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Introduction

Biological applications

Cell membranes and lipid rafts

@ Eukaryotic cell membranes consist of a heterogeneous but regulated
environment serving as a dynamic platform for cell functions

@ Membrane heterogeneity includes discrete membrane domains:
Lipid rafts
\

Cholesterol associations with membrane lipids like sphingolipids

(Morales-Penningston et al., 2010)
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Introduction
Biological applications

Cell membranes and lipid rafts

o Lipid rafts believed to play an essential role in the regulation of
protein activity

@ Known to be central to the replication of some viruses like HIV
@ Liquid ordered phase VS liquid disordered phase:

Liquid-Liquid Phase Separation on the cell membrane

& Chaolesterol
Sphingomyelin

f n Phosphalipids

HHATN f;p H GPl-anchored protein
’( l; { ;I‘\Jﬂgé \ Acylated protein

Ganglioside GM1

Cytoplasm f Ganglioside GM3

Floillins
Lipid raft

(Zhang et al., 2022)

Transmembrane profein
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The domain of the model equations

e Changing cell shape is crucial for the proper function of cellular
processes, including cell migration (e.g., lymphocytes and stem cells)
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e Changing cell shape is crucial for the proper function of cellular
processes, including cell migration (e.g., lymphocytes and stem cells)
o Lipid rafts formation changes the shape of the cell membranes:

the shape depends on local inhomogeneities within the membrane
A ~ B §

(Bacia et al., 2005)
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Introduction
Biological applications

The domain of the model equations

e Changing cell shape is crucial for the proper function of cellular
processes, including cell migration (e.g., lymphocytes and stem cells)
o Lipid rafts formation changes the shape of the cell membranes:

the shape depends on local inhomogeneities within the membrane
A ~ B §

(Bacia et al., 2005)
@ Essential to consider

evolving surfaces embedded in R3
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Evolving surface setting

Mathematical models for prescribed surface evolution -
Binary fluids on evolving surfaces

The evolving surface setting

@ t€[0,T], T >0, evolving time

e [ initial closed surface of a (regular) liposome, diameter 10 pm

e ®:[0,T] x Iy — R3, a sufficiently smooth flow map characterizing
the evolution of g

o I(t):=d(t,-) sothat P = d(t,-): To — I(t)
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Evolving surface setting

Mathematical models for prescribed surface evolution -
Binary fluids on evolving surfaces

The evolving surface setting

@ t€[0,T], T >0, evolving time
e [ initial closed surface of a (regular) liposome, diameter 10 pm
e ®:[0,T] x Iy — R3, a sufficiently smooth flow map characterizing

the evolution of 'y
M(t) := ®(t,-) so that P = d(t,-): To — I(t)
V,: normal velocity field s.t., for any t € [0, T], for any x € I,

*Q’O(X) Va(t, 97(x))
¢8(X) =x
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Evolving surface setting

Mathematical models for prescribed surface evolution . . .
Binary fluids on evolving surfaces

A phase-field model for binary fluids on evolving surfaces

e ¢ € [—1,1]: relative concentration difference between the ordered
and disordered phases (diffuse interface)

@ We consider
pi=—Arpye+ V'(p), chemical potential
v W: Flory Huggins free energy density (potential), 0 < 6 < 6y

V(o) = 5((1+ (1 +9) + (1 - @in(1 — ) ~ 2

F(p): convex and logarithmic

@ 0°p normal material time derivative
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A phase-field model for binary fluids on evolving surfaces

@ Introduce a model for u as tangential fluid velocity

6/15



Evolving surface setting

Mathematical models for prescribed surface evolution . . .
Binary fluids on evolving surfaces

A phase-field model for binary fluids on evolving surfaces

@ Introduce a model for u as tangential fluid velocity

e Incompressible two-phase fluid: for any t € [0, T]

diviy( Va+u )=0 onT(t)

Total fluid velocity
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Evolving surface setting

Mathematical models for prescribed surface evolution . . .
Binary fluids on evolving surfaces

A phase-field model for binary fluids on evolving surfaces

@ Introduce a model for u as tangential fluid velocity

e Incompressible two-phase fluid: for any t € [0, T]
diviy( Va+u )=0 onT(t)
Total fluid velocity
@ This also entails inextensible material surface assumption:

din(t)Vn = / H(Vn . I‘I) =0

r(t) r(t)

e Unmatched fluid viscosities v = () and densities p = p(p)

@ Thermodynamically consistent model following a similar
derivation as in Abels-Garcke-Griin (2012)
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Evolving surface setting

Mathematical models for prescribed surface evolution . . .
Binary fluids on evolving surfaces

Binary fluids on evolving surfaces: the model

e P(x,t): normal projector on the tangential space at x € I'(t)
@ Vr(yu: covariant derivative of u
@ Introduce:

Vo :=Vn-n, H:=Vrpyn,

H:=trH =— double mean curvature
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Binary fluids on evolving surfaces

Binary fluids on evolving surfaces: the model

e P(x,t): normal projector on the tangential space at x € I'(t)
@ Vr(yu: covariant derivative of u
@ Introduce:

Vo :=Vn-n, H:=Vrpyn,

H:=trH =— double mean curvature

1
Es(u) := 5(Vr(gu + Vinu)

1+ 1—9¢p
. T
1+ 1—¢p
p(®) = p1 5t
_PL— P2
2

v(p) =11

Jy = VrT(t),u = extra flux term
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Evolving surface setting

Mathematical models for prescribed surface evolution . . .
Binary fluids on evolving surfaces

Binary fluids on evolving surfaces: the model

@ Assuming that the velocity V,, is a priori prescribed, consider
only the projected equation for u

e Find (u, p, ) such that, for any (x,t) € U T(t) x {t},
te[0,T]

pPO%u+ ((pu+Jp) - Vr(r))u + pvaHu + vaHJ,
—2Pdivr () (1()Es(u)) + V(P

= —Pdivr(5)(Vr(n9 © Vr(e)9) + 2Pdive( ((9)vaH) + V() (va)?,
divr(pu = —divr(nVa = —Hwy,

0°p+u- Ve = Arph,
p=—Arpye +V(p),
u(0) =uo, ¢(0) = o
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Evolving surface setting

Mathematical models for prescribed surface evolution . . .
Binary fluids on evolving surfaces

Main result (Abels-Garcke-P., 2024)

@ Assume V, and (uo, ¢o) sufficiently regular

@ Well-posedness of global strong solutions on [0, T] such that

ucl3nliNH:, peli,

¢ € LN L2, N H,

lp] <1 ae inl(t) fora.a. tel0,T],
p€ Ly N L2 N H,
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Evolving surface setting

Mathematical models for prescribed surface evolution . . .
Binary fluids on evolving surfaces

Main result (Abels-Garcke-P., 2024)

@ Assume V, and (uo, ¢o) sufficiently regular

@ Well-posedness of global strong solutions on [0, T] such that

uc L3Nl NHL, pel?,
ngLj’_,%ﬂL 4ﬂHH1,

lp] <1 ae inl(t) fora.a. tel0,T],
pe LN LN HY,

@ Instantaneous strict separation property:

36>0:  sup [[@lliorey <1 -0
te[0,T]
@ Questions: minimal assumptions on V to get separation?
Do we need ¢ strictly separated?
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Evolving surface setting

Binary fluids on evolving surfaces

Mathematical models for prescribed surface evolution

Classical approach: Moser-Trudinger (MT) inequality

We assume as in the logarithmic potential:

F"(s) < CeSIF'GI vs e (—1,1)

Variant of Moser-Trudinger inequality on 'y (Fontana, 1993)
It holds:

2
[ el < croye Mo, vr e Hi(ro),
o

@ Use this inequality on the pullback of F”(¢) on Iy to get
F"(p) € LS, Vp € [2,00)

Strict separation property holds
(Caetano-Elliott-Grasselli-P.,2023)
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Evolving surface setting

Mathematical models for prescribed surface evolution . . .
Binary fluids on evolving surfaces

An alternative to MT inequality: De Giorgi iterations

e New assumption (Gal & P., 2024): as 6 — 0"

1. 1 o 1 1 _ 1
H>1: wa = O (o) ey = O (o)
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Evolving surface setting

Mathematical models for prescribed surface evolution . . .
Binary fluids on evolving surfaces

An alternative to MT inequality: De Giorgi iterations

e New assumption (Gal & P., 2024): as 6 — 0"

1. 1 1 1 _ 1
>3 pat = Omwior) et = O (e
Use of De Giorgi iteration scheme for the elliptic equation:
u(t) = —Dre(t) + V(e(t))
More geometric approach to obtain

36 >0: |p(x,t)] <1—4, forall(x,t) e |J F(t)x{t}
te(0,T]
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Evolving surface setting

Mathematical models for prescribed surface evolution . . .
Binary fluids on evolving surfaces

Strict separation of the initial datum (g

o Regularity assumptions to get strong solutions:

fro 0

©o € H*(Tg), |po| <1, -1< ol

<1,

f1o = —Aryp0 + V(o) € HY(To)
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Strict separation of the initial datum (g

o Regularity assumptions to get strong solutions:

fro 0

©o € H*(Tg), |po| <1, -1< ol

<1,

f1o = —Aryp0 + V(o) € HY(To)

o Repeat the De Giorgi's iteration scheme on g

@ We can prove that g is automatically strictly separated, i.e.,

Jdo € (0,1) = [lwolloo(ry) <1 —do
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Evolving surface setting

Mathematical models for prescribed surface evolution . . .
Binary fluids on evolving surfaces

Strict separation of the initial datum (g

o Regularity assumptions to get strong solutions:

fro 0

©o € H*(Tg), |po| <1, -1< ol

<1,

f1o = —Aryp0 + V(o) € HY(To)

o Repeat the De Giorgi's iteration scheme on g

@ We can prove that g is automatically strictly separated, i.e.,
Jdo € (0,1) = [lwollroe(re) < 1 —do

No need of extra assumptions on g
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Perspectives

Further developments

@ A priori given normal velocity Vp:

e Extension to multi-component phase-field models
e Applications to optimal control problems
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Perspectives

Further developments

@ A priori given normal velocity Vp:
e Extension to multi-component phase-field models
e Applications to optimal control problems

o Not a priori given velocity:

e Geometric evolution is part of the problem
o Navier-Stokes systems (Jankuhn et al., 2018) for inextensible

viscous materials:

Vp=V-n

9°v = =Vr(ym + 2v divr(1)Es(v) + mHn,
din(t)V =0,

with v velocity field of the flow on '(t) and 0°® material time

derivative with respect to v
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Perspectives

Further developments

@ A priori given normal velocity Vp:
e Extension to multi-component phase-field models
e Applications to optimal control problems
o Not a priori given velocity:
e Geometric evolution is part of the problem
o Navier-Stokes systems (Jankuhn et al., 2018) for inextensible
viscous materials:

{B'V = —Vr(t)ﬂ' + 2v divr(t)Ss(v) + mHn,

divrpypv=0, vy, =v-n

with v velocity field of the flow on '(t) and 0°® material time
derivative with respect to v
— Not enough regularity to close the estimates for v, due to the

coupling with 7
12/15



Perspectives

Further developments

@ A priori given normal velocity Vp,:
e Extension to multi-component phase-field models
o Applications to optimal control problems

o Not a priori given velocity:

e geometric evolution is part of the problem
o Navier-Stokes systems (Jankuhn et al., 2018) for inextensible

viscous elastic materials:
= regularizing elastic term —Ar)H in the equation for v,

4

Short-time Existence of strong solutions
(Abels-Liu-P., 2025)
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Perspectives

Further developments

Qr (1)

r(t)

@ Possible couplings with bulk Navier-Stokes equations and/or
surface Cahn-Hilliard equations
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r(t)

@ Possible couplings with bulk Navier-Stokes equations and/or
surface Cahn-Hilliard equations
e Strong solutions can in general only be local in time
e From local-in-time to global-in-time:
e.g. (De Giorgi-type) varifold solutions
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Perspectives

Further developments

Qr (1)

r(t)

@ Possible couplings with bulk Navier-Stokes equations and/or
surface Cahn-Hilliard equations
e Strong solutions can in general only be local in time
e From local-in-time to global-in-time:
e.g. (De Giorgi-type) varifold solutions

Navier-Stokes-Mullins-Sekerka flow (Abels-P., 2025)
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Perspectives

Further developments

@ Possible couplings with bulk Navier-Stokes equations and/or
surface Cahn-Hilliard equations
e Strong solutions can only be local in time
e From local-in-time to global-in-time:
e.g. (De Giorgi-type) varifold solutions
o Weak-strong uniqueness results
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Thanks for your attention!

(Morales-Penningston et al., 2010)
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Navier-Stokes on elastic membranes

pPO°v
= —Vrm+ u(Arv+ Kv + Vi(vaH) = 2(HP — H)Vrvi) — pva - 9°n

p0° Vo = —2u(tr(HVv) 4 vutr(H?)) + 7H 4 pd®n - v
+ CH(ArH + H(H?/2 — 2K) + Ho(2K — HHy/2))

diviv = —vyH
0°p=0

where H = Vrn, K is the GauB curvature, Hy, Ky are positive
constants, and the velocity of the material surface is v + vyn
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