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Biological applications

Cell membranes and lipid rafts

Eukaryotic cell membranes consist of a heterogeneous but regulated
environment serving as a dynamic platform for cell functions
Membrane heterogeneity includes discrete membrane domains:

Lipid rafts
⇓

Cholesterol associations with membrane lipids like sphingolipids

(Morales-Penningston et al., 2010)
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Perspectives
Biological applications

Cell membranes and lipid rafts

Lipid rafts believed to play an essential role in the regulation of
protein activity
Known to be central to the replication of some viruses like HIV
Liquid ordered phase VS liquid disordered phase:

Liquid-Liquid Phase Separation on the cell membrane

(Zhang et al., 2022)
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The domain of the model equations

Changing cell shape is crucial for the proper function of cellular
processes, including cell migration (e.g., lymphocytes and stem cells)
Lipid rafts formation changes the shape of the cell membranes:
the shape depends on local inhomogeneities within the membrane

(Bacia et al., 2005)

Essential to consider
evolving surfaces embedded in R3
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The evolving surface setting

t ∈ [0, T ], T > 0, evolving time
Γ0: initial closed surface of a (regular) liposome, diameter 10 µm
Φ : [0, T ] × Γ0 → R3, a sufficiently smooth flow map characterizing
the evolution of Γ0

Γ(t) := Φ(t, ·) so that Φ0
t := Φ(t, ·) : Γ0 → Γ(t)

Vn: normal velocity field s.t., for any t ∈ [0, T ], for any x ∈ Γ0,

d
dt Φ0

t (x) = Vn(t, Φ0
t (x))

Φ0
0(x) = x
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A phase-field model for binary fluids on evolving surfaces

φ ∈ [−1, 1]: relative concentration difference between the ordered
and disordered phases (diffuse interface)
We consider

µ := −∆Γ(t)φ + Ψ′(φ), chemical potential

✓ Ψ: Flory Huggins free energy density (potential), 0 < θ < θ0

Ψ(φ) = θ

2((1 + φ)ln(1 + φ) + (1 − φ)ln(1 − φ))︸ ︷︷ ︸
F (φ): convex and logarithmic

−θ0
2 φ2

∂◦φ normal material time derivative
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A phase-field model for binary fluids on evolving surfaces

Introduce a model for u as tangential fluid velocity
Incompressible two-phase fluid: for any t ∈ [0, T ]

divΓ(t)( Vn + u︸ ︷︷ ︸
Total fluid velocity

) ≡ 0 on Γ(t)

This also entails inextensible material surface assumption:∫
Γ(t)

divΓ(t)Vn =
∫

Γ(t)
H(Vn · n) = 0

Unmatched fluid viscosities ν = ν(φ) and densities ρ = ρ(φ)
Thermodynamically consistent model following a similar
derivation as in Abels-Garcke-Grün (2012)
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Binary fluids on evolving surfaces: the model
P(x , t): normal projector on the tangential space at x ∈ Γ(t)
∇Γ(t)u: covariant derivative of u
Introduce:

vn := Vn · n, H := ∇Γ(t)n,

H := tr H =⇒ double mean curvature

ES(u) := 1
2(∇Γ(t)u + ∇T

Γ(t)u)

ν(φ) := ν1
1 + φ

2 + ν2
1 − φ

2
ρ(φ) = ρ1

1 + φ

2 + ρ2
1 − φ

2
Jρ = −ρ1 − ρ2

2 ∇T
Γ(t)µ =⇒ extra flux term

Find (u, p, φ) such that

ρP∂◦u + ((ρu + Jρ) · ∇Γ(t))u + ρvnHu + vnHJρ

−2PdivΓ(t)(ν(φ)ES(u)) + ∇T
Γ(t)p

= −PdivΓ(t)(∇Γ(t)φ ⊗ ∇Γ(t)φ) + 2PdivΓ(t)(ν(φ)vnH) + 1
2∇T

Γ(t)(vn)2,

divΓ(t)u = −divΓ(t)Vn = −Hvn,

∂◦φ − ∆Γ(t)µ + ∇Γ(t)φ · v + ∇Γ(t)φ · Vn = 0,

µ = −∆Γ(t)φ + Ψ′(φ),
(1)

with Jρ = − ρ̃1−ρ̃2
2 ∇Γ(t)µ.
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Binary fluids on evolving surfaces: the model
Assuming that the velocity Vn is a priori prescribed, consider
only the projected equation for u
Find (u, p, φ) such that, for any (x , t) ∈

⋃
t∈[0,T ]

Γ(t) × {t},

ρP∂◦u + ((ρu + Jρ) · ∇Γ(t))u + ρvnHu + vnHJρ

−2PdivΓ(t)(ν(φ)ES(u)) + ∇Γ(t)p
= −PdivΓ(t)(∇Γ(t)φ ⊗ ∇Γ(t)φ) + 2PdivΓ(t)(ν(φ)vnH) + ρ

2∇Γ(t)(vn)2,

divΓ(t)u = −divΓ(t)Vn = −Hvn,

∂◦φ + u · ∇Γ(t)φ = ∆Γ(t)µ,

µ = −∆Γ(t)φ + Ψ′(φ),
u(0) = u0, φ(0) = φ0
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Main result (Abels-Garcke-P., 2024)
Assume Vn and (u0, φ0) sufficiently regular
Well-posedness of global strong solutions on [0, T ] such that

u ∈ L∞
L2 ∩ L2

H2 ∩ H1
L2 , p ∈ L2

H1 ,

φ ∈ L∞
H3 ∩ L2

H4 ∩ H1
H1 ,

|φ| < 1 a.e. in Γ(t) for a.a. t ∈ [0, T ],
µ ∈ L∞

H1 ∩ L2
H3 ∩ H1

H−1 ,

Instantaneous strict separation property:

∃δ > 0 : sup
t∈[0,T ]

∥φ∥L∞(Γ(t)) ≤ 1 − δ

Questions: minimal assumptions on Ψ to get separation?
Do we need φ0 strictly separated?
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Classical approach: Moser-Trudinger (MT) inequality
We assume as in the logarithmic potential:

F ′′(s) ≤ CeC |F ′(s)|, ∀s ∈ (−1, 1)

Variant of Moser-Trudinger inequality on Γ0 (Fontana, 1993)
It holds: ∫

Γ0
e|f | ≤ C(Γ0)eC∥f ∥2

H1(Γ0) , ∀f ∈ H1(Γ0),

Use this inequality on the pullback of F ′′(φ) on Γ0 to get
F ′′(φ) ∈ L∞

Lp , ∀p ∈ [2, ∞)

© Strict separation property holds
(Caetano-Elliott-Grasselli-P.,2023)
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An alternative to MT inequality: De Giorgi iterations

New assumption (Gal & P., 2024): as δ → 0+

∃γ > 1
2 : 1

F ′(1−2δ) = O
(

1
| ln(δ)|γ

)
, 1

|F ′(−1+2δ)| = O
(

1
| ln(δ)|γ

)
✓ Use of De Giorgi iteration scheme for the elliptic equation:

µ(t) = −∆Γ(t)φ(t) + Ψ′(φ(t))

✓ More geometric approach to obtain

∃δ > 0 : |φ(x, t)| ≤ 1 − δ, for all (x, t) ∈
⋃

t∈(0,T ]
Γ(t) × {t}
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Strict separation of the initial datum φ0

Regularity assumptions to get strong solutions:

φ0 ∈ H2(Γ0), |φ0| ≤ 1, −1 <

∫
Γ0

φ0

|Γ0|
< 1,

µ0 := −∆Γ0φ0 + Ψ′(φ0) ∈ H1(Γ0)

Repeat the De Giorgi’s iteration scheme on µ0

We can prove that φ0 is automatically strictly separated, i.e.,

∃δ0 ∈ (0, 1) : ∥φ0∥L∞(Γ0) ≤ 1 − δ0

© No need of extra assumptions on φ0
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Further developments

A priori given normal velocity Vn:
Extension to multi-component phase-field models
Applications to optimal control problems

Not a priori given velocity:
Geometric evolution is part of the problem
Navier-Stokes systems (Jankuhn et al., 2018) for inextensible
viscous materials:{

∂•v = −∇Γ(t)π + 2ν divΓ(t)ES(v) + πHn,

divΓ(t)v = 0, vn = v · n

with v velocity field of the flow on Γ(t) and ∂• material time
derivative with respect to v
=⇒ Not enough regularity to close the estimates for vn due to the
coupling with π
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Introduction
Mathematical models for prescribed surface evolution

Perspectives

Further developments

A priori given normal velocity Vn:
Extension to multi-component phase-field models
Applications to optimal control problems

Not a priori given velocity:
geometric evolution is part of the problem
Navier-Stokes systems (Jankuhn et al., 2018) for inextensible
viscous elastic materials:
=⇒ regularizing elastic term −∆Γ(t)H in the equation for vn

⇓

Short-time Existence of strong solutions
(Abels-Liu-P., 2025)
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Further developments

Ω+(t)

Ω−(t) Γ(t)

n

Possible couplings with bulk Navier-Stokes equations and/or
surface Cahn-Hilliard equations

Strong solutions can in general only be local in time
From local-in-time to global-in-time:
e.g. (De Giorgi-type) varifold solutions

⇓

Navier-Stokes-Mullins-Sekerka flow (Abels-P., 2025)
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Further developments

Ω+(t)

Ω−(t) Γ(t)

n

Possible couplings with bulk Navier-Stokes equations and/or
surface Cahn-Hilliard equations

Strong solutions can only be local in time
From local-in-time to global-in-time:
e.g. (De Giorgi-type) varifold solutions
Weak-strong uniqueness results
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Thanks for your attention!

(Morales-Penningston et al., 2010)
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Navier-Stokes on elastic membranes



ρP∂•v
= −∇Γπ + µ

(
∆Γv + Kv + ∇Γ(vnH) − 2(HP − H)∇Γvn

)
− ρvn · ∂•n

ρ∂•vn = −2µ(tr(H∇Γv) + vntr(H2)) + πH + ρ∂•n · v
+ CH

(
∆ΓH + H(H2/2 − 2K ) + H0(2K − HH0/2)

)
divΓv = −vnH
∂•ρ = 0

where H = ∇Γn, K is the Gauß curvature, H0, K0 are positive
constants, and the velocity of the material surface is v + vnn
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