

-

POLITECNICO MILANO 1863

Biological Motivation

• D. Zwicker, R. Seyboldt, C. A. Weber, A. A. Hyman, and F. Jülicher, Growth and division of active droplets provides a model for protocells. *Nature Phys.*, **3984** (2016).

Biological Motivation

A protocell is cell-like structure that models how the first living cells might have formed.

- Droplets as early life models as chemical reaction centers.
- **Protocell model**: active droplets could model early protocells with simple metabolic processes.

• H. Garcke, K.F. Lam, R. Nürnberg and **A.S.**, On a Cahn–Hilliard equation for the growth and division of chemically active droplets modeling protocells. *Work in progress.* • H. Garcke, K.F. Lam, R. Nürnberg and **A.S.**, On a Mullins–Sekerka model for the growth of active droplets modeling protocells: Stability analysis and numerical computations. *Work in progress.*

- J. Bauermann, G. Bartolucci, J. Boekhoven, C. A. Weber, and F. Jülicher, Formation of liquid shells in active droplet systems. *Phys. Review Research*, **5** (2023).
- D. Zwicker, R. Seyboldt, C. A. Weber, A. A. Hyman, and F. Jülicher, Growth and division of active droplets provides a model for protocells. *Nature Phys.*, **3984** (2016).

Diffuse Interface Model (PF)

We consider the diffuse interface model

$$\begin{split} \partial_t \varphi &= \operatorname{div}(m(\varphi) \nabla \mu) + S_{\varepsilon}(\varphi) & \text{ in } Q := \Omega \times (0, T), \\ \mu &= \beta(-\varepsilon \Delta \varphi + \frac{1}{\varepsilon} \psi'(\varphi)) & \text{ in } Q, \\ m(\varphi) \partial_n \mu &= \partial_n \varphi = 0 & \text{ on } \Gamma := \partial \Omega \times (0, T), \\ \varphi(0) &= \varphi_0 & \text{ in } \Omega, \end{split}$$

with $\psi(r) = \frac{1}{4}(1-r^2)^2$. The source term $S_{\varepsilon} \in C^1(\mathbb{R})$ is given by

- J. W. Cahn and J. E. Hilliard. Free energy of a nonuniform system. I. interfacial free energy. J. Chem. Phys., 28(2):258–267, 1958.
- J. W. Cahn. On spinodal decomposition. Acta metallurgica, **9**(9):795–801, 1961.

Sharp Interface Model (SI)

We set: $\Omega^{\pm} = \Omega(t)^{\pm} := \{x \in \Omega : \varphi(x, t) = \pm 1\}, \quad \Sigma(t) := \text{ interface of the phases,}$ and $m_{\pm} := m(\pm 1)$. As $\varepsilon \to 0$, we find

 $\rho_{\pm} = \frac{\kappa_{\pm}}{\beta \psi''(\pm 1)}, \quad \gamma \in \mathbb{R} \text{ depending on } \psi, \quad \kappa \text{ mean curvature of } \Sigma, \quad S_* \in \mathbb{R} \text{ depends on } S.$ $\circ \text{ W. W. Mullins and R. F. Sekerka: } J. Appl. Phys. 64', J. Appl. Phys. 65', J. Chem. Phys. 85'.$

Theoretical results

Theorem (Well-posedness of the PF model)

For every $\varphi_0 \in H^1$, there exists a unique weak solution (φ, μ) :

 $arphi \in H^1(0,\, T;\, (H^1)^*)\cap L^\infty(0,\, T;\, H^1)\cap L^2(0,\, T;\, H^2), \quad \mu\in L^2(0,\, T;\, H^1),$

satisfying, for every $v \in H^1$ and almost every $t \in (0, T)$,

$$egin{aligned} &\langle \partial_t arphi, \mathbf{v}
angle_{H^1} + \int_\Omega m(arphi)
abla \mu \cdot
abla \mathbf{v} &= \int_\Omega S_{\varepsilon}(arphi) \mathbf{v}, \\ &\int_\Omega \mu \mathbf{v} = eta \varepsilon \int_\Omega
abla arphi \cdot
abla \mathbf{v} + rac{eta}{arepsilon} \int_\Omega \psi'(arphi) \mathbf{v}. \end{aligned}$$

Moreover, let $\{(\varphi_i, \mu_i)\}_i$, i = 1, 2, two solutions with initial data $\varphi_{0,i} \in H^1$, i = 1, 2 and $m \equiv 1$. Then, it holds that

 $\begin{aligned} \|(\varphi_{1}-\varphi_{2})-(\varphi_{1}-\varphi_{2})_{\Omega}\|_{L^{\infty}(0,T;(H^{1})^{*})\cap L^{2}(0,T;H^{1})}+\|(\varphi_{1})_{\Omega}-(\varphi_{2})_{\Omega}\|_{L^{\infty}(0,T)} \\ &\leq K(\|(\varphi_{0,1}-(\varphi_{0,1})_{\Omega})-(\varphi_{0,2}-(\varphi_{0,2})_{\Omega})\|_{*}+|(\varphi_{0,1})_{\Omega}-(\varphi_{0,2})_{\Omega}|), \end{aligned}$

for K > 0 just depending on structural data.

Schematic Idea of the Method

We introduce the **signed distance** function d to Σ_0 with d > 0 in Ω^+ and d < 0 in Ω^- , $\nabla d = \nu$ and set $z = \frac{d}{\varepsilon}$. We parametrize Σ_0 by arc-length as g(t, s). In a tubular neighborhood of Σ_0 , a smooth function f is rewritten as:

 $f(x) = f(g(t,s) + \varepsilon z \nu(g(t,s))) =: F(t,s,z).$ $\Sigma_{c}(t$ $\partial \Omega$ $Q_{-}(t)$ $\Omega_{\pm}(t)$

• $\partial_t f \approx -\frac{1}{\varepsilon} \mathcal{V} \partial_z F$ • $\nabla_x f \approx \frac{1}{\varepsilon} \partial_z F \boldsymbol{\nu} + \nabla_{\Sigma_0} F$ • $\Delta_x f \approx \frac{1}{\varepsilon^2} \partial_{zz} F - \frac{1}{\varepsilon} \kappa \partial_z F$

 ∇_{Σ_0} is the surface gradient on Σ_0 , $\kappa = -\operatorname{div}_{\Sigma_0} \nu$ the mean curvature.

Sharp Interface Model (SI)

-

$$\begin{split} -m_{+}\Delta\mu &= S_{+} - \rho_{+}\mu & \text{ in } \Omega^{+}, \\ -m_{-}\Delta\mu &= S_{-} - \rho_{-}\mu & \text{ in } \Omega^{-}, \\ \mu &= \frac{\gamma\beta\kappa}{2} & \text{ on } \Sigma, \\ [\mu]_{-}^{+} &= 0 & \text{ on } \Sigma, \\ -2\mathcal{V} &= [m\nabla\mu]_{-}^{+} \cdot \nu + \mathcal{S}_{*} & \text{ on } \Sigma, \\ \partial_{n}\mu &= 0 & \text{ on } \partial\Omega, \end{split}$$

• $\rho_{\pm} = \frac{\kappa_{\pm}}{\beta \psi''(\pm 1)};$ • $\gamma \in \mathbb{R}$ depending on ψ ;

• κ is the mean curvature of Σ ;

• $S_* \in \mathbb{R}$ depends on *S*.

Perturbation of Planar Solutions

Planar Solutions

We study the (SI) in:

$$\Omega = (0,\mathcal{L}) imes (0, ilde{\mathcal{L}})^{d-1}, \quad \mathcal{L}, ilde{\mathcal{L}} > 0,$$

and seek for a planar solution in

$$\Omega_+(t)=(0,q(t)) imes(0, ilde{\mathcal{L}})^{d-1}, \quad \Omega_-(t)=(q(t),\mathcal{L}) imes(0, ilde{\mathcal{L}})^{d-1},$$

where q(t) encodes the location of the interface Σ_0 . We set $x = (z, \hat{x})$ with $z \in \mathbb{R}$ and $\hat{x} \in \mathbb{R}^{d-1}$. As $\nu = (-1, 0)^{\top}$ we get $\mathcal{V} = -\dot{q}$ and make the ansatz $\mu_+(t, (z, \hat{x})) = \hat{\mu}_+(t, z), \quad z \in (0, \mathcal{L}), \hat{x} \in (0, \tilde{\mathcal{L}})^{d-1}$.

Original System

$-m_+\Delta\mu=S_+- ho_+\mu$	in Ω^+ ,
$-m_{-}\Delta\mu = S_{-} - \rho_{-}\mu$	in Ω^{-} ,
$\mu = \frac{\gamma \beta \kappa}{2}$	on Σ,
$[\mu]^+=0$	on Σ,
$-2\mathcal{V} = [m\nabla\mu]^+ \cdot \boldsymbol{\nu} + S_I$	on Σ,
$\partial_{n}\mu=0$	on $\partial \Omega$,

Planar Scenario

$$\begin{split} -m_{+}\mu_{+}'' &= S_{+} - \rho_{+}\mu_{+} & \text{for } z \in (0, q(t)) \\ -m_{-}\mu_{-}'' &= S_{-} - \rho_{-}\mu_{-} & \text{for } z \in (q(t), \mathcal{L}) \\ \mu_{+}'(t, 0) &= 0, \\ \mu_{-}'(t, \mathcal{L}) &= 0, \\ 2\dot{q} &= -[m\mu']_{-}^{+} + S_{I}. \end{split}$$

We obtain as solutions

$$\mu_+(t,z) = d_+\Big(1-rac{\cosh\left(\Lambda_+z
ight)}{\cosh\left(\Lambda_+q(t)
ight)}\Big), \quad \mu_-(t,z) = d_-\Big(1-rac{\cosh\left(\Lambda_-(\mathcal{L}-z)
ight)}{\cosh\left(\Lambda_-(\mathcal{L}-q(t))
ight)}\Big)$$

where $d_{\pm} := \frac{S_{\pm}}{\rho_{\pm}} = \beta \frac{S_{\pm} \psi''(\pm 1)}{\kappa_{\pm}}$, and $\Lambda_{\pm} := \sqrt{\frac{\rho_{\pm}}{m_{\pm}}}$. The evolution equation $2\dot{q} = -[m\mu']_{-}^{+} + S_{I}$ for the interface position becomes

$$\dot{q}=rac{1}{2}ig(d_+m_+\Lambda_+ anh (\Lambda_+q)+d_-m_-\Lambda_- anh (\Lambda_-(\mathcal{L}-q))+S_Iig)=:\mathfrak{H}(q).$$

We notice that

$$\mathfrak{H}(0) = \frac{1}{2}(d_-m_-\Lambda_-\tanh(\Lambda_-\mathcal{L}) + S_I), \quad \mathfrak{H}(\mathcal{L}) = \frac{1}{2}(d_+m_+\Lambda_+\tanh(\Lambda_+\mathcal{L}) + S_I).$$

Claim:

The existence of a root q^* of \mathcal{H} can be guaranteed.

For instance: $S_+ = -1$, all other parameters equal to $1 \Rightarrow q^* = \frac{\mathcal{L}}{2}$.

General case: after fixing parameters, one can adjust L in S_I to ensure the existence of a root.

Linear Stability of Planar Solutions

Goal: Analyse stability of planar solutions μ^*_{\pm} around position q^* .

We consider a perturbed interface $w := q^* + \epsilon Y$, with $Y = Y(t, \hat{x})$. We make the ansatz

$$\mu_{\pm}(t,x) = \mu_{\pm}^*(z) + \epsilon u_{\pm}(t,x),$$

and demand that those solve the FBP

$$\begin{split} &-m_{+}\Delta(\mu_{+}^{*}+\epsilon u_{+})=S_{+}-\rho_{+}(\mu_{+}^{*}+\epsilon u_{+}) & \text{ in } \{z < w\}, \\ &-m_{-}\Delta(\mu_{-}^{*}+\epsilon u_{-})=S_{-}-\rho_{-}(\mu_{-}^{*}+\epsilon u_{-}) & \text{ in } \{z > w\}, \\ &\mu_{+}^{*}+\epsilon u_{+}=\mu_{-}^{*}+\epsilon u_{-} & \text{ on } \{z = w\}, \\ &2(\mu_{\pm}^{*}+\epsilon u_{\pm})=\gamma\beta\kappa & \text{ on } \{z = w\}, \\ &-2\mathcal{V}=[m\nabla(\mu^{*}+\epsilon u)]_{-}^{+}\cdot\boldsymbol{\nu}+S_{I} & \text{ on } \{z = w\}, \\ &(\mu_{+}^{*}+\epsilon u_{+})'(t,0)=0, \quad (\mu_{-}^{*}+\epsilon u_{-})'(t,\mathcal{L})=0. \end{split}$$

Linearizing the above equations around $\{z = q^*\}$, produces

$$\begin{split} &-m_{+}\Delta u_{+}=-\rho_{+}u_{+} & \text{ in } \{z < q^{*}\}, \\ &-m_{-}\Delta u_{-}=-\rho_{-}u_{-} & \text{ in } \{z > q^{*}\}, \\ &(\mu_{+}^{*})'|_{z=q^{*}}Y + u_{+} = (\mu_{-}^{*})'|_{z=q^{*}}Y + u_{-} & \text{ on } \{z = q^{*}\}, \\ &2((\mu_{\pm}^{*})'|_{z=q^{*}}Y + u_{\pm}) = -\gamma\beta\Delta_{\hat{x}}Y & \text{ on } \{z = q^{*}\}, \\ &2\dot{Y} = -m_{+}((\mu_{+}^{*})''|_{z=q^{*}}Y + u_{+}') + m_{-}((\mu_{-}^{*})''|_{z=q^{*}}Y + u_{-}') & \text{ on } \{z = q^{*}\}, \\ &(u_{+})'(t, 0) = 0, \quad (u_{-})'(t, \mathcal{L}) = 0. \end{split}$$

Ansatz: $u_{\pm}(x) = v_{\pm}(z)W(\hat{x})$ and choose W as an eigenfunction of the $\Delta_{\hat{x}}$ -operator with Neumann boundary conditions such that for $\hat{\ell} = (\ell_2, \dots, \ell_d) \in \mathbb{N}_0^{d-1}$,

$$\begin{cases} \Delta_{\hat{x}} W = \frac{\zeta_{\hat{\ell},d}}{(\tilde{\mathcal{L}})^2} W & \text{ in } (0,\tilde{\mathcal{L}})^{d-1}, \\ \partial_n W = 0 & \text{ on } \partial(0,\tilde{\mathcal{L}})^{d-1}. \end{cases}$$

A possible eigenfunction is

$$W(x_2,\ldots,x_d)=\cos\left(\frac{\pi}{\tilde{\mathcal{L}}}\ell_2x_2\right)\times\cdots\times\cos\left(\frac{\pi}{\tilde{\mathcal{L}}}\ell_dx_d\right),\quad \zeta_{\hat{\ell},d}=-\pi^2(\ell_2^2+\cdots+\ell_d^2).$$

With this ansatz for u_{\pm} we find that

$$-m_{\pm}(v_{\pm}''W + v_{\pm}\Delta_{\hat{x}}W) = -\rho_{\pm}v_{\pm}W$$

and this yields

$$v_{\pm}^{\prime\prime} = \left(\Lambda_{\pm}^2 - \frac{\zeta_{\hat{\ell},d}}{(\tilde{\mathcal{L}})^2}\right) v_{\pm} = (\Gamma_{\pm}^{\hat{\ell}})^2 v_{\pm}, \quad \Lambda_{\pm}^2 = \frac{\rho_{\pm}}{m_{\pm}} \quad \text{and} \quad \Gamma_{\pm}^{\hat{\ell}} = \sqrt{\Lambda_{\pm}^2 - \frac{\zeta_{\hat{\ell},d}}{(\tilde{\mathcal{L}})^2}}.$$

We set

$$v_+(z)=a_+\cosh(\Gamma^{\hat{\ell}}_+z), \quad v_-(z)=a_-\cosh(\Gamma^{\hat{\ell}}_-(\mathcal{L}-z)),$$

for some unknowns $a_+(t)$ and $a_-(t)$ to be determined and choose Y = W. Imposing the boundary conditions, we obtain

$$\begin{aligned} &\boldsymbol{a}_+(\boldsymbol{q}^*) = \frac{1}{\cosh(\Gamma_+^{\hat{\ell}}\boldsymbol{q}^*)} \Big(\boldsymbol{d}_+ \Lambda_+ \tanh(\Lambda_+ \boldsymbol{q}^*) - \frac{\gamma\beta}{2} \frac{\zeta_{\hat{\ell},d}}{(\tilde{\mathcal{L}})^2} \Big), \\ &\boldsymbol{a}_-(\boldsymbol{q}^*) = -\frac{1}{\cosh(\Gamma_-^{\hat{\ell}}(\mathcal{L}-\boldsymbol{q}^*))} \Big(\boldsymbol{d}_- \Lambda_- \tanh(\Lambda_-(\mathcal{L}-\boldsymbol{q}^*)) + \frac{\gamma\beta}{2} \frac{\zeta_{\hat{\ell},d}}{(\tilde{\mathcal{L}})^2} \Big). \end{aligned}$$

Meanwhile, we have

$$2\dot{Y} = (S_+ - S_- - m_+ a_+(q^*)\Gamma_+^{\hat{\ell}}\sinh(\Gamma_+^{\hat{\ell}}q^*) - m_- a_-(q^*)\Gamma_-^{\hat{\ell}}\sinh(\Gamma_-^{\hat{\ell}}(\mathcal{L} - q^*)))Y =: \alpha Y$$

with amplification factor α .

We consider parameters s.t. $\alpha > 0 \Rightarrow$ instabilities from interface perturbations.

We fix $\hat{\ell} = (\ell_2, ..., \ell_d)$, and take

$$S_{+}=-1, \quad S_{-}=m_{\pm}=
ho_{\pm}=1, \quad d_{+}=-1, \quad d_{-}=1, \quad \Lambda_{\pm}=1,$$

so that the stationary state is $q^* = \frac{\mathcal{L}}{2}$. Moreover $\Gamma_{\pm}^{\ell}, a_+(q^*)$ and $a_-(q^*)$ are explicit and

$$\boldsymbol{\alpha} = -2 + \sqrt{1 + \frac{|\hat{\boldsymbol{\ell}}|^2 \pi^2}{\tilde{\boldsymbol{\mathcal{L}}}^2}} \tanh\left(\frac{\boldsymbol{\mathcal{L}}}{2}\sqrt{1 + \frac{|\hat{\boldsymbol{\ell}}|^2 \pi^2}{\tilde{\boldsymbol{\mathcal{L}}}^2}}\right) \left(2 \tanh\left(\frac{\boldsymbol{\mathcal{L}}}{2}\right) - \gamma \beta \frac{|\hat{\boldsymbol{\ell}}|^2 \pi^2}{\tilde{\boldsymbol{\mathcal{L}}}^2}\right).$$

Perturbation of Planar Solutions - Conclusion From $2\dot{Y} = \alpha Y$ we draw the following conclusions:

ℓ = 0: translational perturbations w = q^{*} + ε, we see that the amplification factor becomes negative. Thus:

 $\hat{\ell}=\hat{0}$ \Rightarrow stability with respect to translational perturbations

• $|\hat{\ell}| > 0$: perturbations of the form $w = q^* + \epsilon \cos(\pi \ell_2 x_2 / \tilde{\mathcal{L}}) + ... + \epsilon \cos(\pi \ell_d x_d / \tilde{\mathcal{L}})$. We see that α is positive when $\beta < \beta_{crit}(\hat{\ell})$, where

$$\beta_{\mathrm{crit}}(\hat{\boldsymbol{\ell}}) = \frac{2}{\gamma} \frac{\tilde{\boldsymbol{\mathcal{L}}}^2}{|\hat{\boldsymbol{\ell}}|^2 \pi^2} \left(\tanh\left(\frac{\boldsymbol{\mathcal{L}}}{2}\right) - \frac{1}{\sqrt{1+|\hat{\boldsymbol{\ell}}|^2 \pi^2/\tilde{\boldsymbol{\mathcal{L}}}^2} \tanh\left(\frac{\boldsymbol{\mathcal{L}}}{2}\sqrt{1+|\hat{\boldsymbol{\ell}}|^2 \pi^2/\tilde{\boldsymbol{\mathcal{L}}}^2}\right)} \right)$$

As $|\hat{\ell}|^2 = (\ell_2)^2 + \cdots + (\ell_d)^2$, we obtain that the possible perturbations lead to amplification factors via sum of squares. For d = 2 we obtain $|\hat{\ell}|^2 = 0, 1, 4, 9, \ldots$ and for d = 3 we have $|\hat{\ell}|^2 = 0, 1, 2, 4, 5, 8, 9, 10, \ldots$

 $|\hat{\ell}| > 0$ and β small \Rightarrow instabilities

Numerical results

Numerics - 2D

Figure 3: $(\varepsilon = \frac{1}{32\pi}, \Omega = (0, 1)^2)$ Evolution for $\beta = 0.1, S_- = 8, S_+ = -8$. We show the solution at times t = 0, 0.1, 1, 2, 10.

Figure 14: $(\varepsilon = \frac{1}{32\pi}, \Omega = (0, 2)^2)$ Evolution for $\beta = 0.002$, $S_- = 0.25$, $S_+ = -4$. We show the solution at times t = 0, 0.2, 1, 2, 5.

Figure 15: $(\varepsilon=\frac{1}{32\pi},\Omega=(0,1)^2)$ Evolution for $\beta=0.002,\,S_-=0.25,\,S_+=-4.$ We show the solution at times t=0,0.2,1,2,5.

Numerics - 2D

Figure 16: $(\varepsilon = \frac{1}{16\pi}, \Omega = (0, 2)^2)$ Evolution for $\beta = 0.02$, $S_- = 1$, $S_+ = -4$. We show the solution at times t = 0, 2, 4, 6, 8, 10.

Figure 17: $(\varepsilon = \frac{1}{16\pi}, \Omega = (0, 4)^2)$ Evolution for $\beta = 0.02, S_- = 1, S_+ = -4$. We show the solution at times t = 0, 2, 4, 6, 8, 10.

Figure 18: $(\varepsilon=\frac{1}{16\pi},\,\Omega=(0,8)^2)$ Evolution for $\beta=0.02,\,S_-=1,\,S_+=-4.$ We show the solution at times t=0,2,4,6,8,10.

Numerics - 3D

Figure 45: $(\Omega = (-4, 4)^3)$ perturbed data with $r_0 = 0.65$, $m_- = 0.1$, $m_+ = 7$, $\beta = 0.1$, $S_- = 1.4$, $S_+ = -7$, $\rho_- = 0.065$, $\rho_+ = 0.1$, L = -1. Below the solution at times t = 0.5, 1, 1.5, 2.

POLITECNICO MILANO 1863

Conclusions:

We propose a Cahn–Hilliard model for active droplets, deriving a sharp interface model and performing stability analysis that identifies both stable and unstable solutions. Numerical simulations validate the theoretical findings.

Recap (continues)

Recap (continues)

