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Phase field modelling

Phase-field approach to phase-separation:
@ evolution of a material with 2 different features, mixtures, ...
@ phase variable ¢ € [—1,1]: pure phases are {¢ =1} and {p = —1}
@ intermediate values ¢ € (—1,1) are allowed: diffuse (narrow) interface

Advantages with respect to sharp interface models:
@ no need of boundary conditions at the interface
@ no need to track the interface at all times

@ no difficulties in case of topological changes

Applications:
@ physics and engineering: phase separation, alloys, fluid mixtures, ...
@ biology: tumour growth dynamics, RNA-protein formation, ...
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Deterministic approach to phase-field models

Deterministic approach to phase-field models

Given a smooth bounded domain @ C RY, d € {2, 3}, one considers the free-energy functional

1
£0)i=5 [ 1Vel+ [ Flo),
o o
along with its variational derivative (chemical potential)
p=—Ap+F'(p).

Deterministic approach:
neglect other possible energy contributions (temperature, magnetic, vibrational effects)
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Deterministic approach to phase-field models

Deterministic approach to phase-field models

Given a smooth bounded domain @ C RY, d € {2, 3}, one considers the free-energy functional

s =3 [ Vel + [ Fee).

along with its variational derivative (chemical potential)
p=—Ap+F'(p).

Deterministic approach:
neglect other possible energy contributions (temperature, magnetic, vibrational effects)

Allen-Cahn model:
o 8t(p + n = 0
@ no-flux boundary conditions for ¢

@ no mass-conservation
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Deterministic approach to phase-field models

Deterministic approach to phase-field models

Given a smooth bounded domain @ C RY, d € {2, 3}, one considers the free-energy functional

s =3 [ Vel + [ Fee).

along with its variational derivative (chemical potential)
p=—Ap+F'(p).

Deterministic approach:
neglect other possible energy contributions (temperature, magnetic, vibrational effects)

Allen-Cahn model:
e dp+p=0
@ no-flux boundary conditions for ¢

@ no mass-conservation

Cahn-Hilliard model:
e Oip—Ap=0
@ no-flux boundary conditions for ¢ and p

@ mass-conservation
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Classical Allen-Cahn and Cahn-Hilliard equations

Typical form of the AC equation:

Orp — Ao+ F'(p) =0 in(0,T)x O,
O =0 in (0, T) x 00,
©(0) = o in O.

Typical form of the CH equation:

Orp—Ap=0 in (0,T) x O,
uw=—-Ap+ F'(p) in(0,T)xO,
Onp = =0 in (0, T) x 00,
©(0) = o in O.
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Classical Allen-Cahn and Cahn-Hilliard equations

Typical form of the AC equation:

Orp — Ao+ F'(p) =0 in(0,T)x O,
O =0 in (0, T) x 00,
©(0) = o in O.

Typical form of the CH equation:

Orp—Ap=0 in (0,T) x O,
uw=—-Ap+ F'(p) in(0,T)xO,
Onp = =0 in (0, T) x 00,
©(0) = o in O.

Physically-relevant choice of double-well potential:

Fiog(r) ::g[(1+r)|n(1+r)+(1—r)ln(l—r)]— %’rz, rel[-1,1], 0<6<bp.
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Classical Allen-Cahn and Cahn-Hilliard equations

Typical form of the AC equation:

Orp — Ao+ F'(p) =0 in(0,T)x O,
O =0 in (0, T) x 00,
©(0) = o in O.

Typical form of the CH equation:

Orp—Ap=0 in (0,T) x O,
uw=—-Ap+ F'(p) in(0,T)xO,
Onp = =0 in (0, T) x 00,
©(0) = o in O.

Physically-relevant choice of double-well potential:

Fiog(r) ::g[(1+r)|n(1+r)+(1—r)ln(l—r)]— %’rz, rel[-1,1], 0<6<bp.

Initial datum with finite energy:

o € HY(0), lpo] <1lae inO.
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Stochastic approach to phase-field models
© Stochastic approach to phase-field models
=) = = Qe
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Stochastic approach to phase-field models

Stochastic approach to phase-field models

Phase separation may be affected by:
@ unpredictable temperature oscillations, microscopic movements, magnetic effects, . ..
@ measurement uncertainty, environmental disturbance, ...
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Stochastic approach to phase-field models

Stochastic approach to phase-field models

Phase separation may be affected by:
@ unpredictable temperature oscillations, microscopic movements, magnetic effects, . ..
@ measurement uncertainty, environmental disturbance, ...

Possible solutions (Cook, 1970):
@ deterministic model is too “simple” to capture such background noise
@ addition of a suitable stochastic forcing in the equation: gaussian noise
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Phase separation may be affected by:
@ unpredictable temperature oscillations, microscopic movements, magnetic effects, . ..
@ measurement uncertainty, environmental disturbance, ...

Possible solutions (Cook, 1970):
@ deterministic model is too “simple” to capture such background noise
@ addition of a suitable stochastic forcing in the equation: gaussian noise

General form of the stochastic Allen-Cahn (o = 0) and Cahn-Hilliard (o = 1) equations:

do+ (1 —o)pdt —alApdt = G(e)dW in(0,T)x O,

uw=—Ap+ F'(p) in (0, T) x O,
Onp = @O =0 in (0, T) x 00,
»(0) = ¢o in 0.
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Stochastic forcing:
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Stochastic approach to phase-field models

Stochastic approach to phase-field models

Phase separation may be affected by:
@ unpredictable temperature oscillations, microscopic movements, magnetic effects, . ..
@ measurement uncertainty, environmental disturbance, ...

Possible solutions (Cook, 1970):
o deterministic model is too “simple” to capture such background noise
@ addition of a suitable stochastic forcing in the equation: gaussian noise

General form of the stochastic Allen-Cahn (o = 0) and Cahn-Hilliard (o = 1) equations:

do+ (1 —o)pdt —alApdt = G(e)dW in(0,T)x O,

uw=—Ap+ F'(p) in (0, T) x O,
Onp = @O =0 in (0, T) x 00,
»(0) = ¢o in 0.

Stochastic forcing:
o (Q,.F,(ZFt)t>0,P): filtered probability space
o W: cylindrical Wiener process on a abstract Hilbert space U i.e.

oo
W= Z/Bkek R (ex)k c.0.s. of U, (Bk)k independent Brownian motions.
k=0
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Choice of the noise
Noise coefficient: Hilbert-Schmidt from a abstract space U to the reference space L2(O), i.e.
G(p) € L3(U,1%2(0)) Ve [20).
o = - = DA



Stochastic approach to phase-field models

Choice of the noise

Noise coefficient: Hilbert-Schmidt from a abstract space U to the reference space L2(O), i.e.

G(p) € L3(U,1%2(0)) Ve [20).
Possible choice of the noise:
o G:L%2(0) — £L?(U,L%(0)) given by

G(p)le] = gklp), with (gi)x € COM([-1,1])
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Stochastic approach to phase-field models

Choice of the noise

Noise coefficient: Hilbert-Schmidt from a abstract space U to the reference space L2(O), i.e.
G(p) € L3(U,1%2(0)) Ve [20).
Possible choice of the noise:
o G:L%2(0) — £L?(U,L%(0)) given by

G(p)le] = gklp), with (gi)x € COM([-1,1])

@ structure:
g (£1) =0, F'g?ecL>(-1,1) forallkeN
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Stochastic approach to phase-field models

Choice of the noise

Noise coefficient: Hilbert-Schmidt from a abstract space U to the reference space L2(O), i.e.

G(p) € L3(U,1%2(0)) Ve [20).

Possible choice of the noise:
o G:L%2(0) — £L?(U,L%(0)) given by
G(p)led] = gx(9), with (g)x C C*H([-1,1])
@ structure:
g (£1) =0, F'g?ecL>(-1,1) forallkeN
o Hilbert-Schmidt condition:

> (kI uy + IF" 8l (-1,1)) < +o
keN

Luca Scarpa (Polimi) Stochastic phase-field models Mixtures 8 /18



Stochastic approach to phase-field models

Choice of the noise

Noise coefficient: Hilbert-Schmidt from a abstract space U to the reference space L2(O), i.e.

G(p) € L3(U,1%2(0)) Ve [20).

Possible choice of the noise:
o G:L%2(0) — £L?(U,L%(0)) given by

G(p)le] = gklp), with (gi)x € COM([-1,1])

@ structure:
g (£1) =0, F'g?ecL>(-1,1) forallkeN

o Hilbert-Schmidt condition:

>~ (lgnlZoaq 1) + I1F" 82l (-11)) < +o0
keN

o interpretation: G() behaves as a degenerate mobility-type function
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Stochastic approach to phase-field models

Choice of the noise

Noise coefficient: Hilbert-Schmidt from a abstract space U to the reference space L2(O), i.e.

G(p) € L3(U,1%2(0)) Ve [20).

Possible choice of the noise:

G : [2(0) = L2(U, [2(0)) given by

G(p)le] = gklp), with (gi)x € COM([-1,1])

structure:
g (£1) =0, F'g?ecL>(-1,1) forallkeN

Hilbert-Schmidt condition:

>~ (lgnlZoaq 1) + I1F" 82l (-11)) < +o0
keN

interpretation: G(¢) behaves as a degenerate mobility-type function
advantage: G is of “local” type (superposition operator)
drawback: no mass-conservation

modelling: random forcing term giving mass proliferation (Allen-Cahn)
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An example: the stochastic Allen-Cahn equation

© An example: the stochastic Allen-Cahn equation
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Stochastic Allen-Cahn equation

Theorem (Bertacco, Orrieri, S. (2020-2023))

In this setting, for every po € H(O) with leollLos (o) < 1, there exists a unique process

€ L2(Q; CO([0, T]; L2(O©)) N L=(0, T; HY(0)) N L3(0, T; H3(0))),
lp| <1 aeinQx(0,T)xO,

such that for every t € [0, T], P-almost surely,

(1) - /0 “Ap(s)ds + /0 CFp((s))v s = o+ /0 "Glp(s) dW(s) in 12(0).
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Stochastic Allen-Cahn equation

Theorem (Bertacco, Orrieri, S. (2020-2023))

In this setting, for every po € H(O) with leollLos (o) < 1, there exists a unique process

€ L2(Q; CO([0, T]; L2(O©)) N L=(0, T; HY(0)) N L3(0, T; H3(0))),
lpl <1 ae inQx(0,T)xO,

such that for every t € [0, T], P-almost surely,
¢ ¢ ¢
o)~ [ aee)as+ [ Fylee)vds = po+ [ Glet)aws) in12(0).

Moreover, the solution map pg — ¢ is Lipschitz-continuous as a map

L2(0) — L2(Q; CO([0, T]; L2(©)) N L2(0, T; HY(0))).
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Stochastic Allen-Cahn equation

Theorem (Bertacco, Orrieri, S. (2020-2023))

In this setting, for every po € H(O) with leollLos (o) < 1, there exists a unique process

€ L2(Q; CO([0, T]; L2(O©)) N L=(0, T; HY(0)) N L3(0, T; H3(0))),
lpl <1 ae inQx(0,T)xO,

such that for every t € [0, T], P-almost surely,
t t t
w(t) - /0 Dp(s)ds + /0 Fle(0(s))v ds = o + /0 Ge(s)) aW(s) in L2(0).
Moreover, the solution map pg — ¢ is Lipschitz-continuous as a map

L2(0) — L2(Q; CO([0, T]; L2(©)) N L2(0, T; HY(0))).

If also o € H2(O) satisfies lleollLes 0y < 1, then a random separation property holds:

]P’(EIJE(O,I): sup |g0(t,x)|<1—6>:1.
(t,x)€[0,T]xO

Luca Scarpa (Polimi) Stochastic phase-field models Mixtures 10 / 18



Formal energy balance
1t6 formula yields the formal energy balance:
1 2 t 2
5 Lwe@r s [ R+ [ [ sk ds
(@) (@) 0o JO

1 t
- 5/O|V<Po|2-1-/OF(500)-1-/0 (14(s), G(p(s)) dW(s))

IR / 1 [fS 1"
3 ) 2 s oveer a3 [ [ F o) b

o = = E A
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An example: the stochastic Allen-Cahn equation

Formal energy balance

1t6 formula yields the formal energy balance:

: /O V() + /o Fle(t) + /0 ' /o ()| ds

1 t
- E/O\V<,90|2-s-/OF(Lpo)-i—/o (14(s), G(p(s)) dW(s))

1 e / 2 1 f " 2
3y 2, v a3 [ [ F el .

Extra terms:

/t (r(s), G(p(s)) dW(s)) : first order martingale term,

1
5/ / lgi(w(s))Ve(s)|? ds second order proliferation term (gradient contribution),

1 . . . _
5/ / F"(o(s)) gk (e(s))|? ds second order proliferation term (potential contribution).
0
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An example: the stochastic Allen-Cahn equation

Formal energy balance

1t6 formula yields the formal energy balance:

: /O V() + /o Fle(t) + /0 ' /o ()| ds

1 t
- E/O Viol® +/O F(soo)+/0 (u(s), G(p(s)) dW(s))
1 t o , ) 1 t 00 . ,
+§/0 kz:;)/o‘gk(‘ﬁ(s))vw(sﬂ ds+§/o Z%/OF (¢(s)|gk(p(s))|* ds .

Extra terms:

/t (1(s), G(p(s)) dW(s)) : first order martingale term,

1
5 / / lgi(w(s))Ve(s)|? ds second order proliferation term (gradient contribution),

—/ / F"(o(s)) gk (e(s))|? ds second order proliferation term (potential contribution).
0

ISSUE: blow-up of F”’ should be compensated by degeneracy of G!
T



Open problems and ongoing work

© Open problems and ongoing work
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Selection of ongoing and future projects
1) Stochastic conservative Allen-Cahn equation with conservative noise
o = - = DA




Open problems and ongoing work

Selection of ongoing and future projects

1) Stochastic conservative Allen-Cahn equation with conservative noise

de+ (p—m)dt = —divG(e)dW in (0,T) x T,

Divergence-form noise: w=—Dp+ F'(p) in(0,T)xT, (4.1)
#(0) = ¢o inT,
do + (p—p) dt = (G(p) — G(¢))dW in (0, T) x T,
Zero-order noise: u=—Ap+ F'(o) in (0, T)xT, (42)
(,0(0) = o in T,
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Open problems and ongoing work

Selection of ongoing and future projects

1) Stochastic conservative Allen-Cahn equation with conservative noise

de+ (p—m)dt = —divG(e)dW in (0,T) x T,

Divergence-form noise: w=—Dp+ F'(p) in (0, T) xT,
(p(o) = o in T,
do+ (p—p)dt = (G(p) — G(¢))dW in (0, T) x T,
Zero-order noise: uw=—Ap+ F'(p) in (0,T) xT,
©(0) = o in T,

@ more coherent with the model derivation
o (4.1): treated in collaboration with Andrea Di Primio and Maurizio Grasselli

o (4.2): energy proliferation reads as
1 f 11
2E[ > L IF eoDllentol) - ale@P ds

o problem: nonlocal term prevents to control the blow-up of F” locally at 41
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Open problems and ongoing work

Selection of ongoing and future projects

2) Long-time behaviour for stochastic Allen-Cahn-type equations

o behaviour of the law of the random variable ¢(t) : Q — L2(O), as t — +o0
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Open problems and ongoing work

Selection of ongoing and future projects

2) Long-time behaviour for stochastic Allen-Cahn-type equations

behaviour of the law of the random variable (t) : Q@ — L2(0), as t — +oo
existence uniqueness of an invariant measure v

convergence of the laws towards v

asymptotic stability in Wasserstein distances

elliptic Kolmogorov equation in L2(H,v), where H = L2(O)

stochastic Allen-Cahn equation: treated in collaboration with Margherita Zanella
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behaviour of the law of the random variable (t) : Q@ — L2(0), as t — +oo
existence uniqueness of an invariant measure v

convergence of the laws towards v

asymptotic stability in Wasserstein distances

elliptic Kolmogorov equation in L2(H,v), where H = L2(O)

stochastic Allen-Cahn equation: treated in collaboration with Margherita Zanella

3) Coupled stochastic Allen-Cahn-Navier-Stokes systems
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Open problems and ongoing work

Selection of ongoing and future projects

2) Long-time behaviour for stochastic Allen-Cahn-type equations

behaviour of the law of the random variable p(t) : Q — L2(0), as t — +oo
existence uniqueness of an invariant measure v

convergence of the laws towards v

asymptotic stability in Wasserstein distances

elliptic Kolmogorov equation in L2(H,v), where H = L2(O)

stochastic Allen-Cahn equation: treated in collaboration with Margherita Zanella

3) Coupled stochastic Allen-Cahn-Navier-Stokes systems

du— Audt + (u- V)udt = pVedt+ Gi(u)dW in (0, T) x O,
dp+pdt+u-Vedt = G(p) dW in (0,T) x O, (4.3)
w=—0Dp+ F'(p) in (0, T)x O,

u(0) =ug, ¢(0)=¢o in O,
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Open problems and ongoing work

Selection of ongoing and future projects

2) Long-time behaviour for stochastic Allen-Cahn-type equations

@ behaviour of the law of the random variable ¢(t) : Q — L2(0), as t — +o00
@ existence uniqueness of an invariant measure v

@ convergence of the laws towards v

@ asymptotic stability in Wasserstein distances

o elliptic Kolmogorov equation in L2(H,v), where H = L2(O)

o stochastic Allen-Cahn equation: treated in collaboration with Margherita Zanella

3) Coupled stochastic Allen-Cahn-Navier-Stokes systems

du— Audt + (u- V)udt = pVedt+ Gi(u)dW in (0,T) x O,
dp+pdt+u-Vedt = G(p) dW in (0,T) x O, (4.3)
p=—0p+F'(p) n(0,T)xO,

u(0) =ug, ¢(0)=¢o in O,

o well-posedness: treated in collaboration with Andrea di Primio and Maurizio Grasselli

@ long-time behaviour: treated in collaboration with Andrea di Primio and Margherita Zanella
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Selection of ongoing and future projects
4) Stochastic Cahn-Hilliard equation
=} F = = DA



Open problems and ongoing work

Selection of ongoing and future projects

4) Stochastic Cahn-Hilliard equation

dp — divim(p)Vu]dt = G(¢)dW in (0,T) x O,

uw=—Ap+ F'(p) in (0, T)x O, (4.4)
Onp = m(p)oap =0 in (0, T) x 00, '
©(0) = ¥o in O.
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Open problems and ongoing work

Selection of ongoing and future projects

4) Stochastic Cahn-Hilliard equation

dp — divim(p)Vu]dt = G(¢)dW in (0,T) x O,

uw=—Ap+ F'(p) in (0, T)x O, (4.4)
Onp = m(p)oap =0 in (0, T) x 00, '
©(0) = ¥o in O.

e m: mobility function, degenerate (m(x) = 1 — x2) or non-degenerate (m(x) = 1)
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Open problems and ongoing work

Selection of ongoing and future projects

4) Stochastic Cahn-Hilliard equation

dp — divim(p)Vu]dt = G(¢)dW in (0,T) x O,
n=—-0p+ F'(p) in (0, T)x O,
Onp = m(p)Oap =0 in (0, T) x 8O,
#(0) = o in 0.

(4.4)

e m: mobility function, degenerate (m(x) = 1 — x2) or non-degenerate (m(x) = 1)

o (4.4) with constant mobility and regular potential:
treated by Da Prato and Debussche (1996), S. (2018-2020-2021)

@ (4.4) with degenerate mobility and singular potential:
treated by S. (2021) with non-conservative noise

o (4.4) with constant mobility and singular potential:
treated with Andrea Di Primio and Maurizio Grasselli (2024) with conservative noise
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Open problems and ongoing work

Selection of ongoing and future projects

4) Stochastic Cahn-Hilliard equation

dp — divim(p)Vu]dt = G(¢)dW in (0,T) x O,

n=—-0p+ F'(p) in (0, T) x O, (4.4)
Onp = m(p)Onpn =0 in (0, T) x 8O, '
»(0) = vo in O.

m: mobility function, degenerate (m(x) = 1 — x?) or non-degenerate (m(x) = 1)

(4.4) with constant mobility and regular potential:

treated by Da Prato and Debussche (1996), S. (2018-2020-2021)
(4.4) with degenerate mobility and singular potential:

treated by S. (2021) with non-conservative noise

(4.4) with constant mobility and singular potential:
treated with Andrea Di Primio and Maurizio Grasselli (2024) with conservative noise

future project: long time behaviour, with Andrea Di Primio and Margherita Zanella

future project: nonlocal variants, with Andrea Di Primio and Margherita Zanella

future project: nonlocal-to-local convergence, with Andrea Di Primio and Margherita Zanella

Luca Scarpa (Polimi) Stochastic phase-field models Mixtures 15 / 18



A long-time future project
5) Uniqueness by noise for phase-field models
o = = = DA



Open problems and ongoing work

A long-time future project

5) Uniqueness by noise for phase-field models

Ill-posed deterministic evolution equation: d:u + Au + B(u) = 0.

I
Well-posed stochastic evolution equation: du + Audt + B(u) dt = G dW.
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Open problems and ongoing work

A long-time future project

5) Uniqueness by noise for phase-field models

Ill-posed deterministic evolution equation: d:u + Au + B(u) = 0.

I
Well-posed stochastic evolution equation: du + Audt + B(u) dt = G dW.

@ uniqueness by noise: well-known in finite dimensions
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Open problems and ongoing work

A long-time future project

5) Uniqueness by noise for phase-field models

Ill-posed deterministic evolution equation: d:u + Au + B(u) = 0.

I
Well-posed stochastic evolution equation: du + Audt + B(u) dt = G dW.

@ uniqueness by noise: well-known in finite dimensions

@ infinite dimensions with perturbation B of order zero:
Da Prato, Flandoli, Priola, R3ckner (2013)

@ infinite dimensions with singular perturbation B: Bertacco, Orrieri, S. (2023)

@ infinite dimensions for doubly-nonlinear equations: Orrieri, S., Stefanelli (ongoing)
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Open problems and ongoing work

A long-time future project

5) Uniqueness by noise for phase-field models

Ill-posed deterministic evolution equation: J:u + Au+ B(u) = 0.

I
Well-posed stochastic evolution equation: du + Audt + B(u) dt = G dW.

@ uniqueness by noise: well-known in finite dimensions

@ infinite dimensions with perturbation B of order zero:
Da Prato, Flandoli, Priola, R3ckner (2013)

@ infinite dimensions with singular perturbation B: Bertacco, Orrieri, S. (2023)

@ infinite dimensions for doubly-nonlinear equations: Orrieri, S., Stefanelli (ongoing)

@ idea: restore uniqueness by noise for ill-posed phase-field models:
local Cahn-Hilliard with degenerate mobility and logarithmic potential!
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5) Uniqueness by noise for phase-field models

Ill-posed deterministic evolution equation: J:u + Au+ B(u) = 0.

I
Well-posed stochastic evolution equation: du + Audt + B(u) dt = G dW.

@ uniqueness by noise: well-known in finite dimensions

@ infinite dimensions with perturbation B of order zero:
Da Prato, Flandoli, Priola, R3ckner (2013)

@ infinite dimensions with singular perturbation B: Bertacco, Orrieri, S. (2023)

@ infinite dimensions for doubly-nonlinear equations: Orrieri, S., Stefanelli (ongoing)

@ idea: restore uniqueness by noise for ill-posed phase-field models:
local Cahn-Hilliard with degenerate mobility and logarithmic potential!

e modelling: validation of the original Cahn-Hilliard separation model

@ maths: regularising properties of degenerate elliptic operators in infinite dimensions
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Another long-time future project

6) Joint hydrodynamic and nonlocal-to-local convergence for Cahn-Hilliard

Microscopic derivation of the nonlocal Cahn-Hilliard equation:
@ Giacomin, Lebowitz (1997): probabilistic limit

o from lattice gas model to nonlocal Cahn-Hilliard equation (n — co)
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6) Joint hydrodynamic and nonlocal-to-local convergence for Cahn-Hilliard

Microscopic derivation of the nonlocal Cahn-Hilliard equation:
o Giacomin, Lebowitz (1997): probabilistic limit
o from lattice gas model to nonlocal Cahn-Hilliard equation (n — co)
Convergence of the nonlocal Cahn-Hilliard equation to the local one:
o Davoli, S., Trussardi (2020-2021): constant mobility and singular potential
o Abels, Terasawa (2022): coupled Cahn-Hilliard-Navier-Stokes
@ Elbar, Skrzeczkowski (2023): degenerate mobility

@ interaction kernels suitably scaled around a Dirac delta (¢ — 0)
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6) Joint hydrodynamic and nonlocal-to-local convergence for Cahn-Hilliard

Microscopic derivation of the nonlocal Cahn-Hilliard equation:
o Giacomin, Lebowitz (1997): probabilistic limit

o from lattice gas model to nonlocal Cahn-Hilliard equation (n — co)

Convergence of the nonlocal Cahn-Hilliard equation to the local one:
o Davoli, S., Trussardi (2020-2021): constant mobility and singular potential
o Abels, Terasawa (2022): coupled Cahn-Hilliard-Navier-Stokes
@ Elbar, Skrzeczkowski (2023): degenerate mobility

@ interaction kernels suitably scaled around a Dirac delta (¢ — 0)

Possible idea for microscopic derivation of the local Cahn-Hilliard equation:
o lattice gas (n particles) with scaled interaction potential (¢)

@ joint limiting procedure as n — oo and € — 0.
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6) Joint hydrodynamic and nonlocal-to-local convergence for Cahn-Hilliard

Microscopic derivation of the nonlocal Cahn-Hilliard equation:
o Giacomin, Lebowitz (1997): probabilistic limit

o from lattice gas model to nonlocal Cahn-Hilliard equation (n — co)

Convergence of the nonlocal Cahn-Hilliard equation to the local one:
o Davoli, S., Trussardi (2020-2021): constant mobility and singular potential
o Abels, Terasawa (2022): coupled Cahn-Hilliard-Navier-Stokes
@ Elbar, Skrzeczkowski (2023): degenerate mobility
@ interaction kernels suitably scaled around a Dirac delta (¢ — 0)
Possible idea for microscopic derivation of the local Cahn-Hilliard equation:

o lattice gas (n particles) with scaled interaction potential (¢)

@ joint limiting procedure as n — oo and € — 0.

— | e— 0t -
|Nonloca1 Cahn-Hilliard (= > 0) | Local Cahn-Hilliard

n— o0

n — oo and € — 07 jointly.

ILattice Gas Model (n > 0,e > 0)

Luca Scarpa (Polimi) Stochastic phase-field models Mixtures 17 / 18



References:

@ L. Scarpa. The stochastic Cahn-Hilliard equation with degenerate mobility and
logarithmic potential. Nonlinearity 34 (2021), no. 6, 3813-3857.

o F. Bertacco. Stochastic Allen—Cahn equation with logarithmic potential. Nonlinear Anal.
202 (2021), 112122, 1-22.

o F. Bertacco, C. Orrieri, L. Scarpa. Random separation property for stochastic
Allen-Cahn-type equations. Electron. J. Probab. 27 (2022), 1-32.

e E. Davoli, L. Scarpa, L. Trussardi. Nonlocal-to-local convergence of Cahn-Hilliard
equations: Neumann boundary conditions and viscosity terms.
Arch. Ration. Mech. Anal. 239 (2021), no. 1, 117-149.

o A. Di Primio, M. Grasselli, L. Scarpa. A stochastic Allen-Cahn-Navier-Stokes system with
singular potential. J. Differential Equations 387 (2024), 378—431.

o L. Scarpa, M. Zanella. Degenerate Kolmogorov equations and ergodicity for the
stochastic Allen-Cahn equation with logarithmic potential. Stoch. Partial Differ. Equ.
Anal. Comput. 12 (2024), 281-325.

@ A. Di Primio, M. Grasselli, L. Scarpa. Stochastic Cahn-Hilliard and conserved Allen-Cahn
equations with logarithmic potential and conservative noise. Nonlinearity 37 (2024),
no. 12, Paper No. 125005, 57 pp.

o F. Bertacco, C. Orrieri, L. Scarpa. Weak uniqueness by noise for singular stochastic
PDEs. Submitted (2023), arXiv:2308.01642

THANK YOU FOR YOUR ATTENTION!

Luca Scarpa (Polimi) Stochastic phase-field models Mixtures 18 / 18



	Deterministic approach to phase-field models
	Stochastic approach to phase-field models
	An example: the stochastic Allen-Cahn equation
	Open problems and ongoing work

