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Detailed-Scale Liquid-Vapour Flow

Convection-dominated two-phase flow:

Ceasa

Droplet hitting surface (Tretola et al. '22).
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1. Hyperbolic Approximations for the
Incompressible Navier-Stokes System
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1. Hyperbolic Approximations for the Incompressible NS System
The incompressible NS system in the domain D c RY:

V-u = 0,
in Dr := D x (0, T),
u + (U-Vju+Vp = rAu

u=0 ondDx(0,T) + IC.

Unknowns:
p=p(x,t) € R :pressure v > 0 is the given viscosity.
u=u(x,t) € R?: velocity

Any classical solution of the initial boundary value problem for the NS system
satisfies for all t € (0, T) the inequality

/ Llu(x, )2 dx = _/ V| Vu(x, t)Pdx < 0.
dt 5
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1. Hyperbolic Approximations for the Incompressible NS System
Artificial Compressibility (Chorin ‘67, Temam '69): Let o > 0 be given.

apf + V-u® = 0,
1 in DT,
ug + (u*-vu® + §(V UYUY + Vp* = 4rvAu?,

u*=0 onoDx(0,T) + IC.

Unknowns:
p* =p*(x,t) € R : pressure
u® = u(x,t) € R9: velocity

Any classical solution of the initial boundary value problem for the
artificial-compressibility approximation satisfies for all t € (0, T) the inequality

d/a o 1 > / 5
— | =[p¥(x,D)|F + = |u*(x, 1) dx = — | v|Vu*(x,t)|“dx <0.

Excellence
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1. Hyperbolic Approximations for the Incompressible NS System
Artificial Compressibility for D = R: (index « skipped)

We get for the state space Q = {Q = (p, u)” € R?} the system

p a~lu 0
( >+< ; ) =< ) — @ +1(Q),=85[Q] inR x(0,00).
u ) v+p ) Vlxx

This first-order system is strictly hyperbolic with two characteristic speeds

A (Q)=uF /U2 +1/a.

Riemann problem for Q. € O:

Two-wave Riemann solution with
intermediate state Q. = Q.(Q_, Q).




1. Hyperbolic Approximations for the Incompressible NS System
Artificial Compressibility and DG methods (Bassi et al '06):

Let a triangulation 75, of D = RY be given with I, being the set of faces. Define for
k € Ny the DG-spaces

U= (V)% Qn = Vi, Vi ={vy € L3(D)|vh, € Pr(K), K € Th}.
Let F(Q) =u®u+ pZ.

Find (pn,up) € Qp x Up with
—/ Up-Vagndx+ [ [gn] - 0(Q,,Q})d¢ = O,
D T,
/ Vh-Upt ax — / VhVp - F(Qh) ax -+ / |[Vh]] : |A:(Qf_7, Q;) ag = a[vh, Uh]
D D I’y

for all (g, vp) € Qp x Up.

The numerical fluxes are defined from the Riemann problem solutions as
0(Q,.Q}) =u.(Q,;.Qf).  F(Q,.Q;) =F(Q.(Q;.Q)).
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1. Hyperbolic Approximations for the Incompressible NS System
Artificial Compressibility and DG methods for convection-dominated flow:
(Bassi&Massa&Ostrowski&R., J. Comput. Phys. '22):

Implicit LES simulation for Periodic Hill
at Re = 10595

(ERCOFTAC test case)

Mesh for 2D-cross section.

.
5 20 25 0 % im0
———

Isosurface of Q-15-criterion for kK = 2 (top) and k = 4 (bottom),

coloured with non-dimensional vorticity magnitude.
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2. Hyperbolic Approximations for the
Incompressible Navier-Stokes-Cahn-Hilliard System

(Joint work with Jens Keim and Hasel-Cicek Konan)
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2. Hyperbolic Approximations for the Incompressible NSCH System
The Navier-Stokes-Cahn-Hilliard system (Hohenberg & Halperin *77):

V-u =
us + (u-Vju+Vp =
¢ + V-(cu)—V-(Vu(c) =

n(c) =

u=0,Vec-n=0, Vu(c)-n=0

0,
—cVu(c) + vAu,
in DT,
0,
W'(c) — vAc

onoD x (0,T) + IC.

Unknowns:
p=p(x,t)eRrR : pressure

u=u(x,t)eR? :velocity
c=c(x,t) € [-1,1]: phase field
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Double-well potential W = W(c). 10
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2. Hyperbolic Approximations for the Incompressible NSCH System
Thermodynamical consistency and energy dissipation rate:

1
Elu, c.d] = 5|u? + W(c) + 3 /d

Theorem:
Any classical solution of the initial boundary value problem for the NSCH system
satisfies for all t € (0, T) the inequality

gt/DE[U,C,VC](X, 1) dx = —/D (\VW(C)(x, B2 + v|Vu(x, mz) dx < 0.

Note:
® For the well-posedness of weak and strong solutions see e.g. Boyer’ 99, Abels
'09, Cao&Gal 12, Giorgini&Miranville&Temam ’19, Giorgini&Temam '20...
® Extensions to account for mobility, more general double-well potentials,
density variations, more complex boundary conditions...
e The NSCH model has a proper energy structure but includes nonlocalities
due to the divergence constraint and the biharmonic operator in the CH part.

11
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2. Hyperbolic Approximations for the Incompressible NSCH System
Artificial Compressibility and hyperbolic Cahn-Hilliard:

Define ¢ = («, ).

ap; + V.-u® = 0,
UF (U VU (VU VP = S (V(W/(6F) - 7Ac?))
+vAu®, inDr,
s + V(W) -V-(Vu(c) = -,
N(Ce) _ W’(CE)—72AC€

u*=0,Vec-n=0,Vucc-n=0 onoDx(0,T) + IC.

Unknowns:
p* = p°(x,t) €R : pressure c = c°(x,t) € [-1,1] : phase field

u® = us(x,t) € RY: velocity
12
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2. Hyperbolic Approximations for the Incompressible NSCH System
Artificial Compressibility and friction-type approximation:

Define ¢ = («, ).

apf + V-u® — 1
Uf + (U VU + (VU + VpT = —cS(V(W/(c%) —1AcT))
+vAU®, in D,
ci + V- (cfu®)+ V- v = 0,
SVE + V(W'(c®) — yAc®) = -V

u*=0, Ve -n=0,ve-n=0 ondDx(0,T) + IC.

Unknowns:
p® =p°(x,t) € R : pressure cc =c*(x,t) € [-1,1] : phase field
us = us(x,t) € R?: velocity ve = vé(x,t) e RY  :friction velocity &
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2. Hyperbolic Approximations for the Incompressible NSCH System
Thermodynamical consistency and energy dissipation rate:

! 1 0
E*[p,u, c.v.d] = 507 + 3[uf + 5|v[* + W(c) + Z|dP

Theorem:
Any classical solution of the initial boundary value problem for the friction-type
approximation of the NSCH system satisfies for all t € (0, T) the inequality

d/ E€[p®,u®, c®,ve, Vco](x,t) dx = —/ (]ve(x, )2 + v|Vus(x, t)\z) dx <0.

Note:
® We expect convergence to the NSCH model for |e| — 0. Friction (or
Korteweg) approximations have been studied in e.g. Lattanzio&Tzavaras ’17,
R.&von Wolff ’20,...
® Extensions to account for mobility, more general double-well potentials,
density variations, more complex boundary conditions...
® The friction approximation still includes a third-order operator.
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2. Hyperbolic Approximations for the Incompressible NSCH System
Artificial Compressibility and relaxed friction-type approximation:

Define € = (o, 4, B).

apf + V- u® = 0,
ui + (u®-Vus + %(V USUE+ VPt = —cf(V(W'(cf) — B~ (w® — c9)))
+vAU®,
in DT7
c + V- (c°u®)+V -ve = 0,
Vi +  V(W(c) - (W -cf) = v
—y AW + BN (w® - ¢°) =0
u*=0,Vo*-n=0,ve-n=0 ondDx (0, T) + IC.
Unknowns:
p* € R :pressure cc e [-1,1]: phase field w® € R relaxation field
us € R9:velocity veeRY : friction velocity
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2. Hyperbolic Approximations for the Incompressible NSCH System
Artificial Compressibility and relaxed friction-type approximation:

Define € = (o, 4, B).

apf + V- u® = 0,
uf + (us-V)u + %(V SUSUE + VP + S (V(W(c) +B87'¢%)) = B e Vu®
+vAu®,
c; + V- (ccus)+ V- ve = 0,
SVE + V(W(cf)+ B8 "¢cf) = —v¢+37'VuwE,
—yAw® + 7 (w0 — ) = 0,

us=0,Vws-n=0,ve-n=0 ondDx(0,T) + IC.

Unknowns:
p* € R :pressure cc e [-1,1]: phase field w® € R relaxation field
us € R9:velocity veeRY : friction velocity
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2. Hyperbolic Approximations for the Incompressible NSCH System
Thermodynamical consistency and energy dissipation rate:

E°lp,u,c,V,w, ] = 2p? + 1yu|2 + §|v|2 + W(c) + l(c— w)? + f|e]2
o 2 2 2 258 2
Theorem:
Any classical solution of the initial boundary value problem for the relaxed
friction-type approximation of the NSCH system satisfies for all t € (0, T) the
inequality

d/ E¢[p,us, c%, v, Vco, Vwo](x, t) dx = —/ (|v5(x, )2 + v|Vus(x, t)]z) dx
Cjt [) [)
0.

IN

Note:

We expect convergence to the NSCH model for |e|] — 0. Relaxation
approximations have been studied in e.g. Keim&Munz&R. ’23,
Dhaouadi&Dumbser&Gavrilyuk ’24.
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2. Hyperbolic Approximations for the Incompressible NSCH System
The relaxed friction-type approximation for d = 1: (index e skipped)

We get for G'(¢) = cW”(c) + B~ 'c and the reduced state space
Q= {Q: (p,u,c,v)T eR“‘ce [—1,1]}

the system
p a~lu 0
U2+,D+ G(c) B cwx + vl
+ = in R x (0, c0),
c cu+v 0
v/, s (Wi(e)+87"e) /), —5 v+ (68) 'wy

which rewrites as
Q: +1(Q), =S[Q,w] inR x (0, 00).

16
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2. Hyperbolic Approximations for the Incompressible NSCH System
Hyperbolicity of the relaxed friction-type approximation:

Theorem:
Let a,0 > 0, and let 5 satisfy
—1
o - - "
B < <C€rir!:171]{mm{W (c),0}}> . (1)
Then, the pair (1, q) : Q — R? with
_ a2 1 2 L 2 § 2
n(Q) = 5P +2u +W(c)+250 +2v, o
1
q(Q) = pu+ %u3 +c <W’(c) + ;c> u+ <W’(c)jL 5C> v

is an entropy/entropy-flux pair for the system of conservation laws
Q:+f(Q), =0inR x (0, 00).
The system is hyperbolic in Q.
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2. Hyperbolic Approximations for the Incompressible NSCH System
Characteristic polynomial of the relaxed friction-type approximation:

p(X; Q) = det(DF(Q) —1\) = M\* — gu/\3 + <2u2 ~ <W”(c) + ;) <; + 02> - 1) A2

«

+ @g’ ((W”(C) + ;) + Z) A+ % <W”(C) + ;) :
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Color plot of sgu(p(.; Q)) for fixed § = 0.09 and Color plot of sgu(p(.; Q)) for fixed « = 0.01 and
a € [0.01,0.001]. 4 €[0.01,0.001].
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2. Hyperbolic Approximations for the Incompressible NSCH System
Numerical experiment: stationary droplet (o = 1074, 6 = 1078, s =107%)
Initial data:

p(-,0) = u(-,0) = 0, ¢(-,0) = —tanh (10(| - | — 0.5)),
V('> 0) = (WI(C('v 0)) + 5_1 (C(" 0) - W('> 0)))7 _'YAW(" 0) + B_1w(" 0) = ﬁ_1 C('> 0)'

= CH — =01 — =001 -- 3=0.001

Phase field ¢ and friction ve-
locity v€ fort = 1.

[2-difference  ||c® — w2
and energy E€ over time.

le® = wfll2 [-]

lans-



2. Hyperbolic Approximations for the Incompressible NSCH System
Numerical experiment: shock-waves (o = 0.5, § = 0.0625, v = 10~%, 3 = 0.1)
Discontinuous Riemann initial data:

(0,+1,1,0): x <0,
(0,-1,1,0): x>0,

(p,u,c,v)(x,0) = (compression-like),

(expansion-like).

(07_17270)7 X S 07
(p,u,c,v)(x,0) =

(0,+1,2,0), x > 0.

The double-well potential is chosen according to
W(c) = (c—1)%(c—2)%
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2. Hyperbolic Approximations for the Incompressible NSCH System

Numerical experiment: shock-wave

9

s (o= 0.5, 5 = 0.0625,

=104, 8 =0.1)

Phase field ¢, velocity u, and pressure p at t = 0.15 for the expansion-like setup.
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3. Conclusions and Outlook

lans-

Generalization of the Artificial-Compressibility approach for the
Navier-Stokes-Cahn-Hilliard system
Development of a (basically hyperbolic) relaxed friction-type approximation

Usage of asymptotic-preserving IMEX time discretization for the relaxed
friction-type approximation (~~ FLEXI)

Usage of Riemann solvers for consistent solution of the incompressible
Navier-Stokes-Cahn-Hilliard system (~~ MIGALE, Bassi et al.)

Analysis of the asymptotics of the relaxed friction-type approximation
(Preliminary result in Huang&R.&Yong&Zhang ’24)
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