
The role of randomness in stochastic phase-field modelling

Luca Scarpa

Department of Mathematics, Politecnico di Milano
luca.scarpa@polimi.it

Mixtures: Modeling, analysis and computing

EMS Topical Activity Group conference

5-7 February 2025, Charles University, Prague

Luca Scarpa (Polimi) Stochastic phase-field models Mixtures 1 / 18



Outline

1 Deterministic approach to phase-field models

2 Stochastic approach to phase-field models

3 An example: the stochastic Allen-Cahn equation

4 Open problems and ongoing work

Luca Scarpa (Polimi) Stochastic phase-field models Mixtures 2 / 18



Deterministic approach to phase-field models

Phase field modelling

Phase-field approach to phase-separation:

evolution of a material with 2 different features, mixtures, . . .

phase variable ϕ ∈ [−1, 1]: pure phases are {ϕ = 1} and {ϕ = −1}
intermediate values ϕ ∈ (−1, 1) are allowed: diffuse (narrow) interface

Advantages with respect to sharp interface models:

no need of boundary conditions at the interface

no need to track the interface at all times

no difficulties in case of topological changes

Applications:

physics and engineering: phase separation, alloys, fluid mixtures, . . .

biology: tumour growth dynamics, RNA-protein formation, . . .

. . .
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Deterministic approach to phase-field models

Deterministic approach to phase-field models

Given a smooth bounded domain O ⊂ Rd , d ∈ {2, 3}, one considers the free-energy functional

E(ϕ) :=
1
2

∫
O
|∇ϕ|2 +

∫
O
F (ϕ) ,

along with its variational derivative (chemical potential)

µ = −∆ϕ+ F ′(ϕ) .

Deterministic approach:
neglect other possible energy contributions (temperature, magnetic, vibrational effects)

Allen-Cahn model:

∂tϕ+ µ = 0

no-flux boundary conditions for ϕ

no mass-conservation

Cahn-Hilliard model:

∂tϕ−∆µ = 0

no-flux boundary conditions for ϕ and µ

mass-conservation
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Deterministic approach to phase-field models

Classical Allen-Cahn and Cahn-Hilliard equations

Typical form of the AC equation:
∂tϕ−∆ϕ+ F ′(ϕ) = 0 in (0,T )×O,
∂nϕ = 0 in (0,T )× ∂O,
ϕ(0) = ϕ0 in O.

Typical form of the CH equation:
∂tϕ−∆µ = 0 in (0,T )×O,
µ = −∆ϕ+ F ′(ϕ) in (0,T )×O,
∂nϕ = ∂nµ = 0 in (0,T )× ∂O,
ϕ(0) = ϕ0 in O.

Physically-relevant choice of double-well potential:

Flog (r) :=
θ

2
[(1 + r) ln(1 + r) + (1− r) ln(1− r)]−

θ0

2
r2 , r ∈ [−1, 1] , 0 < θ < θ0 .

Initial datum with finite energy:

ϕ0 ∈ H1(O) , |ϕ0| ≤ 1 a.e. in O .
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Stochastic approach to phase-field models

Stochastic approach to phase-field models

Phase separation may be affected by:
unpredictable temperature oscillations, microscopic movements, magnetic effects, . . .
measurement uncertainty, environmental disturbance, . . .

Possible solutions (Cook, 1970):
deterministic model is too “simple” to capture such background noise
addition of a suitable stochastic forcing in the equation: gaussian noise

General form of the stochastic Allen-Cahn (α = 0) and Cahn-Hilliard (α = 1) equations:
dϕ+ (1− α)µ dt − α∆µ dt = G(ϕ) dW in (0,T )×O ,
µ = −∆ϕ+ F ′(ϕ) in (0,T )×O ,
∂nϕ = α∂nµ = 0 in (0,T )× ∂O ,
ϕ(0) = ϕ0 in O .

Stochastic forcing:
(Ω,F , (Ft)t≥0,P): filtered probability space
W : cylindrical Wiener process on a abstract Hilbert space U i.e.

W =
∞∑
k=0

βkek , (ek )k c.o.s. of U , (βk )k independent Brownian motions .
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Stochastic approach to phase-field models

Choice of the noise

Noise coefficient: Hilbert-Schmidt from a abstract space U to the reference space L2(O), i.e.

G(ϕ) ∈ L 2(U, L2(O)) ∀ϕ ∈ L2(O) .

Possible choice of the noise:
G : L2(O)→ L 2(U, L2(O)) given by

G(ϕ)[ek ] = gk (ϕ) , with (gk )k ⊂ C0,1([−1, 1])

structure:
gk (±1) = 0 , F ′′g2

k ∈ L∞(−1, 1) for all k ∈ N

Hilbert-Schmidt condition:∑
k∈N

(
‖gk‖2C0,1([−1,1]) + ‖F ′′g2

k ‖L∞(−1,1)

)
< +∞

interpretation: G(ϕ) behaves as a degenerate mobility-type function
advantage: G is of “local” type (superposition operator)
drawback: no mass-conservation
modelling: random forcing term giving mass proliferation (Allen-Cahn)
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An example: the stochastic Allen-Cahn equation

Stochastic Allen-Cahn equation

Theorem (Bertacco, Orrieri, S. (2020-2023))

In this setting, for every ϕ0 ∈ H1(O) with ‖ϕ0‖L∞(O) ≤ 1, there exists a unique process

ϕ ∈ L2(Ω;C0([0,T ]; L2(O)) ∩ L∞(0,T ;H1(O)) ∩ L2(0,T ;H2
n (O))) ,

|ϕ| < 1 a.e. in Ω× (0,T )×O ,

such that for every t ∈ [0,T ], P-almost surely,

ϕ(t)−
∫ t

0
∆ϕ(s) ds +

∫ t

0
F ′log (ϕ(s))v ds = ϕ0 +

∫ t

0
G(ϕ(s)) dW (s) in L2(O) .

Moreover, the solution map ϕ0 7→ ϕ is Lipschitz-continuous as a map

L2(O)→ L2(Ω;C0([0,T ]; L2(O)) ∩ L2(0,T ;H1(O))) .

If also ϕ0 ∈ H2
n (O) satisfies ‖ϕ0‖L∞(O) < 1, then a random separation property holds:

P

(
∃ δ ∈ (0, 1) : sup

(t,x)∈[0,T ]×O
|ϕ(t, x)| ≤ 1− δ

)
= 1 .
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An example: the stochastic Allen-Cahn equation

Formal energy balance

Itô formula yields the formal energy balance:

1
2

∫
O
|∇ϕ(t)|2 +

∫
O
F (ϕ(t)) +

∫ t

0

∫
O
|µ(s)|2 ds

=
1
2

∫
O
|∇ϕ0|2 +

∫
O
F (ϕ0) +

∫ t

0
(µ(s),G(ϕ(s)) dW (s))

+
1
2

∫ t

0

∞∑
k=0

∫
O
|g ′k (ϕ(s))∇ϕ(s)|2 ds +

1
2

∫ t

0

∞∑
k=0

∫
O
F ′′(ϕ(s))|gk (ϕ(s))|2 ds .

Extra terms:∫ t

0
(µ(s),G(ϕ(s)) dW (s)) : first order martingale term,

1
2

∫ t

0

∞∑
k=0

∫
O
|g ′k (ϕ(s))∇ϕ(s)|2 ds second order proliferation term (gradient contribution),

1
2

∫ t

0

∞∑
k=0

∫
O
F ′′(ϕ(s))|gk (ϕ(s))|2 ds second order proliferation term (potential contribution).

ISSUE: blow-up of F ′′ should be compensated by degeneracy of G !
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Open problems and ongoing work

Selection of ongoing and future projects

1) Stochastic conservative Allen-Cahn equation with conservative noise

Divergence-form noise:


dϕ+ (µ− µ) dt = − divG(ϕ) dW in (0,T )× T,
µ = −∆ϕ+ F ′(ϕ) in (0,T )× T,
ϕ(0) = ϕ0 in T,

(4.1)

Zero-order noise:


dϕ+ (µ− µ) dt = (G(ϕ)− G(ϕ)) dW in (0,T )× T,
µ = −∆ϕ+ F ′(ϕ) in (0,T )× T,
ϕ(0) = ϕ0 in T,

(4.2)

more coherent with the model derivation

(4.1): treated in collaboration with Andrea Di Primio and Maurizio Grasselli

(4.2): energy proliferation reads as

1
2
E
∫ t

0

∞∑
k=0

∫
T
|F ′′(ϕ(s))||gk (ϕ(s))− gk (ϕ(s))|2 ds

problem: nonlocal term prevents to control the blow-up of F ′′ locally at ±1
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Open problems and ongoing work

Selection of ongoing and future projects

2) Long-time behaviour for stochastic Allen-Cahn-type equations

behaviour of the law of the random variable ϕ(t) : Ω→ L2(O), as t → +∞
existence uniqueness of an invariant measure ν

convergence of the laws towards ν

asymptotic stability in Wasserstein distances

elliptic Kolmogorov equation in L2(H, ν), where H = L2(O)

stochastic Allen-Cahn equation: treated in collaboration with Margherita Zanella

3) Coupled stochastic Allen-Cahn-Navier-Stokes systems
du−∆u dt + (u · ∇)u dt = µ∇ϕ dt + G1(u) dW in (0,T )×O,
dϕ+ µ dt + u · ∇ϕ dt = G2(ϕ) dW in (0,T )×O,
µ = −∆ϕ+ F ′(ϕ) in (0,T )×O,
u(0) = u0, ϕ(0) = ϕ0 in O,

(4.3)

well-posedness: treated in collaboration with Andrea di Primio and Maurizio Grasselli

long-time behaviour: treated in collaboration with Andrea di Primio and Margherita Zanella
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Open problems and ongoing work

Selection of ongoing and future projects

4) Stochastic Cahn-Hilliard equation
dϕ− div[m(ϕ)∇µ] dt = G(ϕ) dW in (0,T )×O,
µ = −∆ϕ+ F ′(ϕ) in (0,T )×O,
∂nϕ = m(ϕ)∂nµ = 0 in (0,T )× ∂O,
ϕ(0) = ϕ0 in O.

(4.4)

m: mobility function, degenerate (m(x) = 1− x2) or non-degenerate (m(x) = 1)

(4.4) with constant mobility and regular potential:
treated by Da Prato and Debussche (1996), S. (2018-2020-2021)
(4.4) with degenerate mobility and singular potential:
treated by S. (2021) with non-conservative noise

(4.4) with constant mobility and singular potential:
treated with Andrea Di Primio and Maurizio Grasselli (2024) with conservative noise

future project: long time behaviour, with Andrea Di Primio and Margherita Zanella

future project: nonlocal variants, with Andrea Di Primio and Margherita Zanella

future project: nonlocal-to-local convergence, with Andrea Di Primio and Margherita Zanella
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Open problems and ongoing work

A long-time future project

5) Uniqueness by noise for phase-field models

Ill-posed deterministic evolution equation: ∂tu + Au + B(u) = 0.

⇓
Well-posed stochastic evolution equation: du + Au dt + B(u) dt = G dW .

uniqueness by noise: well-known in finite dimensions

infinite dimensions with perturbation B of order zero:
Da Prato, Flandoli, Priola, Röckner (2013)

infinite dimensions with singular perturbation B: Bertacco, Orrieri, S. (2023)
infinite dimensions for doubly-nonlinear equations: Orrieri, S., Stefanelli (ongoing)

idea: restore uniqueness by noise for ill-posed phase-field models:
local Cahn-Hilliard with degenerate mobility and logarithmic potential!
modelling: validation of the original Cahn-Hilliard separation model

maths: regularising properties of degenerate elliptic operators in infinite dimensions

. . .
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Open problems and ongoing work

Another long-time future project

6) Joint hydrodynamic and nonlocal-to-local convergence for Cahn-Hilliard

Microscopic derivation of the nonlocal Cahn-Hilliard equation:

Giacomin, Lebowitz (1997): probabilistic limit

from lattice gas model to nonlocal Cahn-Hilliard equation (n→∞)

Convergence of the nonlocal Cahn-Hilliard equation to the local one:

Davoli, S., Trussardi (2020-2021): constant mobility and singular potential

Abels, Terasawa (2022): coupled Cahn-Hilliard-Navier-Stokes

Elbar, Skrzeczkowski (2023): degenerate mobility

interaction kernels suitably scaled around a Dirac delta (ε→ 0)

Possible idea for microscopic derivation of the local Cahn-Hilliard equation:

lattice gas (n particles) with scaled interaction potential (ε)

joint limiting procedure as n→∞ and ε→ 0.
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lattice gas (n particles) with scaled interaction potential (ε)

joint limiting procedure as n→∞ and ε→ 0.
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Another long-time future project

6) Joint hydrodynamic and nonlocal-to-local convergence for Cahn-Hilliard

Microscopic derivation of the nonlocal Cahn-Hilliard equation:

Giacomin, Lebowitz (1997): probabilistic limit

from lattice gas model to nonlocal Cahn-Hilliard equation (n→∞)

Convergence of the nonlocal Cahn-Hilliard equation to the local one:

Davoli, S., Trussardi (2020-2021): constant mobility and singular potential

Abels, Terasawa (2022): coupled Cahn-Hilliard-Navier-Stokes

Elbar, Skrzeczkowski (2023): degenerate mobility

interaction kernels suitably scaled around a Dirac delta (ε→ 0)

Possible idea for microscopic derivation of the local Cahn-Hilliard equation:

lattice gas (n particles) with scaled interaction potential (ε)

joint limiting procedure as n→∞ and ε→ 0.
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Thank you
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