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Temperature gradient ⇒ flow (without ∇p)
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Hall-Vinen-Bekarevich-Khalatnikov (HVBK) two-fluid model

∂tvn + vn · ∇vn = −∇pn + νn∆vn +
ρs
ρ
Fns

∂tvs + vs · ∇vs = −∇ps + T− ρn
ρ
Fns

∇pn =
1

ρ
∇P +

ρs
ρn

s

ρ
∇T

∇ps =
1

ρ
∇P − s

ρ
∇T

T = −νsω × (∇× ω̂), ω̂ = ω/|ω|, ω = ∇× vs

Fns =
1

2
Bω̂ × (ω × c) +

1

2
B ′ω × c

c = vn − vs − νs∇× ω̂

νs =
κ

4π
ln

R

a

∇ · vs = 0 = ∇ · vn



Two-component model of superfluid helium-4 Geometric mechanics A geometric one-fluid model

Hall-Vinen-Bekarevich-Khalatnikov (HVBK) two-fluid model

∂tvn + vn · ∇vn = −∇pn + νn∆vn +
ρs
ρ
Fns

∂tvs + vs · ∇vs = −∇ps + T− ρn
ρ
Fns

∇pn =
1

ρ
∇P +

ρs
ρn

s

ρ
∇T

∇ps =
1

ρ
∇P − s

ρ
∇T

T = −νsω × (∇× ω̂), ω̂ = ω/|ω|, ω = ∇× vs

Fns =
1

2
Bω̂ × (ω × c) +

1

2
B ′ω × c

c = vn − vs − νs∇× ω̂

νs =
κ

4π
ln

R

a

∇ · vs = 0 = ∇ · vn



Two-component model of superfluid helium-4 Geometric mechanics A geometric one-fluid model

Hall-Vinen-Bekarevich-Khalatnikov (HVBK) two-fluid model

∂tvn + vn · ∇vn = −∇pn + νn∆vn +
ρs
ρ
Fns

∂tvs + vs · ∇vs = −∇ps + T− ρn
ρ
Fns

∇pn =
1

ρ
∇P +

ρs
ρn

s

ρ
∇T

∇ps =
1

ρ
∇P − s

ρ
∇T

T = −νsω × (∇× ω̂), ω̂ = ω/|ω|, ω = ∇× vs

Fns =
1

2
Bω̂ × (ω × c) +

1

2
B ′ω × c

c = vn − vs − νs∇× ω̂

νs =
κ

4π
ln

R

a

∇ · vs = 0 = ∇ · vn



Two-component model of superfluid helium-4 Geometric mechanics A geometric one-fluid model

Problems

If two fluids, how to separate? Only one kind of atoms.

Reversible (mechanical) part of Fns with unknown coefficient B ′?

∂tvs + vs · ∇vs = −∇ps + T− ρn
ρ
Fns

Fns =
1

2
Bω̂ × (ω × c) +

1

2
B ′ω × c

Why ∇ · vs = 0 = ∇ · vn?

∂tρ = −∇ · (ρv), ρ∂tv ≈ −∇p ⇒ ∂t∂tρ ≈ ∆p
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Hamiltonian mechanics from action

δ

∫ T

0
L(q, q̇)dt = 0 ⇒ Hamiltonian mechanics for x = (q,p)

(
q̇
ṗ

)
=

(
0 1
−1 0

)
︸ ︷︷ ︸

=L

·

(
∂E
∂q
∂E
∂p

)

Poisson bivector L and energy E

Arbitrary functional: Ḟ (x) =
∂F

∂x i
Lij

∂E

∂x j
= {F ,E}canonical

State variables: ẋ i = {x i ,E}canonical = Lijcanonical
∂E

∂x j
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ṗ

)
=

(
0 1
−1 0

)
︸ ︷︷ ︸

=L

·

(
∂E
∂q
∂E
∂p

)

Poisson bivector L and energy E

Arbitrary functional: Ḟ (x) =
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General Hamiltonian mechanics

Poisson bracket {F ,F} 7→ F :

bilinear: {F + G ,H} = {F ,H}+ {G ,H} ∀F ,G ,H ∈ F

skew-symmetric: {F ,G} = −{G ,F}
Leibniz rule: {FG ,H} = {F ,H}G + F{G ,H}
Jacobi identity: {F , {G ,H}}+ {G , {H,F}}+ {H, {F ,G}} = 0

Evolution: ẋ i = {x i ,E} or Ḟ = {F ,E}

State variables x, Poisson bracket {•, •}, energy E
→ Mechanics
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State variables x, Poisson bracket {•, •}, energy E
→ Mechanics



Two-component model of superfluid helium-4 Geometric mechanics A geometric one-fluid model

Why Poisson brackets?

Skew-symmetry ⇒ energy is conserved
Ė = {E ,E} = −{E ,E} = 0

Leibniz rule ⇒ energy is determined up to a constant
ẋ = {x,E + C} = {x ,E}

Jacobi identity ⇒ LẋL = 0
= Self-consistency of Hamiltonian mechanics
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Ė = {E ,E} = −{E ,E} = 0

Leibniz rule ⇒ energy is determined up to a constant
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Hierarchy of Poisson brackets
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Atoms and phonons

atoms

(q,p)

f m(q,p)

ρ =

∫
mf mdp

um =

∫
pf mdp

phonons

(q,p)

f p(q,p)

s̄ =

∫
η(f p)dp

up =

∫
pf pdp

superfluid helium
ρ,m = um + up, s̄, vs =

um

ρ
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Hamiltonian mechanics

∂ρ

∂t
=− ∂k(ρEmk

+ Evsk )

∂mi

∂t
=− ∂j(miEmj )− ∂j(vsiEvsj )− ρ∂iEρ −mj∂iEmj − s̄∂iEs̄

− vsk∂iEvsk + ∂i (Evskvsk)

∂s̄

∂t
=− ∂k (s̄Emk

)

∂vsk
∂t

=− ∂kEρ − ∂k(vsjEmj ) + (∂kvsj − ∂jvsk)

(
Emj +

1

ρ
Evsj

)
M. Sýkora, M. Pavelka, M. La Mantia, D. Jou, and M. Grmela, On the relations between large-scale models of superfluid helium-4, Physics of Fluids
33, 127124 (2021)
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Energy of phonons

energy density: ēp =
∫
c |p|f p(r,p)dp

momentum density: up =
∫
pf p(r,p)dp

hydrodynamic entropy density:

s̄(r) =
4

3

(
6σ

c

)1/4

e(r)3/4
33/4

27/4
(3− χ)1/2(1− χ)1/4

with Eddington factors χ = 5
3 − 4

3

√
1− 3

4
c2(up(r))2

e(r)

Hydrodynamic energy ēp ≈ ϵ̄+ (up)2

2ρn

ϵ̄ =

(
3

4

)4/3 ( c

6σ

)1/3
s̄4/3

ρn =
1

3c2

(
3

4

)4/3 ( c

6σ

)1/3
s̄4/3 ≈ σT 4

c3

Effective density ρn.
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∫
c |p|f p(r,p)dp

momentum density: up =
∫
pf p(r,p)dp

hydrodynamic entropy density:

s̄(r) =
4

3

(
6σ

c

)1/4

e(r)3/4
33/4

27/4
(3− χ)1/2(1− χ)1/4

with Eddington factors χ = 5
3 − 4

3

√
1− 3

4
c2(up(r))2

e(r)

Hydrodynamic energy ēp ≈ ϵ̄+ (up)2
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Energy of mass motion and phonons by Galilean transformation

r = r′ + Vt

v = v′ + V

p = p′ +MV

E = 1
2Mv2 = 1

2M(v′ + V)2 = E ′ + p · V + 1
2MV2

ē = (m−ρvs)2

2ρn(ρ,s̄)
+ ϵ̄(ρ, s̄) + (m− ρvs) · vs + 1

2ρv
2
s

As ρn → ρ at high T

ē → (m)2

2ρ
+ ϵ̄(ρ, s̄)

∂e
∂vs

= 0, normal fluids
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Energy of vorticity

ω = ∇× vs
Energy

ē =
1

2
ρv2s + (m− ρvs) · vs +

(m− ρvs)2

2ρn(ρ, s̄)
+ ϵ̄(ρ, s̄) + eω(ρ, s̄, |ω|)

eω(ρ, s̄, |ω|) = ρs(ρ, s̄)
h

4πm
ln

R

a
· |ω|

Evolution equation for vs :

(∂tvs)rev + (vs · ∇)vs =−∇
(
µ− 1

2
v2ns

∂ρn
∂ρ

)
− νsω × (∇× ω̂)− ρn

ρ
ω × (vns − νs∇× ω̂)

− νs∇
(
|ω|∂ρs

∂ρ

)
+

νs
ρ
ω × (ω̂ ×∇ρs)
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ē =
1

2
ρv2s + (m− ρvs) · vs +

(m− ρvs)2

2ρn(ρ, s̄)
+ ϵ̄(ρ, s̄) + eω(ρ, s̄, |ω|)

eω(ρ, s̄, |ω|) = ρs(ρ, s̄)
h

4πm
ln

R

a
· |ω|

Evolution equation for vs :

(∂tvs)rev + (vs · ∇)vs =−∇
(
µ− 1

2
v2ns

∂ρn
∂ρ

)
− νsω × (∇× ω̂)− ρn

ρ
ω × (vns − νs∇× ω̂)

− νs∇
(
|ω|∂ρs

∂ρ

)
+

νs
ρ
ω × (ω̂ ×∇ρs)



Two-component model of superfluid helium-4 Geometric mechanics A geometric one-fluid model

Energy of vorticity

ω = ∇× vs
Energy
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Dissipative processes

Gradient dynamics, energy conservation, entropy production:

ẋ = − δR
δEx

˙̄s =
1

Es̄

δR
δEx

· Ex ≥ 0

Rayleigh dissipation potential

R =

∫
1

2
µs(∇Em)

2dr +

∫
dr

Λ

2

(
ω × δE

δvs

)2

Irreversible evolution of vs

(∂tvs)irr = −ρn
ρ

B

2
ω̂ × (ω × (vns − νs∇× ω̂ − νs∇ ln ρs × ω̂))
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Comparison with HVBK

Superfluid velocity equation:

∂tvs + (vs · ∇)vs =−∇
(
µ−1

2
v2ns

∂ρn
∂ρ

)
− νsω × (∇× ω̂)− ρn

ρ
ω × (vns − νs∇× ω̂)

−νs∇
(
|ω|∂ρs

∂ρ

)
+

νs
ρ
ω × (ω̂ ×∇ρs)

− ρn
ρ

B

2
ω̂ × (ω × (vns − νs∇× ω̂−νs∇ ln ρs × ω̂))

B ′ = 1 follows from the energy
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B ′ = 1?
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Hamiltonian mechanics gives motion of superfluids with vortices

Problems in superfluid helium-4 dynamics:

Several fitting parameters

∇ · vn = 0 = ∇ · vs
Two-fluid models without two fluids

Hamiltonian mechanics

Reduces the number of fitting parameters
Extra terms in the equations
Only one fluid

Future

Vortex line density
Numerical schemes
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