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The main focus lies on the description and understanding of the dynamics of a
liquid/vapor flow of a single substance (e.g. water).

Analysis of PDE

My
Work

Numerics of PDE Thermodynamics and
Fluid Mechanics

Multiphase Flows and Hyperbolic PDEs Ferdinand Thein 06.02.20252/34



Results for a sharp interface model
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Sharp Interface Two Phase Flow

Present sharp interface modeling approach:
one set of Euler equations for both phases
assume a sharp (zero thickness) interface
clearly distinguish the phases and use appropriate EOS
consider a compressible fluid
allow non-equilibrium states, i.e. different pressures at the interface
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Isothermal Euler Equations

Brief summary of the problem setting:
We consider the 1-D isothermal Euler equations for (t, x) ∈ (0,∞)× R

∂ρ

∂t
+

∂(ρu)

∂x
= 0,

∂(ρu)

∂t
+

∂(ρu2 + p)

∂x
= 0.

(E-Eq-T)
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The phases are distinguished by their phase densities and described by their
EOS

0 ≤ ρV ≤ ρ̃, pV (ρV ) (vapor) and ρL ≥ ρmin, pL(ρL) (liquid)

p0

v

p

critical point

pmin

p̃

Figure: Schematic figure of the v − p phase plane with the EOS satisfying the Maxwell
construction.
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Isothermal Euler Equations

Brief summary of the problem setting:
We consider the 1-D isothermal Euler equations for (t, x) ∈ (0,∞)× R

∂ρ

∂t
+

∂(ρu)

∂x
= 0,

∂(ρu)

∂t
+

∂(ρu2 + p)

∂x
= 0.

(E-Eq-T)

The phases are distinguished by their phase densities and described by their
EOS

0 ≤ ρV ≤ ρ̃, pV (ρV ) (vapor) and ρL ≥ ρmin, pL(ρL) (liquid)

The mass transfer is modeled using a kinetic relation determining the mass
flux at the interface and which is compatible with the mathematical entropy
inequality.
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Conditions at the Interface

There exists a unique liquid state for given vapor state satisfying the nonlinear
system1

−ρ(u− w) = z,Jρ(u− w)K = 0,

ρ(u− w) JuK + JpK = 0,

z − τpV Jg + ekinK = 0.

This system can be collapsed into a single nonlinear equation, i.e.

[[p]] = −z2
s
1

ρ

{

1Hantke, M. & Thein, F. A general existence result for isothermal two-phase flows with phase
transition. Journal of Hyperbolic Differential Equations 16, 595–637. eprint:
https://doi.org/10.1142/S0219891619500206 (2019).
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Numerics - Main Challenges

if two adjacent cells belong to the same phase any standard Riemann
solver can be used
we are only interested in the case where two adjacent cells belong to
different phases
due to the solution structure & CFL-condition the phase boundary will lie
inside a cell for w ̸= 0; hence averaging can lead to non-physical states

phase boundary

tn −∆x 0 ∆x

Ωvap Ωliq

ρni ρni+1

tn+1 = tn +∆t
ρn+1
i

ρ1 ρ2

ρn+1
i+1 ∆x = w∆tρ1 + (∆x− w∆t)ρ2 ∈ Ωspin
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Numerics - Main Challenges

phase boundary

tn −∆x 0 ∆x

Ωvap Ωliq

ρni ρni+1

tn+1 = tn +∆t
ρn+1
i

ρ1 ρ2

ρn+1
i+1 ∆x = w∆tρ1 + (∆x− w∆t)ρ2 ∈ Ωspin

we need to localize the phase boundary
we need to calculate the quantities in the star region
we need to determine the correct flux at the phase boundary
due to the motion of the phase boundary we will obtain different cell sizes;
this affects the time step
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Grid Adaption

tn
Ii0

xi0+1/2 Ii0+1

tn+1

w∆talign grid
tn+1

Ii0

xi0+1/2 + w∆t

Ii0+1

Figure: Align grid to the new position of the phase boundary.

To ensure suited cell sizes split cells which are too large and merge cells which
are too small.
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Nucleation & Cavitation

Create a new cell of size (wright − wleft)∆t with the obtained state variables:

right phase boundaryleft phase boundary

tn
Ii0

xi0+1/2 Ii0+1

tn+1

(wright − wleft)∆t

Figure: For initial states that belong to one phase phase creation (i.e., cavitation or
nucleation) can occur. In the simulation this results in the creation of a small cell
from one time step to the next. This cell must not be merged with its neighbors since
they belong to different phases.
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Isolated Small Cells - The story so far…
For isolated small cells it is beneficial to use local time stepping, see Müller et
al.2.

tn
Un

i0−1 Un
i0 Un

i0+1

τ1 = tn +∆τ
Un,1
i0

τn0−1

Un,n0−1
i0

τn0 = tn+1
Un+1

i0−1 Un+1
i0

Un+1
i0+1

F1
i0−1/2

Fn0−1
i0−1/2

F1
i0+1/2

Fn0−1
i0+1/2

Number of small time steps scales with 1/α!
2Müller, S. & Stiriba, Y. Fully Adaptive Multiscale Schemes for Conservation Laws Employing

Locally Varying Time Stepping. English. Journal of Scientific Computing 30, 493–531. issn:
0885-7474 (2007).
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Still, very small cells have a crucial impact on the computational time and a
faster method would be beneficial to have. Here we present the results
obtained in May and T3.

3May, S. & Thein, F. Explicit implicit domain splitting for two phase flows with phase
transition. Physics of Fluids 35, 016108. eprint: https://doi.org/10.1063/5.0131908 (2023).
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The Small Cell Problem

For simplicity assume the mesh to be fixed. We denote the cell centroid of cell
Ii with xi and the edges with xi± 1

2
. When phase creation occurs the mesh

may look like this

x
xk−2 xk−1 xk xk+1 xk+2

x
k− 5

2
x
k− 3

2
x
k− 1

2
x
k+

1
2

x
k+

3
2

x
k+

5
2

h h αh h h

Figure: 1d model problem: equidistant mesh of mesh width h with one small cell (cell
Ik) of length αh, α ∈ (0, 1]. Cell Ik corresponds to the creation of a new phase.

In space we use Godunov’s method.
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Explicit Implicit Domain Splitting

We suggest a mixed explicit implicit approach: only treat the neighborhood of
the small cell Ik implicit for stability, but treat all the cells away from the small
cell explicit to keep the cost low.
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Explicit Implicit Domain Splitting

We suggest a mixed explicit implicit approach: only treat the neighborhood of
the small cell Ik implicit for stability, but treat all the cells away from the small
cell explicit to keep the cost low.

Question: How to change between explicit and implicit time stepping while
ensuring conservation and maintaining stability?

For the linear advection equation on cut cell meshes this was investigated by
May and Berger4: desirable properties are preserved.

4May, S. & Berger, M. J. An explicit implicit scheme for cut cells in embedded boundary
meshes. J. Sci. Comput. 71, 919–943 (2017).
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Explicit Implicit Domain Splitting

In each time step:
1 we first update all cells with indices i ≤ k − 2 and i ≥ k + 2 using a fully

explicit update

2 we then update solution values on cells Ik−1, Ik, Ik+1 using:
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Explicit Implicit Domain Splitting

In each time step:
1 we first update all cells with indices i ≤ k − 2 and i ≥ k + 2 using a fully

explicit update
2 we then update solution values on cells Ik−1, Ik, Ik+1 using:

Un+1
k−1 = Un

k−1 −
∆t

h

[
Fk− 1

2
(Un+1

k−1 ,U
n+1
k )− Fk− 3

2
(Un

k−2,U
n
k−1)

]
,

Un+1
k = Un

k − ∆t

αh

[
Fk+ 1

2
(Un+1

k ,Un+1
k+1)− Fk− 1

2
(Un+1

k−1 ,U
n+1
k )

]
,

Un+1
k+1 = Un

k+1 −
∆t

h

[
Fk+ 3

2
(Un

k+1,U
n
k+2)− Fk+ 1

2
(Un+1

k ,Un+1
k+1)

]
.
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Dual Time Stepping

In the mixed explicit implicit approach, the implicit time stepping only
couples solution values on cells Ik−1, Ik, Ik+1.
Update formulae involve non-linear flux functions, in particular Riemann
solvers for phase changes → solving the resulting implicit system is still
non-trivial.

Idea: Use dual time stepping for doing this.

Advantage: No need to differentiate through the Riemann solver and the
implementation work for changing a running code from explicit to implicit time
stepping is quite small.
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Example
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Two Phase Flows - Setup

For the isothermal case we model the vapor phase as an ideal gas using the
relation

pV =
kT0

m
ρV , m =

2 · 1.0079 + 15.9994

6.02205 · 1026 kg, k = 1.380658 · 10−23 JK−1

where k is the Boltzmann constant and m the mass of a single water molecule.
The coefficient τ for the kinetic relation is given by

τ =
1√
2π

(
m

kT0

)3/2

.

The liquid phase is described using the linear Tait EOS

pL = p0 +K0

(
ρL
ρ0

− p0

)
.

All quantities with a subscript zero are saturation quantities at the given
temperature T0 evaluated according to the steam tables in Ref.5.

5Wagner, W. & Kruse, A. Properties of water and steam: the industrial standard IAPWS-IF97
for the thermodynamic properties and supplementary equations for other properties : tables based
on these equations. isbn: 9783540643395 (Springer-Verlag, 1998).
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Nucleation - Problem

Consider the following initial data

p−V u−
V p+V u+

V

Initial Data 70000Pa 2.7 m
s

70000Pa −2.7 m
s

T0 p0

Saturation Values 363.15K 70182.360745Pa

Table: Nucleation Test: Initial Data.

The computation was performed with
CCFL = 0.5, h0 = 10−2 m, x ∈ [−2, 2]m, and tend = 5 · 10−4 s. The time step
is calculated according to the CFL-condition and the phases are distinguished
as before.
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Nucleation - Results

cell size of the liquid phase after its creation is hL = 4.429422 · 10−9 m
→ initial α ∼ O(10−7)

values for the interface velocities are wleft/right = ±0.000203 m
s

→ size of liquid cell at time tend is (wright − wleft) · tend = 2.03 · 10−7 m.
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Nucleation - Results
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Figure: Nucleation Test: Computed (blue) and exact (red) solution as well as the
exact wave structure of the solution showing the outgoing shock waves and the two
phase boundaries in the middle of the fan.
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Nucleation - Results

explicits LTS implicit (DTS)
number of total local iterations 27′154′016 1′367′460

computation time 9811s 509s

Table: Nucleation Test: Comparison of computational costs.

143 large time steps
explicit LTS needs roughly a factor of 20 more iterations
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Some Answers

(i) existence/uniqueness for arbitrary (thermodynamically reasonable) EOS
can be shown, see Hantke, T.6

(ii) similar results in the adiabatic case cannot be expected
→ non-existence result for two phases, see Hantke, T.7
→ condensation by compression not possible, see Hantke, T.8
→ need for additional quantities and thus loss of self similarity, see
Hantke, T.9

(iii) numerical results for the isothermal case, including phase creation and an
approximation at the interface, see May, T.10

6Hantke, M. & Thein, F. A general existence result for isothermal two-phase flows with phase
transition. Journal of Hyperbolic Differential Equations 16, 595–637. eprint:
https://doi.org/10.1142/S0219891619500206 (2019).

7Hantke, M. & Thein, F. On the Impossibility of First-Order Phase Transitions in Systems
Modeled by the Full Euler Equations. Entropy 21. issn: 1099-4300 (2019).

8Hantke, M. & Thein, F. Why condensation by compression in pure water vapor cannot occur
in an approach based on Euler equations. Quart. Appl. Math. 73, 575–591 (2015).

9Hantke, M. & Thein, F. Singular and selfsimilar solutions for Euler equations with phase
transitions. Bulletin of the Brazilian Mathematical Society, New Series 47, 779–786 (2016).

10May, S. & Thein, F. Explicit implicit domain splitting for two phase flows with phase
transition. Physics of Fluids 35, 016108. eprint: https://doi.org/10.1063/5.0131908 (2023).
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Results for a diffuse mixture model
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Diffuse Mixture Two Phase Flow

Present diffuse mixture modeling approach:
one set of Euler equations for each phase
assume a mixture of both phases
coupling of phases via volume fraction α ∈ (0, 1)

→ additional transport equation for α
consider a compressible fluid
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Barotropic SHTC Model

We consider the barotropic two fluid model given by the following five equations

∂α1ρ

∂t
+

∂α1ρu

∂x
= 0,

∂α1ρ1
∂t

+
∂α1ρ1u1

∂x
= 0,

∂ρ

∂t
+

∂ρu

∂x
= 0,

(1)
∂(α1ρ1u1 + α2ρ2u2)

∂t
+

∂
(
α1ρ1u

2
1 + α2ρ2u

2
2 + α1p1(ρ1) + α2p2(ρ2)

)
∂x

= 0,

∂(u1 − u2)

∂t
+

∂

(
1

2
u2
1 −

1

2
u2
2 +Ψ1(ρ1)−Ψ2(ρ2)

)
∂x

= 0.

This model exhibits interesting analytical properties, see Dumbser, Romenski,
F.T.11

11F.T. et al. Exact and Numerical Solutions of the Riemann Problem for a Conservative Model of
Compressible Two-Phase Flows. Journal of Scientific Computing 93, 83. issn: 1573-7691 (2022).
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Barotropic SHTC Model

We consider the barotropic two fluid model given by the following five equations
∂α1ρ

∂t
+

∂α1ρu

∂x
= 0,

∂α1ρ1
∂t

+
∂α1ρ1u1

∂x
= 0,

∂ρ

∂t
+

∂ρu

∂x
= 0,

(1)
∂(α1ρ1u1 + α2ρ2u2)

∂t
+

∂
(
α1ρ1u

2
1 + α2ρ2u

2
2 + α1p1(ρ1) + α2p2(ρ2)

)
∂x

= 0,

∂(u1 − u2)

∂t
+

∂

(
1

2
u2
1 −

1

2
u2
2 +Ψ1(ρ1)−Ψ2(ρ2)

)
∂x

= 0.

Here we introduce as usual the following quantities and relations i = 1, 2

volume fraction phase i ∼ αi,

density phase i ∼ ρi,

velocity phase i ∼ ui,

pressure phase i ∼ pi(ρi).
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Barotropic SHTC Model

We consider the barotropic two fluid model given by the following five equations
∂α1ρ

∂t
+

∂α1ρu

∂x
= 0,

∂α1ρ1
∂t

+
∂α1ρ1u1

∂x
= 0,

∂ρ

∂t
+

∂ρu

∂x
= 0,

(1)
∂(α1ρ1u1 + α2ρ2u2)

∂t
+

∂
(
α1ρ1u

2
1 + α2ρ2u

2
2 + α1p1(ρ1) + α2p2(ρ2)

)
∂x

= 0,

∂(u1 − u2)

∂t
+

∂

(
1

2
u2
1 −

1

2
u2
2 +Ψ1(ρ1)−Ψ2(ρ2)

)
∂x

= 0.

The following mixture quantities and saturation relations are used
α1 + α2 = 1,

α1ρ1 + α2ρ2 = ρ, (mixture density),
αiρi
ρ

= ci, c1 + c2 = 1, (concentration phase i),

c1u1 + c2u2 = u, (mixture velocity), u1 − u2 = w, (relative velocity).
Multiphase Flows and Hyperbolic PDEs Ferdinand Thein 06.02.202524/34 Diffuse Mixture



Energy Inequality

The system is endowed with a mathematical entropy inequality. The total
energy inequality for the isentropic case reads

2∑
i=1

∂αiρi
(
ei +

1
2
u2
i

)
∂t

+
∂αiρiui

(
hi +

1
2
u2
i

)
∂x

≤ 0

and for the isothermal case we have
2∑

i=1

∂αiρi
(
ei − Tsi +

1
2
u2
i

)
∂t

+
∂αiρiui

(
gi +

1
2
u2
i

)
∂x

≤ 0.

These are the α - weighted sums of the individual phase energies.

Multiphase Flows and Hyperbolic PDEs Ferdinand Thein 06.02.202525/34 Diffuse Mixture



Energy Inequality

The system is endowed with a mathematical entropy inequality. The total
energy inequality for the isentropic case reads

2∑
i=1

∂αiρi
(
ei +

1
2
u2
i

)
∂t

+
∂αiρiui

(
hi +

1
2
u2
i

)
∂x

≤ 0

and for the isothermal case we have
2∑

i=1

∂αiρi
(
ei − Tsi +

1
2
u2
i

)
∂t

+
∂αiρiui

(
gi +

1
2
u2
i

)
∂x

≤ 0.

These are the α - weighted sums of the individual phase energies.
The energy is not strictly convex for equilibrium states11.

11Thein, F. The Shizuta - Kawashima Condition for the Barotropic SHTC Two Fluid Model.
XVIII International Conference on Hyperbolic Problems: Theory, Numerics, Applications (2023).
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Rarefaction Wave

In the following we use µ, ν ∈ {1, 2}, µ ̸= ν where µ = 1 for R1± and µ = 2
for R2±. The relations for ρµ and uµ, obtained from the corresponding
eigenvector, can be combined to

duµ

dρµ
= ±aµ

ρµ
.

Thus we yield the following invariants ’

α1 = const., R± = uµ ±
∫

aµ

ρµ
dρµ, ρν = const. and uν = const.

Furthermore the slope inside a left rarefaction wave is given by

dx
dt =

x

t
= λµ± = uµ ± aµ

and hence we obtain that the solution inside the rarefaction fan is given by

uµ =
x

t
∓ aµ and uµ,R − uµ,L ±

∫ ρµ,R

ρµ,L

aµ

ρµ
dρµ = 0.
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Shock Wave

The Rankine-Hugoniot jump conditions can be obtained using

JF(W )K = S JW K .
This results in

ρ(u− S) Jα1K = 0,Jα1ρ1(u1 − S)K = 0,Jρ(u− S)K = 0,

−α1Q1 Ju1K + Jα1p1K − α2Q2 Ju2K + Jα2p2K = 0,s
1

2
(u1 − S)2 +Ψ1

{
−

s
1

2
(u2 − S)2 +Ψ2

{
= 0.
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Shock Wave

The Rankine-Hugoniot jump conditions can be obtained using

JF(W )K = S JW K .
This results in

ρ(u− S) Jα1K = 0,Jα1ρ1(u1 − S)K = 0,Jρ(u− S)K = 0,

−α1Q1 Ju1K + Jα1p1K − α2Q2 Ju2K + Jα2p2K = 0,s
1

2
(u1 − S)2 +Ψ1

{
−

s
1

2
(u2 − S)2 +Ψ2

{
= 0.

The jump conditions can be used to obtain the energy inequality across a
discontinuity in a compact form

0 ≥ −Q

s
Ψ1 +

1

2
(u1 − S)2

{
or 0 ≥ −Q

s
Ψ2 +

1

2
(u2 − S)2

{
.
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Relation to the Baer-Nunziato Model

It is of further interest to compare the system (1) with the Baer-Nunziato
model given by the following equations

∂tα1 + uI∂xα1 = ζ1,

∂t(α1ρ1) + ∂x(α1ρ1u1) = ζ2,

∂t(α2ρ2) + ∂x(α2ρ2u2) = ζ3, (2)
∂t(α1ρ1u1) + ∂x

(
α1ρ1u

2
1 + α1p1(ρ1)

)
− pI∂xα1 = ζ4,

∂t(α2ρ2u2) + ∂x

(
α2ρ2u

2
2 + α2p2(ρ2)

)
− pI∂xα2 = ζ5.
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Relation to the Baer-Nunziato Model

It is of further interest to compare the system (1) with the Baer-Nunziato
model given by the following equations

∂tα1 + uI∂xα1 = ζ1,

∂t(α1ρ1) + ∂x(α1ρ1u1) = ζ2,

∂t(α2ρ2) + ∂x(α2ρ2u2) = ζ3, (2)
∂t(α1ρ1u1) + ∂x

(
α1ρ1u

2
1 + α1p1(ρ1)

)
− pI∂xα1 = ζ4,

∂t(α2ρ2u2) + ∂x

(
α2ρ2u

2
2 + α2p2(ρ2)

)
− pI∂xα2 = ζ5.

It is possible to show equivalence in the smooth case for

uI = u, pI =
α2ρ2p1 + α1ρ1p2

ρ
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Relation to the Baer-Nunziato Model

It is of further interest to compare the system (1) with the Baer-Nunziato
model given by the following equations

∂tα1 + uI∂xα1 = ζ1,

∂t(α1ρ1) + ∂x(α1ρ1u1) = ζ2,

∂t(α2ρ2) + ∂x(α2ρ2u2) = ζ3, (2)
∂t(α1ρ1u1) + ∂x

(
α1ρ1u

2
1 + α1p1(ρ1)

)
− pI∂xα1 = ζ4,

∂t(α2ρ2u2) + ∂x

(
α2ρ2u

2
2 + α2p2(ρ2)

)
− pI∂xα2 = ζ5.

It is possible to show equivalence in the smooth case for

uI = u, pI =
α2ρ2p1 + α1ρ1p2

ρ

Differences in the presence of discontinuities!
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Examples
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Shock in Rarefaction

The following computation was performed using the ideal gas EOS

pi(ρi) = ργi
i , i ∈ {1, 2} with γ1 = 1.4, γ2 = 2

and the parameters

∆x = 0.5 · 10−4 m, CCFL = 0.25, tend = 0.25 s and x ∈ [−1, 1]m.

For the numerical solution we used the Rusanov Flux together with Godunov’s
method as exemplary shown in12.

12Toro, E. F. Riemann Solvers and Numerical Methods for Fluid Dynamics. (Springer Berlin
Heidelberg, 2009).
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Shock in Rarefaction
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Shock in Rarefaction
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Shock in Rarefaction
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Shock in Rarefaction
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Comparison with Baer-Nunziato

The following computation was performed using the ideal gas EOS

pi(ρi) = ργi
i , i ∈ {1, 2} with γ1 = 1.4, γ2 = 2

and the parameters

∆x = 2 · 10−4 m, CCFL = 0.25, tend = 0.25 s and x ∈ [−1, 1]m.
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Comparison with Baer-Nunziato
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(a) Densities ρ1, ρ2.
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Comparison with Baer-Nunziato
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(b) Density ρ and volume fraction α1.
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Comparison with Baer-Nunziato
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(c) Velocities u,w.
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Key features:
1 non–strictly hyperbolic system
2 eigenvalues may coincide and change their ordering
3 characteristic fields do not change their character
4 shock in one phase influences the other phase
5 smooth solutions are a superposition of phase individual solutions
6 no vanishing of eigenvectors which belong to genuine non–linear fields
7 resonance may occur if α is constant in space
8 smooth equivalence to the barotropic Baer - Nunziato system
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Future Work

relation between different models
investigate implications for the non–conservative system
common test cases
multi–dimensional analysis and numerics
study prototype model to understand new wave phenomena
…
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