
Diffuse interface model for calamitic fluids

Patrick E. Farrell*†, Umberto Zerbinati*

* Mathematical Institute – University of Oxford, United Kingdom,

† Mathematical Institute – Charles University, Czechia.

Mixtures, Prague, 7th February 2025



DIFFUSE INTERFACE MODEL

A diffuse interface models describe an interface as a rapid but smooth transition between two
phases. They describe quantities typically thought as localised at interface surfaces as
distributed over an interfacial region.

� Liquid-Vapour Mixtures: in this model
the density ρ is the order parameter
distinguishing the bulk of the fluid and the
interface region.

� Binary fluids: in this model the
concentration of a chemical species is the
order parameter distinguishing the two
fluids.
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CALAMITIC FLUIDS

Calamitic fluids are fluids whose molecular constituents are rod-like. Calamitic fluids can be
found in different states of matter. A typical state of matter for calamitic fluids is the liquid
crystal state, subdivided in multiple phases:

� nematic phase: in this phase the
molecules are oriented along a common
direction.

� smectic phase: in this phase the
molecules present a layered structures with
orientational order within layers.
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A KINETIC THEORY APPROACH

� A kinetic theory approach seeks to describe the
evolution of the fluid using a statistical description
and knowledge of the microscopic interactions.

� Typically, this is done by considering only binary
interactions between fluid constituents. This is a
good approximation for dilute systems.

� In certain cases, the partial ordering of the fluid is a
consequence of the dilute nature of the system.

Onsager’s Approach To Liquid Crystals

Onsager first explained the emergence of nematic
ordering in liquid crystals by a truncation of the
Mayer cluster expansion, valid for dilute systems.

] J. Am. Chem. Soc. 2011 133 (8),
2346-2349 (A. Kuijk, A. van
Blaaderen, A. Imhof).
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THE MICROSCOPIC WORLD

1



The Microscopic World

LAGRANGIAN MECHANICS OF THE CONSTITUENTS

We assume that the fluid is composed of a set of
constituents, each of which is described by a position q

i
,

a velocity v i , and a set of Euler angles αi and their total
time derivatives α̇i .

Li :=
1

2
m1(ẋ i · ẋ i ) +

1

2
α̇i · Ωi

(αi )α̇i , Ωi = IΠ(αi ).

We assume the interaction between the constituents is
given by a potential W(|q|, αi , αj), i.e.

Lij = Li (xi ,Ξi ) + Lj(xj ,Ξj) +W(|q
ij
|, αi , αj),

where Ξi := (v i , αi , ς i ), and |q
ij
| = |q

i
− q

j
|.

ℓ

a

ν
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The Microscopic World

THE GAY–BERNE POTENTIAL

The Gay–Berne potential is an anisotropic generalization
of the Lennard–Jones potential, designed to model
interactions between elongated, ellipsoidal particles.

W(αi , αj , qij)=ε(α1, α2, qij)

[(
1

|q|ij − σ(α1, α2, qij) + σ0

)12

−

(
1

|q|ij − σ(α1, α2, qij) + σ0

)6 ]

where ε and σ are respectively the strength and range of
the interaction.

] J. Chem. Phys. 1981 74 (6),
3316–3319 (J. G. Gay, J. Berne).
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The Microscopic World

NOETHER’S THEOREM: SYMMETRIES AND CONSERVATION LAWS

Noether’s theorem

If a Lagrangian L is invariant under a group action
with infinitesimal generators G then

d

dt

(
∂L
∂Ẋ1,2

· G

)
= 0, X1,2 =

(
q
1
, q

2
, α1, α2

)
.

In other words for any physical symmetry of the
system, there is a conserved quantity.

� The Lagrangian L is invariant under translations,
i.e. the linear momentum is conserved.

] Analytical Mechanics: An
Introduction, (A. Fasano,
S. Marmi).

� The Lagrangian L is independent
of time and the kinetic energy is
a homogeneous quadratic form
of the conjugate moments,
i.e. the energy is conserved.

� The Lagrangian L is invariant
under rotations, i.e. the angular
momentum is conserved.
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ENSKOG TYPE EQUATION

2



Enskog Type Equation

HAMILTONIAN MECHANICS OF THE CONSTITUENTS

We introduce the Hamiltonian formalism associated to the Lagrangian L introduced in the
previous section. As usual, we introduce the conjugate momenta to the generalised
coordinates, i.e.

pi :=
∂L
∂q̇

i

= mq̇
i
, ςi :=

∂L
∂α̇i

= Ω(α) α̇i .

We then introduce the Hamiltonian H of the full system of N constituents, only interacting in
pairs, as

H :=
N∑
i=1

1

2m
pi · pi +

1

2
ςi · Ω(α)−1 ςi +

∑
1≤i<j≤N

W(|q
ij
|, αi , αj).

The Legendre transform of the Lagrangian L is always well-defined, assuming Ω(α) is
symmetric and positive definite for all Euler angles α.
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Enskog Type Equation

BOGOLIUBOV–BORN–GREEN–KIRKWOOD–YVON HIERARCHY

] An Introduction to the Theory of the Boltzmann Equation, (S. Harris),
Statistical Physics of Particles, (M. Kardar),
Statistical Mechanics, 2nd Edition (K. Huang). Multiscale Model. Simul. 2024, accepted
(P. E. Farrell, G. Russo, ∼),

Let fs denote the normalised s-particle distribution function. We obtain the following expression
for the BBGKY hierarchy,

∂fs
∂t

+ {πs ,Hs} =

∫ s∑
i=1

∂fs+1

∂p
i

·
∂W(|q

i,s+1
|, αi , αs+1)

∂q
i

dΓs+1

+

∫ s∑
i=1

∂fs+1

∂ς i
·
∂W(|q

i,s+1
|, αi , αs+1)

∂αi

dΓs+1,

where Hs =
(∑s

i=1

|pi |2

2m + 1
2 ςi · Ω(α)

−1ςi

)
+
∑

1≤i<j≤sW(|q
ij
|, αi , αj).
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Enskog Type Equation

BOGOLIUBOV–BORN–GREEN–KIRKWOOD–YVON HIERARCHY

] Multiscale Model. Simul. 2024 22 (4) 1585-1607 (P. E. Farrell, G. Russo, ∼),

∂f1
∂t

+
p
1

m
· ∂f1
∂q

1

+Ω(α1)
−1ς1

∂f1
∂α1

=

+

∫
∂W(|q

12
|, α1, α2)

∂q
1

( ∂f2
∂p

1

− ∂f2
∂p

2

)
+

∫
∂W(|q

12
|, α1, α2)

∂α1

( ∂f2
∂ς1

− ∂f2
∂ς2

)

∂f2
∂t

+
p
1

m
· ∂f2
∂q

1

+Ω(α1)
−1ς1 ·

∂f2
∂α1

+
p
2

m
· ∂f2
∂q

2

+Ω(α2)
−1ς2 ·

∂f2
∂α2

−
∂W(|q

12
|, α1, α2)

∂q
1

( ∂f2
∂p

1

− ∂f2
∂p

2

)
−
∂W(|q

12
|, α1, α2)

∂α1

∂f2
∂ς1

= 0
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HYDRODYNAMIC LIMIT
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Hydrodynamic limit

THE HYDRODYNAMIC EQUATIONS – NOTATION

] J. Chem. Phys. 1956, 24, 225–241 (C. F. Curtiss),
J. Chem. Phys. 1963, 38, 2352–2363 (C. F. Curtiss, J. S. Dahler).

We first introduce the number density, i.e.

n(q
1
, t) =

∫
f1(q1, v1, α1, ς1)dΞ1, n2(q1, q2, t) =

∫∫
f2(Γ1, Γ2)dΞ1dΞ2.

Then we can give a meaning to the following double and triple chevrons, i.e.

⟨⟨·⟩⟩(q
1
) :=

1

n(q
1
, t)

∫
· f1(q1, v1, α1, ς1)dΞ1,

⟨⟨⟨·⟩⟩⟩(q) := 1

n2(q1 − (1− µ)q
12
, q

1
+ µq

12
, t)

∫∫
· f2(Γ1, Γ2)dΞ1dΞ2.

Using this notation we can define macroscopic stream velocity and macroscopic stream
angular velocity respectively as v0 := ⟨⟨v⟩⟩ and ω0 := ⟨⟨ω⟩⟩
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Hydrodynamic limit

THE HYDRODYNAMIC EQUATIONS – CURTISS BALANCE LAWS

] Mathematical theory of transport processes in gases, (J. H. Ferziger, H. G. Kaper).
Phys. Rev. E 2020, 102 (1) 012110 (V. Giovangigli).

Testing the first equation in the BBGKY hierarchy against 1 and mv1 and integrating, we
obtained the following balance laws:

∂tρ+∇q
1
· (ρv0) = 0,

ρ
[
∂tv0 + (∇q

1
v0)v0

]
+∇q

1
· (ρP+ P) = 0

where ρ is the density defined as ρ(q
1
) = mn(q

1
), P is the pressure tensor defined as

P := ⟨⟨V ⊗ V ⟩⟩, with V being the peculiar velocity V := v − v0, and P is defined as

P :=
1

2m

∫ ∫ 1

0

⟨⟨⟨|q
1
|−1∂|q

1
|W (|q

1
|, α1, α2)⟩⟩⟩(q12 ⊗ q

12
) dµdq

12
.
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Hydrodynamic limit

THE HYDRODYNAMIC EQUATIONS – SURPRISE BALANCE LAWS

For the third collision invariant we took a different route than Curtiss, which led to the
following balance law

ρ
[
∂tη + (∇q

1
η)v0

]
+∇q

1
· (ρN+N ) = ξ + ζ,

where ω is the angular velocity, η is the macroscopic intrinsic angular momentum defined
as η(q

1
) := ⟨⟨Iω⟩⟩ and N is the couple tensor defined as N := ⟨⟨V ⊗ (Iω)⟩⟩. Here ξl is defined

in tensor notation as ⟨⟨mn(εlkivivk)e l⟩⟩ and we proved that ξ vanishes. Furthermore, N and ζ
are defined as

N :=
1

2m

∫∫ 1

0

⟨⟨⟨|q
12
|−1∂|q

12
|W (|q

12
|, α1, α2)⟩⟩⟩

(
(q

1
− q

12
)⊗ q

12

)
dµdq

12

ζ :=

∫∫
IΠ∂α1

W(|q
12
|, α1, α2)f2dΞ1dΓ2.
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Hydrodynamic limit

MAXWELL–BOLTZMANN DISTRIBUTION

] J. Chem. Phys. 1956, 24, 225–241 (C. F. Curtiss),
J. Chem. Phys. 1963, 38, 2352–2363 (C. F. Curtiss, J. S. Dahler),
Phys. Rev. E 2020, 102 (1) 012110 (V. Giovangigli).

Curtiss gives an expression for the Maxwell–Boltzmann distribution, i.e. the distribution f (0)

such that C [f (0), f (0)] vanishes:

f
(0)
1 (v , ω) =

n sin(α2)Q∫
Q sin(α2)dα

m
3
2

(2πkBT )3
(Γ)

1
2 exp

[
−m

|V |
2kBT

− Ω · I · Ω
2kBT

]
,

where the peculiar angular velocity defined as Ω := ω − ω0, I =
∏3

i=1 Ii , Ii are the moments

of inertia of the molecule we are considering and Q := exp
[
ω0·I·ω0

2θ

]
.

Furthermore, we will assume that f
(0)
2 can be written as

f
(0)
2 (Γ1, Γ2) = f

(0)
1 (v1, ω1)f

(0)
1 (v2, ω2)g(q12, α1, α2),

where g is the density correction function g(q
12
, α1, α2) := exp

[
− k−1

B T−1W(|q
12
|, α1, α2)

]
.
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Hydrodynamic limit

MOMENTUM CLOSURE AROUND THE EQUILIBRIUM

] Phys. Rev. E 2020, 102 (1) 012110 (V. Giovangigli).

Near the Maxwell–Boltzmann distribution we can approximate the pressure tensor as,

P(0) = I (3m)−1⟨⟨θ⟩⟩Id .

Unfortunately the same procedure results in a vanishing N(0).
We haven’t yet managed to compute an explicit expression for N (0).
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The Maxwell–Boltzmann distribution for f
(0)
2 justifies the following expansion for n2:

n2(q1 − (1− µ)q
12
, q

1
+ µq

12
, t) = g(q

12
, α1, α2)

×
[
n(q

1
, t)− (1− µ)∇n(q

1
, t) · q

12
+

1

2
(1− µ)2Hn(q

1
, t) : (q12 ⊗ q12)

]
×
[
n(q

1
, t) + µ∇n(q

1
, t) · q

12
+

1

2
µ2Hn(q

1
, t) : (q12 ⊗ q12)

]
.
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] Phys. Rev. E 2020, 102 (1) 012110 (V. Giovangigli).

Near the Maxwell–Boltzmann distribution we can approximate the pressure tensor as,

P(0) = I (3m)−1⟨⟨θ⟩⟩Id .

Unfortunately the same procedure results in a vanishing N(0).
We haven’t yet managed to compute an explicit expression for N (0).

Using this expansion it is possible to compute some terms of P, i.e.

∇ · P ≈ ∇ ·
[
− 3χ3ρ∆ρ Id + (χ4 − 2χ3)|∇ρ|2Id + 2(χ3 + χ4)∇ρ⊗∇ρ.

]
The spherical and transversely isotropic terms of P are weighted differently in a calamitic
fluid. In particular, we conjecture χ4 < 2χ3.
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MICROSCOPICALLY MOTIVATED ENERGY

4



microscopically motivated energy

PARTIAL ORDERING AND THE INERTIA TENSOR

We know that for a slender body the inertia tensor can be decomposed as,

I = λ1(I − ν ⊗ ν) +O(ε)

where ε = ( ra )
2. Furthermore, the macroscopic kinetic energy can be computed as

m
1

2
|v0|2 +

1

2
ω0 · Iω0 =

1

2
m|v0|2 +

λ1
2
|ν̇|2 +O(ε),

as ε→ 0 we retrieve the same energy that is the starting point for Ericksen theory of
anisotropic fluids.
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microscopically motivated energy

BALANCE LAWS FOR KINETIC TEMPERATURE

] Multiscale Model. Simul. 2024, accepted (P. E. Farrell, G. Russo, ∼),

We need another way to formulate the constitutive relation for the couple tensor. We begin
by observing that from ψ(4) we get the following balance law:

ρψ̇0 +∇q
1
v0 : (ρP+ P) +∇q

1
ω0 : (ρN+N ) +∇q

1
· (Q +Q) = 0

where ψ0 = ⟨⟨θ⟩⟩+ ψK , Q = 1
2 ⟨⟨V (m|V |2 +Ω · IΩ)⟩⟩,

θ =
m

2
V · V +

1

2
Ω · I · Ω and ψK =

1

ρ

∫∫
1

2
W(|q

12
|, α1, α2)f2dΞ1dΓ2.

We have not yet managed to compute an explicit expression for Q.
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microscopically motivated energy

THE OSEEN–FRANK STORED ENERGY

] Multiscale Model. Simul. 2024, accepted (P. E. Farrell, G. Russo, ∼),

Making use of the fact that ν̇ = ω × ν = ∂tν(∇ν)v we can rewrite part of the stored energy as

ψOF (ν,∇q
1
ν) =

1

2
Ω · IΩ =

λ1
2
tr
[
∇q

1
νTP(0)∇q

1
ν
]
.

Using P(0) we get a stored energy functional very similar to the Oseen–Frank energy

ψOF = p
λ1
2
tr
[
∇q

1
νT∇q

1
ν
]
.

The kinetic pressure p acts the degree of orientation parameter. This explains the
experimental observation that defects acts nanoparticles attractors.
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microscopically motivated energy

Existence of minimizers

Let’s assume that S is bi-Lipschitz homeomorphic to a ball. Then for any prescribed
pressure field p ∈ A2(S) ∩W1,∞(S,R≥0) and ν0 ∈ L2p|∂S

(∂S, S2) ∩ Lip(S,R3) then

∃ ν ∈ A such that I [ν] = inf
µ∈A

I [µ],

where A is the admissible set defined as A :=
{
ν ∈ W 1,2

ω (S, S2) | γν = ν0
}
.

Trace Theorem (P. .E. Farrell, ∼)

Let S be a precompact domain and fix p ∈ (1,∞) and ω ∈ Ap(S) ∩W1,∞. Then there
exists a unique compact bounded and linear operator γ : W 1,p

ω (S, R3) → Lpω|∂S
(∂S, R3),

such that for any ν ∈ C∞(S, R3) we have γ(ν) = ν|∂S , provided that ∂S is a C 1 manifold
and the weight ω is such that

r4

R4
≤ C

[
ω (Br (x))

ω (BR(x))

]
,

for any x ∈ ∂S and r ∈ (0,R], where as before S ⊂ BR(0).
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microscopically motivated energy

THE KORTEWEG ENERGY TERM

] Phys. Rev. E 2020, 102 (1) 012110 (V. Giovangigli).

The additional Enskog term in the definition of θ can be rewritten as

1

ρ(q1, t)

∫
⟨⟨⟨W(|q

12
|, α1, α2)⟩⟩⟩n2(q1, q2, t)dq2.

If W(|q
12
|, α1, α2 is isotropic expanding n2 as we previously did we obtain a relevant term of

the form,

1

2

∫
⟨⟨⟨W(|q

12
|)⟩⟩⟩Hq

1
n(q1, t) : (q12 ⊗ q12)dq12 = −1

2
K5∆n(q1, t) = −1

2
K̂5∆ρ(q1, t).

Modifying the heat flux term in the balance law it is possible to obtain the following
expression for the Korteweg energy:

ρψK =
1

2
K̂5|∇ρ|2.
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microscopically motivated energy

THE VIRGA ENERGY TERM

Expanding n2 as we previously did we obtain a relevant
term of the form,

1

2

∫
⟨⟨⟨W(|q

12
|, α1, α2)⟩⟩⟩(∇q

1
n⊗∇q1n) : (q12 ⊗ q12)dq12

In the vanishing girth limit, i.e. a
ℓ → 0, we can

approximate this term as

1

2
K̂2(∇q

1
ρ⊗∇q

1
ρ) : (ν ⊗ ν)

φ12 =

{
∞ inside Vex

0 otherwise

� We need to play tricks to expand both n1 terms in the factorization of n2.

� We need to regularize and scale the excluded volume potential for the integrals to
have meaning.
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microscopically motivated energy

THE PEVNYI ET ALL. ENERGY TERM

Expanding n2 as we previously did we obtain a relevant
term of the form,

1

2

∫
⟨⟨⟨W(|q

12
|, α1, α2)⟩⟩⟩Hq

1
: (q12 ⊗ q12)dq12

In the vanishing girth limit, i.e. a
ℓ → 0, we can

approximate this term as

1

2
K̂3ν · Hq

1
ν

φ12 =

{
∞ inside Vex

0 otherwise

� We need to play tricks to expand both n1 terms in the factorization of n2.

� We need to regularize and scale the excluded volume potential for the integrals to
have meaning.
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Conclusions

CONCLUSIONS

] Phys. Rev. E 2009, 80 (1) 031705 (E. Virga),
Phys. Rev. E 2014, 90 (1) 032507 (M. Y. Pevnyi, J. V. Selinger, and T. J. Sluckin),
arXiv 2024, 2411.13354 (P. E. Farrell, ∼),

� We have used this Enskog type equation to derive a diffuse
interface model for calamitic fluids, in the hydrodynamic limit.

� We justified the use of the density as an order parameter
associated with nematic defects. This by experimental
observation.

� We showed liquid crystal can be regarded as Korteweg fluids.
This hypothesis is supported by nematoacoustic experiments
and theories.

� We microscopically motivated an energy similar to the one by
Pevnyi et al.

ρψ =
a

2
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