\boldsymbol{v}^{m_{\varepsilon}}|^{2}(.,t)\,dx + E[c_{\varepsilon}|\boldsymbol{\Gamma}^{m_{\varepsilon}}](t),\\ & E[c_{\varepsilon}|\boldsymbol{\Gamma}^{m_{\varepsilon}}](t) := \int_{\Omega} \frac{\varepsilon}{2}|\nabla c_{\varepsilon}|^{2}(.,t) + \frac{1}{\varepsilon}f(c_{\varepsilon}(.,t)) - (\xi\cdot\nabla\psi_{\varepsilon})(.,t)\,dx, \end{split}$$

where $\xi := \overline{\eta}(\frac{d_{\Gamma}m_{\varepsilon}}{s})n$ and $\overline{\eta}$ is a cutoff with quadratic decay and $\psi_{\varepsilon} := \psi \circ c_{\varepsilon}$. • We define the bulk error functional by

$$\mathsf{E}_{\mathsf{bulk}}[c_arepsilon|\Gamma^{m_arepsilon}](t) := \int_\Omega \left(\sigma\chi_{\Omega^{m_arepsilon,+}_t} - \psi_arepsilon(.,t)
ight)artheta(.,t)
ight)artheta,$$

where $\vartheta: \overline{\Omega} \times [0, T_0] \to [0, 1]$ is smooth, proportional to $d_{\Gamma m_{\varepsilon}}$ close to $\Gamma^{m_{\varepsilon}}$ and cut off to ± 1 outside

• Goal: Gronwall-type estimate for $E[\mathbf{v}_{\varepsilon}, c_{\varepsilon} | \mathbf{v}^{m_{\varepsilon}}, \Gamma^{m_{\varepsilon}}] + E_{\text{bulk}}[c_{\varepsilon} | \Gamma^{m_{\varepsilon}}]$. Show and use coercivity properties. H. Abels (U Regensburg)

Lemma (cf. Fischer, Laux, Simon '20)

For every $t \in [0, T]$ we have

$$\int_{\Omega} |\boldsymbol{n}_{\varepsilon} - \boldsymbol{\xi}|^{2} (|\nabla\psi_{\varepsilon}| + \varepsilon |\nabla c_{\varepsilon}|^{2}) \, dx \leq CE[c_{\varepsilon}|\Gamma^{m_{\varepsilon}}] \, (tilt\text{-excess type error})$$

$$\int_{\Omega} \left(\sqrt{\varepsilon} |\nabla c_{\varepsilon}| - \frac{1}{\sqrt{\varepsilon}} \sqrt{2f(c_{\varepsilon})}\right)^{2} \, dx \leq 2E[c_{\varepsilon}|\Gamma^{m_{\varepsilon}}] \, (error \text{ in equipartition})$$

$$\int_{\Omega} \min\{d_{\Gamma_{t}}^{2}, 1\} \left(\varepsilon |\nabla c_{\varepsilon}|^{2} + |\nabla\psi_{\varepsilon}|\right) \, dx \leq CE[c_{\varepsilon}|\Gamma^{m_{\varepsilon}}] \, (error \text{ far from interface})$$

$$(3)$$

for some C > 0, where $\mathbf{n}_{\varepsilon} = \frac{\nabla c_{\varepsilon}}{|\nabla c_{\varepsilon}|}$ if $\nabla c_{\varepsilon} \neq 0$.

Lemma (cf. Fischer, Laux, Simon '20)

For every $t \in [0, T]$ we have

$$\int_{\Omega} |\boldsymbol{n}_{\varepsilon} - \boldsymbol{\xi}|^{2} (|\nabla\psi_{\varepsilon}| + \varepsilon |\nabla c_{\varepsilon}|^{2}) \, dx \leq CE[c_{\varepsilon}|\Gamma^{m_{\varepsilon}}] \, (tilt\text{-excess type error})$$

$$\int_{\Omega} \left(\sqrt{\varepsilon} |\nabla c_{\varepsilon}| - \frac{1}{\sqrt{\varepsilon}} \sqrt{2f(c_{\varepsilon})}\right)^{2} \, dx \leq 2E[c_{\varepsilon}|\Gamma^{m_{\varepsilon}}] \, (error \text{ in equipartition})$$

$$\int_{\Omega} \min\{d_{\Gamma_{t}}^{2}, 1\} \left(\varepsilon |\nabla c_{\varepsilon}|^{2} + |\nabla\psi_{\varepsilon}|\right) \, dx \leq CE[c_{\varepsilon}|\Gamma^{m_{\varepsilon}}] \, (error \text{ far from interface})$$

$$(3)$$

for some C > 0, where $\mathbf{n}_{\varepsilon} = \frac{\nabla c_{\varepsilon}}{|\nabla c_{\varepsilon}|}$ if $\nabla c_{\varepsilon} \neq 0$.

Proof.

The starting point is

$$E[c_{\varepsilon}|\Gamma^{m_{\varepsilon}}] = \int_{\Omega} \frac{\varepsilon}{2} |\nabla c_{\varepsilon}|^{2} + \frac{1}{\varepsilon} f(c_{\varepsilon}) - \xi \cdot \nabla \psi_{\varepsilon} \, dx = \int_{\Omega} \frac{1}{2} \left(\sqrt{\varepsilon} |\nabla c_{\varepsilon}| - \frac{1}{\sqrt{\varepsilon}} \sqrt{2f(c_{\varepsilon})} \right)^{2} \, dx + \int_{\Omega} (1 - \mathbf{n}_{\varepsilon} \cdot \boldsymbol{\xi}) |\nabla \psi_{\varepsilon}| \, dx,$$

where $2(1 - \mathbf{n}_{\varepsilon} \cdot \boldsymbol{\xi}) \ge |\mathbf{n}_{\varepsilon} - \boldsymbol{\xi}|^2$ since $|\boldsymbol{\xi}| \le 1$. This implies (2) and half of (1).

Gronwall-Type Estimates

With
$$H_{\varepsilon} := -\varepsilon \Delta c_{\varepsilon} + \frac{1}{\varepsilon} f'(c_{\varepsilon})$$
 we have:

$$E[\mathbf{v}_{\varepsilon}, c_{\varepsilon} | \mathbf{v}^{m_{\varepsilon}}, \Gamma^{m_{\varepsilon}}](T) \leq E[\mathbf{v}_{\varepsilon}, c_{\varepsilon} | \mathbf{v}^{m_{\varepsilon}}, \Gamma^{m_{\varepsilon}}](0) - \int_{0}^{T} \int_{\Omega} |\nabla \mathbf{v}_{\varepsilon} - \nabla \mathbf{v}^{m_{\varepsilon}}|^{2} dx dt$$

$$- \int_{0}^{T} \int_{\Omega} \frac{m_{\varepsilon}}{2\varepsilon} \left| H_{\varepsilon} + \sqrt{2f(c_{\varepsilon})} \nabla \cdot \xi \right|^{2} dx dt - \int_{0}^{T} \int_{\Omega} \frac{m_{\varepsilon}}{2\varepsilon} \left| H_{\varepsilon} - \frac{\mathbf{B} - \mathbf{v}^{m_{\varepsilon}}}{m_{\varepsilon}} \cdot \xi \varepsilon | \nabla c_{\varepsilon} | \right|^{2} dx dt$$

$$- \int_{0}^{T} \int_{\Omega} (\mathbf{v}_{\varepsilon} - \mathbf{v}^{m_{\varepsilon}}) \cdot ((\mathbf{v}_{\varepsilon} - \mathbf{v}^{m_{\varepsilon}}) \cdot \nabla) \mathbf{v}^{m_{\varepsilon}} dx dt$$

$$- \int_{0}^{T} \int_{\Omega} (\partial_{t} + \mathbf{B} \cdot \nabla) |\xi|^{2}) |\nabla \psi_{\varepsilon}| dx dt$$

$$+ \int_{0}^{T} \int_{\Omega} m_{\varepsilon} \left| \frac{\mathbf{B} - \mathbf{v}^{m_{\varepsilon}}}{m_{\varepsilon}} \cdot \xi + \nabla \cdot \xi \right|^{2} \varepsilon |\nabla c_{\varepsilon}|^{2} dx dt$$

$$- \int_{0}^{T} \int_{\Omega} \frac{1}{\sqrt{\varepsilon}} (H_{\varepsilon} + \sqrt{2f(c_{\varepsilon})} \nabla \cdot \xi) (\mathbf{v}^{m_{\varepsilon}} - \mathbf{B}) \cdot (\mathbf{n}_{\varepsilon} - \xi) \sqrt{\varepsilon} |\nabla c_{\varepsilon}| dx dt$$

$$- \int_{0}^{T} \int_{\Omega} \xi \otimes \xi : \nabla \mathbf{B}(\varepsilon | \nabla c_{\varepsilon}|^{2} - | \nabla \psi_{\varepsilon}|) dx dt + ...$$

Choice of Field ${\boldsymbol{\mathsf{B}}}$

B should approximately transport and rotate ξ in the sense that

$$egin{aligned} &|(\partial_t + \mathbf{B} \cdot
abla)|\xi|^2| \leq C \min\{d^2_{\Gamma^{m_{\varepsilon}}}, 1\} & ext{ a.e. in } \Omega imes [0, T], \ &|\partial_t \xi + (\mathbf{B} \cdot
abla)\xi + (
abla B)^\top \xi| \leq C \min\{d_{\Gamma^{m_{\varepsilon}}}, 1\} & ext{ a.e. in } \Omega imes [0, T]. \end{aligned}$$

and such that the following three problematic terms are controlled:

$$\int_{0}^{T} \int_{\Omega} m_{\varepsilon} \left| \frac{\mathbf{B} - \mathbf{v}^{m_{\varepsilon}}}{m_{\varepsilon}} \cdot \xi + \nabla \cdot \xi \right|^{2} \varepsilon |\nabla c_{\varepsilon}|^{2} dx dt$$

$$\int_{0}^{T} \int_{\Omega} \frac{1}{\sqrt{\varepsilon}} \left(H_{\varepsilon} + \sqrt{2f(c_{\varepsilon})} \nabla \cdot \xi \right) (\mathbf{v}^{m_{\varepsilon}} - \mathbf{B}) \cdot (\mathbf{n}_{\varepsilon} - \xi) \sqrt{\varepsilon} |\nabla c_{\varepsilon}| dx dt$$

$$\int_{0}^{T} \int_{\Omega} \xi \otimes \xi : \nabla \mathbf{B}(\varepsilon |\nabla c_{\varepsilon}|^{2} - |\nabla \psi_{\varepsilon}|) dx dt$$

B constant in normal direction cures term 3 but impossible due to term 1.

Choice of Field ${\boldsymbol{\mathsf{B}}}$

B should approximately transport and rotate ξ in the sense that

$$egin{aligned} &|(\partial_t + \mathbf{B} \cdot
abla)|\xi|^2| \leq C \min\{d^2_{\Gamma^{m_{\varepsilon}}}, 1\} & ext{ a.e. in } \Omega imes [0, T], \ &|\partial_t \xi + (\mathbf{B} \cdot
abla)\xi + (
abla B)^\top \xi| \leq C \min\{d_{\Gamma^{m_{\varepsilon}}}, 1\} & ext{ a.e. in } \Omega imes [0, T]. \end{aligned}$$

and such that the following three problematic terms are controlled:

•
$$\int_{0}^{T} \int_{\Omega} m_{\varepsilon} \left| \frac{\mathbf{B} - \mathbf{v}^{m_{\varepsilon}}}{m_{\varepsilon}} \cdot \xi + \nabla \cdot \xi \right|^{2} \varepsilon |\nabla c_{\varepsilon}|^{2} dx dt$$
•
$$\int_{0}^{T} \int_{\Omega} \frac{1}{\sqrt{\varepsilon}} \left(H_{\varepsilon} + \sqrt{2f(c_{\varepsilon})} \nabla \cdot \xi \right) (\mathbf{v}^{m_{\varepsilon}} - \mathbf{B}) \cdot (\mathbf{n}_{\varepsilon} - \xi) \sqrt{\varepsilon} |\nabla c_{\varepsilon}| dx dt$$
•
$$\int_{0}^{T} \int_{\Omega} \xi \otimes \xi : \nabla \mathbf{B}(\varepsilon |\nabla c_{\varepsilon}|^{2} - |\nabla \psi_{\varepsilon}|) dx dt$$
B constant in normal direction cures term 3 but impossible due to term 1.
We choose

$$\mathsf{B} := \mathbf{v}^{m_{\varepsilon}} + m_{\varepsilon}H\mathbf{n} \ ilde{\eta}(rac{d_{\Gamma}m_{\varepsilon}}{\delta}),$$

where H is the (by projection extended) mean curvature of $\Gamma^{m_{\varepsilon}}$ and $\tilde{\eta}$ is a plateau cutoff. Then term 3 remains as last problematic term!

H. Abels (U Regensburg)

The last problematic term

How we estimate $\int_0^T \int_\Omega \xi \otimes \xi : \nabla \mathbf{B}(\varepsilon |\nabla c_\varepsilon|^2 - |\nabla \psi_\varepsilon|) \, dx \, dt$? Idea:

• Write $\xi \otimes \xi : \nabla \mathbf{B} = \partial_n \eta$ (normal derivative),

$$\eta(x,t) := \int_{h_{\varepsilon}(P_{\Gamma}m_{\varepsilon}(x,t),t)}^{d_{\Gamma}m_{\varepsilon}(x,t)} \xi \otimes \xi : \nabla \mathbf{B}|_{(P_{\Gamma}m_{\varepsilon}(x,t)+r\mathbf{n}(P_{\Gamma}m_{\varepsilon}(x,t),t),t)} dr,$$

where $P^{m_{\varepsilon}}$ is projection onto $\Gamma^{m_{\varepsilon}}$ and h_{ε} is some height function.

The last problematic term

How we estimate $\int_0^T \int_\Omega \xi \otimes \xi : \nabla \mathbf{B}(\varepsilon |\nabla c_\varepsilon|^2 - |\nabla \psi_\varepsilon|) \, dx \, dt$? Idea:

• Write $\xi \otimes \xi : \nabla \mathbf{B} = \partial_n \eta$ (normal derivative),

$$\eta(x,t) := \int_{h_{\varepsilon}(P_{\Gamma}m_{\varepsilon}(x,t),t)}^{d_{\Gamma}m_{\varepsilon}(x,t)} \xi \otimes \xi : \nabla \mathbf{B}|_{(P_{\Gamma}m_{\varepsilon}(x,t)+r\mathbf{n}(P_{\Gamma}m_{\varepsilon}(x,t),t),t)} dr,$$

where $P^{m_{\varepsilon}}$ is projection onto $\Gamma^{m_{\varepsilon}}$ and h_{ε} is some height function.

- The height function h_ε(., t) is constructed to be Lipschitz and approximates the boundary of a suitable level set of c_ε(., t).
- With an ODE comparison argument one can control the energy $\varepsilon \frac{|\nabla c_{\varepsilon}|^2}{2} + \frac{f(c_{\varepsilon})}{\varepsilon}$ away from a small strip around the $h_{\varepsilon}(., t)$ -graph.
- Together with integration by parts and coercivity properties of $E[c_{\varepsilon}|\Gamma^{m_{\varepsilon}}](t) + E_{\text{bulk}}[c_{\varepsilon}|\Gamma^{m_{\varepsilon}}](t)$ we can estimate the remaining term

Existence for the Approximate Two-Phase flow

Important: Existence of strong solutions $(\mathbf{v}_m^{\pm}, p_m^{\pm}, \Gamma^m)$ for the modified two-phase flow

$$\partial_{t} \mathbf{v}_{m}^{\pm} + \mathbf{v}_{m}^{\pm} \cdot \nabla \mathbf{v}_{m}^{\pm} - \Delta \mathbf{v}_{m}^{\pm} + \nabla \rho_{m}^{\pm} = 0 \qquad \text{in } \Omega_{t}^{m,\pm}, t \in [0, T_{0}], \qquad (4)$$

$$\quad \text{div } \mathbf{v}_{m}^{\pm} = 0 \qquad \text{in } \Omega_{t}^{m,\pm}, t \in [0, T_{0}], \qquad (5)$$

$$- [\![2D\mathbf{v}_{m}^{\pm} - \rho_{m}^{\pm}\mathbf{I}]\!]\mathbf{n}_{\Gamma_{t}^{m}} = \sigma H_{\Gamma_{t}^{m}} \mathbf{n}_{\Gamma_{t}^{m}} \qquad \text{on } \Gamma_{t}^{m}, t \in [0, T_{0}], \qquad (6)$$

$$[\![\mathbf{v}_{m}^{\pm}]\!] = 0 \qquad \text{on } \Gamma_{t}^{m}, t \in [0, T_{0}], \qquad (7)$$

$$V_{\Gamma_{t}^{m}} - \mathbf{n}_{\Gamma_{t}^{m}} \cdot \mathbf{v}_{m}^{\pm} = m H_{\Gamma_{t}^{m}} \qquad \text{on } \Gamma_{t}^{m}, t \in [0, T_{0}], \qquad (8)$$

$$\mathbf{v}_{m}^{-}|_{\partial\Omega} = 0 \qquad \text{on } \partial\Omega \times (0, T_{0}), \qquad (9)$$

$$\Gamma_{0}^{m} = \Gamma^{0}, \quad \mathbf{v}_{m}^{\pm}|_{t=0} = \mathbf{v}_{0}^{\pm} \qquad \text{in } \Omega_{0}^{\pm}, \qquad (10)$$

for sufficiently small m > 0.

Existence for the Approximate Two-Phase flow

Important: Existence of strong solutions $(\mathbf{v}_m^{\pm}, p_m^{\pm}, \Gamma^m)$ for the modified two-phase flow

for sufficiently small m > 0.

Idea: Look for a solution of (4)-(10) such that $\Gamma_t^m = \Phi_{h_m}(\Gamma_t)$ for all $t \in [0, T_0]$ a sufficiently regular, small $h_m \colon \Gamma \to \mathbb{R}$, where Φ is a Hanzawa transformation with respect to $\Omega^{\pm}(t)$, $t \in [0, T_0]$.

Then $(\mathbf{v}_m^{\pm}, p_m^{\pm}, (\Gamma_t^m)_{t \in [0, T_0]})$ solves (4)-(10) if and only if

$$oldsymbol{w}_m^\pm(x,t) := oldsymbol{v}_m^\pm(\Theta_h(x,t),t), \quad q^\pm(x,t) =
ho_m^\pm(\Theta_h(x,t),t) \quad ext{for } x \in \Omega_t^\pm, t \in [0,T_0]$$

solves a transformed system

$$\partial_{t} \boldsymbol{w}_{m}^{\pm} - \Delta \boldsymbol{w}_{m}^{\pm} + \nabla q_{m}^{\pm} = \mathbf{f}_{m}^{\pm}(h_{m}, \boldsymbol{w}^{\pm}, q^{\pm}) \qquad \text{in } \Omega^{\pm}, \qquad (11)$$

$$\dim \boldsymbol{w}_{m}^{\pm} = g(h_{m})\boldsymbol{v}^{\pm} \qquad \text{in } \Omega^{\pm}, \qquad (12)$$

$$\llbracket \boldsymbol{w}_{m} \rrbracket = 0 \qquad \text{on } \Gamma, \qquad (13)$$

$$\llbracket 2D\boldsymbol{w}_{m}^{\pm} - q^{\pm}\mathbf{I} \rrbracket \boldsymbol{n}_{\Gamma_{t}} = \mathbf{a}(h_{m}, \boldsymbol{w}_{m}, q_{m}) \qquad \text{on } \Gamma, \qquad (14)$$

$$\begin{aligned} u_m^- q - \mathbf{I}_m \mathbf{n}_{\Gamma_t} &= \mathbf{a}(n_m, \mathbf{w}_m, q_m) & \text{on } \mathbf{I}, \\ \mathbf{w}_m^- |_{\partial\Omega} &= 0 & \text{on } \partial\Omega \times (0, T_0), \end{aligned}$$
(14)

$$\partial_t^{\bullet} h_m - \boldsymbol{n}_{\Gamma_t} \cdot \boldsymbol{w}_m = m \Delta_{\Gamma_t} h_m + b(h_m, \boldsymbol{w}_m) \quad \text{on } \Gamma,$$
(16)
$$\boldsymbol{w}|_{t=0} = \boldsymbol{v}_0 \qquad \qquad \text{on } \Omega_0^{\pm},$$
(17)

Theorem

Let q > d + 2. There is some $m_0 > 0$ such that for every $m \in (0, m_0]$ the transformed system (11)-(17) possesses a solution $(\mathbf{v}, p, [\![p]\!], h) \in \mathbb{E}_m(T_0)$, which satisfies

 $\|(\boldsymbol{v}-\boldsymbol{v}_0,p-p_0,\llbracket p-p_0\rrbracket,h)\|_{\mathbb{E}_m(T_0)} \leq Cm$

for some C > 0 independent of $m \in (0, m_0]$.

Here $\mathbb{E}_m(T_0) := \mathbb{E}_1(T_0) \times \mathbb{E}_2(T_0) \times \mathbb{E}_3(T_0) \times \mathbb{E}_{4,m}(T_0)$,

 $\mathbb{E}_{1}(T_{0}) := {}_{0}W_{q}^{1}(0, T_{0}; L^{q}(\Omega))^{d} \cap L^{q}(0, T_{0}; W_{q}^{2}(\Omega \setminus \Gamma_{t}))^{d}, \quad \mathbb{E}_{2}(T_{0}) = \dots, \quad \mathbb{E}_{3}(T_{0}) = \dots,$ $\mathbb{E}_{4,m}(T_{0}) := W_{q}^{2-\frac{1}{2q}}(0, T_{0}; L^{q}(\Gamma_{t})) \cap {}_{0}W_{q}^{1}(0, T_{0}; W_{q}^{2-\frac{1}{q}}(\Gamma_{t})) \cap L^{q}(0, T_{0}; W_{q}^{4-\frac{1}{q}}(\Gamma_{t})),$

Theorem

Let q > d + 2. There is some $m_0 > 0$ such that for every $m \in (0, m_0]$ the transformed system (11)-(17) possesses a solution $(\mathbf{v}, p, [\![p]\!], h) \in \mathbb{E}_m(T_0)$, which satisfies

 $\|(\mathbf{v} - \mathbf{v}_0, p - p_0, \llbracket p - p_0
bracket, h)\|_{\mathbb{E}_m(\mathcal{T}_0)} \leq Cm$

for some C > 0 independent of $m \in (0, m_0]$.

Here $\mathbb{E}_m(T_0) := \mathbb{E}_1(T_0) \times \mathbb{E}_2(T_0) \times \mathbb{E}_3(T_0) \times \mathbb{E}_{4,m}(T_0)$,

 $\mathbb{E}_{1}(T_{0}) := {}_{0}W_{q}^{1}(0, T_{0}; L^{q}(\Omega))^{d} \cap L^{q}(0, T_{0}; W_{q}^{2}(\Omega \setminus \Gamma_{t}))^{d}, \quad \mathbb{E}_{2}(T_{0}) = \dots, \quad \mathbb{E}_{3}(T_{0}) = \dots,$ $\mathbb{E}_{4,m}(T_{0}) := W_{q}^{2-\frac{1}{2q}}(0, T_{0}; L^{q}(\Gamma_{t})) \cap {}_{0}W_{q}^{1}(0, T_{0}; W_{q}^{2-\frac{1}{q}}(\Gamma_{t})) \cap L^{q}(0, T_{0}; W_{q}^{4-\frac{1}{q}}(\Gamma_{t})),$

where the norm of $\mathbb{E}_{4,m}(T_0)$ depends on *m* suitably.

Steps of proof:

- **(**) Show maximal L^{q} -regularity of linearized system uniformly in m > 0.
- 2 Apply contraction mapping principle.

Thank you for your attention!

Main References:

- Abels, H,: "(Non-)Convergence of Solutions of the Convective Allen-Cahn Equation", Partial Differ. Equ. Appl. 3(1), 2022.
- Abels, H., Fei, M., Moser, M.: "Sharp Interface Limit for a Navier-Stokes/Allen-Cahn System in the Case of a Vanishing Mobility", Calc. Var. 63(94), 2024.
- Abels, H., Fischer, J., Moser, M.: "Approximation of Classical Two-Phase Flows of Viscous Incompressible Fluids by a Navier-Stokes/Allen-Cahn System" Arch. Rational Mech. Anal. 248(77), 2024.
- Abels, H., Garcke, H., Grün, G.: "Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities." Math. Models Methods Appl. Sci. 22(3), 2009.