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One of the acceptable models for description of mixture of several
compressible fluids is the so called Two velocity Baer-Nunziato
model.
Our goal: to prove the existence of weak solutions for the
Baer-Nunziato system with dissipation on an arbitrary large time
interval (0,T ) in a Lipschitz bounded domain Ω.
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Two velocity Baer-Nunziato model

∂tα± + v⃗I · ∇xα± = 0,

∂t(α±ϱ±) + div(α±ϱ±u⃗±) = 0,

∂t(α±ϱ±u⃗±) + div(α±ϱ±u⃗± ⊗ u⃗±) +∇x(α±P±(ϱ±))− PI∇x(α±)

= α±µ±(∆u⃗±) + α±(µ± + λ±)∇xdivu⃗±
0 ⩽ α± ⩽ 1, α+ + α− = 1.

(α±-concentrations of the ± species
ϱ±- densities of the ± species
u⃗±- velocities of the ± species α±ϱ± ⩾ 0, u⃗± ∈ R3)
P± are two (different) given functions defined on [0,∞) and PI , v⃗I
are conveniently chosen quantities - they represent pressure and
velocity at the interface.
In the multifluid modeling, there are many possibilities how the
quantities v⃗I , PI could be chosen, and there is no consensus about
this choice.
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µ± := µ, λ± := λ, v⃗I = u⃗± := u⃗ (1)

αP±(s) = P±(f±(α)s) for all α ∈ (0, 1), s ∈ [0,∞) (2)

with some functions P± defined on [0,∞) and functions f± defined
on (0, 1).
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Ishii, Hibiki (2006)

Bresch et all.(2018)

Bresch, Mucha, Zatorska: Finite-energy solutions for
compressible two-fluid Stokes system (2018), p = p− = p+

Li, Zatorska Large time behavior (2020)
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One velocity Baer-Nunziato type system

∂tα+ (u⃗ · ∇)α = 0, 0 ⩽ α ⩽ 1, (3)

∂tϱ+ div(ϱu⃗) = 0, (4)

∂tz + div(zu⃗) = 0, (5)

∂t((ρ+ z)u⃗)+div((ρ+ z)u⃗⊗ u⃗)+∇P(f (α)ϱ, g(α)z) = divS(∇x u⃗)
(6)

P : [0,∞)2 7→ [0,∞) as well as f , g : (0, 1) 7→ [0,∞) are given
functions, and

S(Z) = µ(Z+ ZT ) + λTr(Z)I

(I is the identity tensor, Tr denotes the trace) is the viscous stress
tensor. The constant viscosity coefficients satisfy standard physical
assumptions, µ > 0, λ+ 2

3µ ⩾ 0
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The system is endowed with initial conditions

α|t=0 = α0, ϱ|t=0 = ϱ0, z |t=0 = z0, (ϱ+ z)u⃗|t=0 = (ϱ0 + z0)u⃗0,
(7)

We consider the general inflow-outflow boundary conditions,

u⃗|∂Ω = u⃗B , ϱ|Γin = ϱB , z |Γin = zB , α|Γin = αB , (8)

where
Γin =

{
x ∈ ∂Ω

∣∣∣ u⃗B · n⃗ < 0
}
. (9)
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Γout =
{
x ∈ ∂Ω

∣∣∣ u⃗B · n⃗ > 0
}
,

Γ0 =
{
x ∈ ∂Ω

∣∣∣ u⃗B · n⃗ = 0 or n⃗(x) does not exist
}
.

(10)

P±(s) = a±sγ
±
, γ± > 0; (11)

indeed, in this

case
P(R,Z ) = a+R

γ+
+ a−Zγ−

, f (s) := f+(s) = s
1

γ+
−1
,

g(s) := f−(s) = (1− s)
1

γ−−1
.

(12)

We shall however be able to treat in system (3–7) more general
functions P, f , g than those being given by (12).
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Reformulation of system using the change of variables

R := f (α)ϱ, Z = g(α)z , (13)

∂tρ+ divx(ρu⃗) = 0,

∂tz + divx(zu⃗) = 0,

∂tR + divx(Ru⃗) = 0,

∂tZ + divx(Zu⃗) = 0,

∂t
(
(ρ+ z)u⃗

)
+ divx((ρ+ z)u⃗ ⊗ u⃗) +∇P(R,Z ) = divS(∇x u⃗)

(14)
with boundary and initial conditions

u⃗|∂Ω = u⃗B , ρ|Γin := ϱB , z |Γin = zB := f (αB)ϱB ,
Z |Γin = ZB := g(αB)zB ,R|Γin = RB = f (B)ρB ,

(15)

Šárka Nečasová Mathematical Institute, Academy of Sciences, Czech Republic

On the problem of a Baer-Nunziato system
10



ρ(0, x) = ϱ0(x), R(0, x) = R0(x) := f (α0)ϱ0(x), (16)

Z (0, x) = Z0(x) := g(α0)z0(x), z(0, x) = z0(x) := (ϱ0 + z0)(x),

(ρ+ z)u⃗(0, x) := (ϱ0 + z0)u⃗0(x)

for unknown quintet (ρ, z ,R,Z , u⃗) of functions defined on the
space-time cylinder QT = I × Ω. academic bi-fluid system.
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Existence of multi- component model

A. Vasseur, H. Wen, C. Yu,(2019) Global weak solution to the
viscous two-fluid model with finite energy, P(R,Z ) = Rγ +Zβ

A. Novotny: Weak solutions for a bi-fluid model for a mixture
of two compressible non interacting fluids, 2019

A. Novotný, M. Pokorný. Weak solutions for some
compressible multicomponent fluid models (2020)
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General boundary conditions- compressible case

Valli, Zajaczkowski (strong)

Novo (2005), Girinon (2010), Plotnikov, Sokolowski (2011) -
very restrictive assumptions

A. Novotny, B.J. Jin, T. Chang,H.J. Choe, M. Yang (general
inflow-outflow boundary data, on piecewise regular domains)

E.Feireisl, A. Novotny (2020)-full system

Young-Sam Kwon, Antonin Novotny (2020)-Construction via
a numerical approximation
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Definition

A quintet (ρ, z ,R,Z , v⃗ = u⃗ − u⃗B) is a bounded energy weak
solution to problem (14–16), if the following holds:

The quintet belongs to the functional spaces ρ, z ,R,Z ⩾ 0 a.e. in
I × Ω, (ρ, z ,R,Z ) ∈ Cweak(I ; L

γ(Ω)) ∩ Lγ(I ; Lγ(∂Ω; |u⃗B · n⃗|dSx))
with some γ > 1, v⃗ ∈ L2(I ;W 1,2

0 (Ω;R3)),
(ρ+ z)|v⃗ |2 ∈ L∞(I ; L1(Ω)), P(R,Z ) ∈ L1(I × Ω),
(ρ+ z)u⃗ ∈ Cweak(I ; L

q(Ω)) with some q > 1.
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Definition

(Continuation of Definition)

Continuity equations

∫
Ω r(τ, ·)φ(τ, ·) dx −

∫
Ω r0(·)φ(0, ·) dx +

∫ τ
0

∫
Γout r u⃗B · n⃗φ dSxdt

=
∫ τ
0

∫
Ω

(
r∂tφ+ r u⃗ · ∇xφ

)
dxdt −

∫ τ
0

∫
Γin rB u⃗B · n⃗φ dSxdt

(17)
are satisfied
for any τ ∈ [0,T ] and with any φ ∈ C 1

c ([0,T ]× Ω), where r
stands for ρ, z , R, Z .
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Definition

(Continuation of Definition)

Momentum equation in weak formulation

The energy inequality holds
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Definition

A quartet (α, ϱ, z , u⃗) is a bounded energy weak solution to problem
(3–7), if the following holds:

ϱ, z ⩾ 0 a.e. in I × Ω,
(ϱ, z) ∈ Cweak(I ; L

γ(Ω)) ∩ Lγ(I ; Lγ(∂Ω; |u⃗B · n⃗|dSx)) with
some γ > 1,
α ∈ L∞(QT ) ∩ Cweak(I ; L

γ(Ω))∩L∞(I × ∂Ω), 0⩽ α ⩽ 1,
v⃗ = u⃗ − u⃗∞ ∈ L2(I ;W 1,2

0 (Ω;R3)),
(ϱ+ z)|u⃗|2 ∈ L∞(I ; L1(Ω)), P(f (α)ϱ, g(α)z) ∈ L1(I × Ω),
(ϱ+ z)u⃗ ∈ Cweak(I ; L

q(Ω)) with some q > 1.
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Definition

Continuity equations

∫
Ω r(τ, ·)φ(τ, ·) dx −

∫
Ω r0(·)φ(0, ·) dx +

∫ τ
0

∫
Γout r u⃗B · n⃗φ dSxdt

=
∫ τ
0

∫
Ω

(
r∂tφ+ r u⃗ · ∇xφ

)
dxdt −

∫ τ
0

∫
Γin rB u⃗B · n⃗φdSxdt

(18)
are satisfied for all τ ∈ [0,T ] and with any
φ ∈ C 1

c ([0,T ]× Ω), where r stands for ϱ, z .
Transport equation

∫
Ω α(τ, ·)φ(τ, ·) dx −

∫
Ω α0(·)φ(0, ·) dx +

∫ τ
0

∫
Γout

αu⃗B · n⃗φdSxdt
=
∫ T
0

∫
Ω

(
α∂tφ+ αu⃗ · ∇xφ− φαdivu⃗

)
dxdt

−
∫ τ
0

∫
Γin
αB u⃗B · n⃗φdSxdt

(19)
holds for all τ ∈ [0,T ] with any φ ∈ C 1

c ([0,T ]× Ω).
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Definition

weak form of Momentum equation
The energy inequality holds
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Ω is a bounded Lipschitz domain
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Boundary and initial conditions:

0 < rB ∈ Cc(R
3), u⃗B ∈ C 1

c (R
3), ,

r stands for ρ, R, Z , Σ.
(20)

0 < R0 ∈ Lγ(Ω), γ ⩾ 2, Z0 ∈ Lβ(Ω) if β > γ,
(ρ0 + z0)|u⃗0|2 ∈ L1(Ω).

(21)

(R0,Z0)(x) ∈ O, FR0(x) ⩽ ρ0(x) ⩽ FR0(x),
GZ0(x) ⩽ z0(x) ⩽ GZ0(x),

(22)

(RB ,ZB)(x) ∈ O, FRB(x) ⩽ ρB(x) ⩽ FRB(x),
GZB(x) ⩽ zB(x) ⩽ GZB(x),

In the above 0 < F < F , 0 < G < G and

O := (R,Z ) ∈ R2 | aR < Z < aR} (23)

with some 0 ⩽ a < a.
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Domain

Ω is a bounded domain with admissible inflow-outflow boundary
relative tou⃗B .
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Regularity and growth of the pressure function P:

P ∈ C 1(O) ∩ C 2(O), P(0, 0) = 0. (24)

Rγ + Zβ − 1
<∼ P(R,Z )

<∼ Rγ + Zβ + 1 in O, (25)

0 ⩽ ∂ZP(R,Z )
<∼ Rγ−1 + Rγ−1 in O with some

γ ∈ (0, 1], 1 ⩽ γ < γ + γBog
(26)

where

γ ⩾ 2, β > 0, γBog = min{2
3
γ − 1,

γ

2
},

Rγ−1 <∼ ∂RP(R,Z ) in O. (27)

H is convex on O. (28)
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Theorem

Under Hypotheses (20–28), problem (14–16) admits at least one
bounded energy weak solution in the sense of Definition 1.
Moreover, for all t ∈ I , (R(t, x),Z (t, x)) ∈ O,
FR(t, x) ⩽ ϱ(t, x) ⩽ FR(t, x) and GZ (t, x) ⩽ z(t, x) ⩽ GZ (t, x)
for a.a. x ∈ Ω, and further for a.a. (t, x) ∈ I × ∂Ω,
(R(t, x),Z (t, x)) ∈ O, FR(t, x) ⩽ ϱ(t, x) ⩽ FR(t, x) and
GZ (t, x) ⩽ z(t, x) ⩽ GZ (t, x). Finally, ϱ, z ,R,Z ∈ C (I ; L1(Ω)),

(ϱ+ z)u⃗ ∈ Cweak([0,T ); L
2γ
γ+1 (Ω;R3)) and P(R,Z ) ∈ Lq(I × Ω)

for some q > 1 and
Z ∈ Cweak([0,T ); Lβ(Ω))∩Lβ(I , Lβ(∂Ω; |u⃗B · n⃗|dSx)) if β > γ.
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The one velocity Baer-Nunziato type system (3–8) and reads:

Theorem

Suppose that f , g ∈ C 1(0, 1) are two strictly monotone and
strictly positive functions on interval (0, 1) and that the boundary
conditions ϱB , zB , u⃗B satisfy conditions (20). Let γ ⩾ 2, β > 0
and, in addition,

αB ∈ C (Ω), 0 < α ⩽ αB ⩽ α < 1, (f (αB)ϱB , g(αB)zB)(x) ∈ O,

α0 ∈ L∞(Ω), 0 < α ⩽ α0 ⩽ α < 1, (f (α0)ϱ0, g(α0)z0)(x) ∈ O
0 < ϱ0 ∈ Lγ(Ω), z0 ∈ Lβ(Ω) if β > γ, (ϱ0 + z0)|u⃗0|2 ∈ L1(Ω).

(29)
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Theorem

(continuation of Theorem)
Suppose that the domain Ω is a bounded Lipschitz domain with the
admissible inflow-outflow boundary with respect to u⃗B , cf. (22).
Finally suppose that the pressure P and its Helmholtz function H
verify hypotheses (24–28). Then the problem (3–8) admits at least
one bounded energy weak solution in the sense of Definition 4.
Moreover, for all t ∈ I , (f (α)ϱ(t, x), g(α)z(t, x)) ∈ O and
α ⩽ α(t, x) ⩽ α for a.a. x ∈ Ω, and further for a.a.
(t, x) ∈ I × ∂Ω, (f (α)ϱ(t, x), g(α)z(t, x)) ∈ O and
α ⩽ α(t, x) ⩽ α. Finally, α, ϱ, z ∈ C (I ; L1(Ω)), z ∈ Cweak(I ;
Lβ(Ω))∩Lβ(I , Lβ(∂Ω; |u⃗B · n⃗|dSx)) if β > γ,

(ϱ+ z)u⃗ ∈ Cweak([0,T ); L
2γ
γ+1 (Ω;R3)) and

P(f (α)ϱ, g(α)z) ∈ Lq(I × Ω) with some q > 1.
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The main steps in our approach are the following:

- develop the theory of renormalized solutions to families of
transport equations with non-homogenous boundary data.

Passage (via renormalization) from the (two) continuity
equations to a pure transport equation.
Passage (via renormalization) from the (two) transport
equations and a continuity equation to a continuity equation

and two consequences of these results

Almost compactness of the ratio of two solutions of continuity
equations.
Almost uniqueness of the solutions to the pure transport
equation.
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Step 1 Construction of a particular outer neighborhoods of
Γin, Γout and Γ0

we construct convenient outer neighborhoods U+ of Γ0 and of
each component Γ ⊂ Γout/in. In particular, the projection
operatorP must be sufficiently regular on the outer
neighborhoods of components of Γout/in.

Step 2 Extension of the density beyond the inflow boundary

Step 3 Extension of the density beyond the outflow boundary

Step 4., for Γ0.

Step 5. Continuity extended

Step 6. Generalization of the DiPerna-Lions

Step 7. Time integrated renormalized continuity equation (
τ ∈ L∞(I , Lγ) then τ ∈ Cweak(I , L

γ).)
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From continuity to pure transport equation

Almost uniqueness to the pure transport equation

Almost compactness for the continuity equation
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The main difficulty to pass to the limit in the non-linear
pressure term P(R,Z ).

Derivation of the effective viscous flux identity.

Eliminating oscillations in the sequence of densities by using
the theory of renormalized solutions due to DiPerna-Lions
which must be modified to accommodate the non
homogenous boundary conditions and renormalizing functions
of several variables.
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Vasseur, Wen Yu (2019)

∂tZ + divx(Zu⃗) = 0,Z (0) = Z0

∂tR + divx(Ru⃗) = 0,R(0) = R0

∂t(R + Z )u⃗) + divx((R + Z )u⃗ ⊗ u⃗) +∇P(R,Z ) = divxS(∇x u⃗)
(30)

P(R,Z ) = Rγ + Zβ

.
Almost compactness: Let (Rn, u⃗n), (Zn, u⃗n) satisfy continuity
equation, 0 ⩽ Rn ⇀∗ R, 0 ⩽ Zn ⇀∗ Z in L∞(I , L2(Ω)), u⃗n ⇀∗ u⃗
∈ L2(I ,W 1,2

0 (Ω)). Let 0 ⩽ sn, s ⩽ C , snRn = Zn, sR = Z then

∫ T

0
Rn(sn − s)2 → 0.
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Application:

P(Rn,Zn) = P(Rn, snRn), sn = Zn/Rn

P(Rn.snRn) = P(Rn, sRn) + [P(Rn, snRn)−P(Rnsn,Rn)P(Rn, sRn)]

= Π(Rn, t, x) + ∂zP(Rn, sn)Rn(sn − s).
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Passage from transform system to original system- to get pure
transport equation- (2020) Novotný, Pokorný (Almost uniqueness)

Lemma

Let u ∈ L2(I ,W 1,2
0 (Ω,R3)), 0 ⩽ si ∈ L∞(QT ), i = 1, 2 be two

weak solution of pure transport equations (up to boundary). Then
si ∈ C (I , L1(Ω)). If s1(0, .) = s2(0, .) then

for all τ ∈ I , s1(τ, .) = s2(τ, .)a.a.x ∈ {ρ(τ, .) > 0}

where ρ is any time integrated weak solution to the continuity
equation with the same transport velocity in the class

0 ⩽ ρ ∈ C (I , L1(Ω) ∩ L2(QT ) ∩ L∞(I , Lp(Ω)), p > 1.
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α = f −1(R/ϱ) and α̃ = g−1(Z/z) verify transport equation with
the same initial condition α0 and the same boundary condition αB .
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On existence of weak solutions to a Baer–Nunziato type
system-full system

M.Kalousek, Š.N,
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Problem (P):

∂tα± + vI · ∇α± = 0,

∂t(α±ρ±) + div(α±ρ±u±) = 0,

∂t(α±ρ±u±) + div(α±ρ±u± ⊗ u±) +∇ (α±P±(ρ±, ϑ))

−PI∇α± − div (α±S(ϑ,∇u±)) = 0,

∂t(α±ρ±e±(ρ±, ϑ)) + div(α±ρ±e±(ρ±, ϑ)u±) + div(α±q±(ϑ,∇ϑ))
+α±P±(ρ±) div u± − α±S(ϑ,∇u±) · ∇u± − PI (vI − u±) · ∇α± = 0,

α+ + α− = 1.

Kwon, Y.-S. and Novotný, A. and Arthur Cheng, C.H.: On weak
solutions to a dissipative Baer–Nunziato–type system for a mixture
of two compressible heat conducting gases, Math. Models
Methods Appl. Sci. 30 no. 8, 1517–1553, 2020.
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q±(ϑ,∇ϑ) =− κ±(ϑ)∇ϑ,

S±(ϑ,∇u) =µ±(ϑ)
(
∇u + (∇u)⊤ − 2

d
div uI

)
+ η±(ϑ) div uI,

∂t(α±ρ±s±(ρ±, ϑ)) + div(α±ρ±s±(ρ±, ϑ)u±) + div
(α±
ϑ

q±(ϑ,∇ϑ)
)

−α±
ϑ

S±(ϑ,∇u±) · ∇u± − α±
ϑ2

q± · ∇ϑ− 1

ϑ
PI (vI − u±) · ∇α± = 0

(0.1)
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κ± = κ, µ± = µ, η± = η, vI = u± = u.

S(ϑ,∇u) = µ(ϑ)

(
∇u + (∇u)⊤ − 2

d
div uI

)
+ η(ϑ) div uI. (0.2)

The pressures P± :

P±(r , ϑ) =
b

3
ϑ4 + P±(r , ϑ),

The internal energies e±

e±(r , ϑ) =
b

r
ϑ4 + e±(r , ϑ),

b - the Stefan-Boltzman constant in physics.
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P±(r , ϑ) = r2∂re±(r , ϑ) + ϑ∂ϑP±(r , ϑ). (0.3)

The specific entropies s± are defined via

s±(r , ϑ) =
4b

3r
ϑ3 + s±(r , ϑ)

and s± satisfy

∂ϑs± =
1

ϑ
∂ϑe±, ∂r s± = − 1

r2
∂ϑP±. (0.4)

The relations (0.3) and (0.4) are equivalent to the Gibbs equations

ϑ∂r s± = ∂re± − P±
r2
, ϑ∂ϑs± = ∂ϑe± (0.5)

We introduce new pressure functions P± via

P±(f±(α±)α±r , ϑ) = α±P±(r , ϑ) (0.6)

with some functions f± whose properties will be specified later.
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α = α+, ρ = αρ+, z = (1− α)ρ−

∂tα+ u · ∇α = 0,
∂tρ+ div(ρu) = 0,
∂tz + div(zu) = 0,
∂t ((ρ+ z)u) + div ((ρ+ z)u ⊗ u)+

+∇
(
b
3ϑ

4 + P+(f+(α)ρ, ϑ) + P−(f−(1− α)z , ϑ)
)
= div(S(ϑ,∇u)),

∂t

(
ρs+

( ρ
α , ϑ

)
+ zs−

(
z

1−α , ϑ
)
+)

+div
((
ρs+

( ρ
α , ϑ

)
+ zs−

(
z

1−α , ϑ
))

u
)

− div
(
κ(ϑ)
ϑ ∇ϑ

)
= 1

ϑ

(
S(ϑ,∇u) · ∇u − κ(ϑ)

ϑ |∇ϑ|2
)
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The system is endowed with the initial conditions

α(0, ·) = α0, ρ(0, ·) = ρ0, z(0, ·) = z0, (ρ+z)u(0, ·) = (ρ0+z0)u0, ϑ(0, ·) = ϑ0
(0.7)

and with the boundary conditions

∇ϑ · n = 0 on (0,T )× ∂Ω (0.8)

and either

u · n = 0 and S(ϑ,∇u)n × n = 0 or u = 0 on (0,T )× ∂Ω (0.9)

for the case of the complete slip, the no slip respectively.
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e±(f±(α±)α±r , ϑ) = 1
f±(α±)e±(r , ϑ),

s±(f±(α±)α±r , ϑ) = 1
f±(α±)s±(r , ϑ).

(0.10)
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Introducing the changes of variables r = f+(α)ρ = f+(α)αρ+,
z = f−(1− α)z = f−(1− α)(1− α)ρ−

e+(r, ϑ) =
1

f+(α)
e+

(
r

f+(α)α
, ϑ

)
,

s+(r, ϑ) =
1

f+(α)
s+

(
r

f+(α)α
, ϑ

)
,

P+(r, ϑ) =α+P+

(
r

f+(α)α
, ϑ

)
,

e−(z, ϑ) =
1

f−(1− α)
e−

(
z

f−(1− α)(1− α)
, ϑ

)
,

s−(z, ϑ) =
1

f−(1− α)
s−

(
z

f−(1− α)(1− α)
, ϑ

)
,

P−(z, ϑ) =(1− α)P−

(
z

f−(1− α)(1− α)
, ϑ

)
.

(0.11)
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e+(r, α, ϑ) =
b

r
ϑ4α+ e+(r, ϑ),

e−(z, α, ϑ) =
b

z
ϑ4(1− α) + e−(z, ϑ),

s+(r, α, ϑ) =
4b

3r
ϑ3α+ s+(r, ϑ),

s−(z, α, ϑ) =
4b

3z
ϑ3(1− α) + s−(z, ϑ).

(0.12)

The Gibbs relations for quantities s±, e± and P± have the form

∂re+ = ϑ∂rs+ +
P+

r2
, ∂ϑe+ = ϑ∂ϑs+

∂ze− = ϑ∂zs− +
P−
z2
, ∂ϑe− = ϑ∂ϑs−.

(0.13)
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Σ = ρ+ z and P(r, z, ϑ) = b
3ϑ

4 + P+(r, ϑ) + P−(z, ϑ)
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∂tξ + div(ξu) = 0,

∂tr+ div(ru) = 0,

∂tz+ div(zu) = 0,

∂tΣ+ div(Σu) = 0,

∂t (Σu) + div (Σu ⊗ u) +∇P(r, z, ϑ) = div S(ϑ,∇u) = 0,

∂t ((rs+ (r, ϑ) + zs− (z, ϑ)) u) + div ((rs+ (r, ϑ) + zs− (z, ϑ)) u ⊗ u)

+ div

(
κ(ϑ)

ϑ
∇ϑ
)
− 1

ϑ

(
S(ϑ,∇u) · ∇u +

κ(ϑ)

ϑ
|∇ϑ|2

)
= 0

(0.14)

in QT
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with initial conditions

ξ(0, ·) =α0ρ+(0, ·),
r(0, ·) =f+(α0)α0ρ+(0, ·),
z(0, ·) =f−(1− α0)(1− α0)ρ−(0, ·),

Σu(0, ·) =(αρ+ + (1− α)ρ−)u(0, ·),

(rs+(r, ϑ) + zs−(z, ϑ)) (0, ·) =
4b

3
ϑ30 + α0ρ+,0α0s+(ρ+,0, ϑ0) + (1− α0)ρ−,0α0s−(ρ−,0, ϑ0)

(0.15)

and boundary conditions

∇ϑ · n = 0, u = 0 or u · n = 0 and (Sn)× n = 0 on (0,T )× ∂Ω.
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Regularity of initial data

r0 ∈ Lγ+(Ω), γ+ ≥ 9

5
,

∫

Ω
r0 > 0, z0 ∈ Lγ−(Ω) if γ− > γ+,

∫

Ω
z0 > 0,

(r0, z0)(x) ∈ Oa,a,

(r0 + z0,Σ0)(x) ∈ Ob,b, (r0, ξ0)(x) ∈ Od ,d for a.a. x ∈ Ω,

(Σu)0 ∈ L1(Ω),
|(Σu)0|2

Σ0
∈ L1(Ω), ϑ0 ∈ L4(Ω), log ϑ0 ∈ L2(Ω),

r0s+ (r0, ϑ0) + z0s− (z0, ϑ0) ∈ L1(Ω),

r0e+ (r0, ϑ0) + z0e− (z0, ϑ0) ∈ L1(Ω),

Oa,a = {(r , z) ∈ R2 : r ∈ (0,∞), ar < z < ar} (0.16)

0 < a < a <∞, 0 < b < b <∞, 0 < d < d <∞.
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Transport coefficients µ, η, κ ∈ C 1([0,∞)) satisfy

c−1(1 + ϑ) ≤ µ(ϑ) ≤ c(1 + ϑ), (0.17)

0 ≤ η(ϑ) ≤ c(1 + ϑ), (0.18)

c−1(1 + ϑ)β ≤ κ(ϑ) ≤ c(1 + ϑ)β, β >
4

3
. (0.19)
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Structure and regularity of pressure, internal energy and specific
entropy
(0.11).

Regularity

P±, e± ∈ C ([0,∞)2)∩C 2((0,∞)2), P±(0, 0) = 0, e±(0, 0) = 0;

Thermodynamic stability conditions

∂rP±(r , ϑ) > 0, ∂ϑe±(r , ϑ) > 0 for all (r , ϑ) ∈ (0,∞)2;
(0.20)

Structure of specific entropy

s±(r , ϑ) = s̄± log ϑ− s̃± log r + s±(r , ϑ) (0.21)

for some constants s̄±, s̃± ≥ 0;
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Structure of the pressure, the precise meaning of (0.6)

There are f± ∈ C 1(I±; [0,∞)N±), I+ = [α, α], I− = [1− α, 1− α],
N± ∈ N and P± : [0,∞)2 → [0,∞) such that

α±P±(r , ϑ) = P±(f±(α±)α±r , ϑ) for all α± ∈ I±, r ∈ [0,∞), ϑ > 0.

Moreover, the function p : [0,∞)× [a, a]× (0,∞) → R defined as

p(r , ζ, ϑ) = P+(r , ϑ) + P−(rζ, ϑ)

is for any (ζ, ϑ) ∈ [a, a]× (0,∞) a nondecreasing function of r on
[0,∞).
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Growth conditions for the pressure functions, the internal energies
and the specific entropies

Growth conditions for the internal energies e±

c−1(rγ±−1−1) ≤ e±(r , ϑ) ≤ c(rγ±−1+de
±ϑ

ωe
±) for all (r , ϑ) ∈ (0,∞)2,

(0.22)
where γ± > 0 and ωe

± > 0 satisfy

1

γ − 1
+
ωe
±

pβ
< 1.

We denote γ = max{γ+, γ−} ≥ γβ where γβ solves

γβ +min

{
2γβ
3

− 1, γβ

(
1

2
− 1

pβ

)}
= 2 with pβ = β +

8

3
.

(0.23)
Let us notice that γβ ∈

(
9
5 , 2
)
.
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Growth conditions for the specific entropies s±

|s±| ≤ c(rγ
s
±−1 + d s

±ϑ
ωs
±) for all (r , ϑ) ∈ (0,∞)2, (0.24)

where γs±, ω
s
± > 0 and γ = max{γs+, γs−},

ωs = max{d s
+ω

s
+, d

s
−ω

s
−} obey

ωs

4
+

γs

γ − 1
<

5

6
.

Growth conditions for the pressures P±

c−1(rγ±−1) ≤ P±(r , ϑ) ≤ c(rγ±+dP
±r

γP
±ϑω

P
±) for all (r , ϑ) ∈ (0,∞)2,

(0.25)
where γP±, ω

P
± > 0 and γP = max{dP

+γ
P
+, d

P
−γ

P
−},

ωP = max{dP
+ω

P
+, d

P
−ω

P
−} obey

γP

γ
+
ωP

pβ
< 1.
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If γ = γβ we assume that

p(ρ, ζ, ϑ) = π(ζ, ϑ)ργ +p(ρ, ζ, ϑ) (0.26)

for some π ∈ L∞((a, a)× (0,∞)) such that

ess inf(a,a)×(0,∞) π ≥ π > 0

and some p ∈ C ([0,∞)× [a, a]× [0,∞)) such that the
mapping ρ 7→ p(ρ, ζ, ϑ) is for all (ζ, ϑ) continuous and
nondecreasing on [0,∞).Growth conditions for the entropy
and the internal energy variations

r |∂rs±|(r , ϑ) ≤c(rΓ
s−1 + rΓ

s−1)(1 + d
s
±ϑ)

ωs
, (0.27)

r |∂ϑs±|(r , ϑ) ≤c(1 + r Γ̃
s
)(1 + d̃ s

±ϑ)
ω̃s
, (0.28)

r |∂re±|(r , ϑ) ≤c(rΓ
e−1 + rΓ

e−1)(1 + d
e
±ϑ)

ωe
, (0.29)

r |∂ϑe±|(r , ϑ) ≤c(1 + r Γ̃
e
)(1 + d̃e

±ϑ)
ω̃e

(0.30)

for all (r , ϑ) ∈ (0,∞)2.
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In the above inequalities we consider Γa ∈ [0, 1), Γ
a ∈ (0, γ),

Γ̃a ∈ (0, γ) such that

max{Γa, Γa}
γ

+
ωa

pβ
< 1,

Γ̃a

γ
+
ω̃a + 1

pβ
< 1,

where the supersript a stand for e and s, ωa = max{da
+ω

a
+, d

a
−ω

a
−},

γ = γ + γBOG , γBOG = min

{
2

3
γ − 1,

(
1

2
− 1

pβ

)
γ

}
. (0.31)
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Growth conditions for the pressure variations

|∂rP±|(r , ϑ) ≤c(rΓ
P−1 + rΓ

P−1)(1 + d
P
±ϑ)

ωP
,

|∂ϑP±|(r , ϑ) ≤c(1 + r Γ̃
P
)(1 + ϑ)ω̃

P
±

(0.32)

for all (r , ϑ) ∈ (0,∞)2 with some ΓP ∈ [0, 1), Γ
P ∈ (0, γ),

Γ̃P ∈ (0, γ) such that

max{ΓP , ΓP}
γ

+
ωP

pβ
< 1,

Γ̃P

γ
+
ω̃P + 1

pβ
< 1,

where ωP = max{dP
+ω

P
+, d

P
−ω

P
−}, ω̃P = max{dP

+ω̃
P
+, d

P
−ω̃

P
−} and γ

is given by (0.31).
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Definition

The quintet (α, ρ, z , u, ϑ) is a bounded energy weak solution to
original problem if

(α, ρ, z , u, ϑ) possesses the following regularity

(ρ, z , α) ∈ Cw ([0,T ]; Lγ(Ω)),

(ρ, z)(t, x) ∈ Oa,a, α ≤ α ≤ α for all t ∈ [0,T ] and a.a. x ∈ Ω,
u ∈ L2(0,T ;W 1,2(Ω)), (ρ+ z)|u|2 ∈ L∞(0,T ; L1(Ω)),
(ρ+ z)u ∈ Cw ([0,T ]; Lq(Ω)),
P+(f+(α)ρ, ϑ),P−(f−(1− α)z , ϑ) ∈ L1(QT ),
ϑ ∈ L∞(0,T ; L4(Ω)) ∩ L2(0,T ;W 1,2(Ω)),
log ϑ ∈ L2(0,T ;W 1,2(Ω))

with some γ, q > 1.
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Definition

(continuation)

The continuity equation

∫

Ω
rψ(t)−

∫

Ω
r0ψ(0) =

∫ t

0

∫

Ω
r(∂tψ + u · ∇ψ) (0.33)

is fulfilled for any t ∈ [0,T ], ψ ∈ C 1([0,T ]×Ω) with r standing
for ρ and z .

The transport equation

∫

Ω
αψ(t)−

∫

Ω
α0ψ(0) =

∫ t

0

∫

Ω
(α(∂tψ + u · ∇ψ)− α div uψ)

(0.34)
is fulfilled for any t ∈ [0,T ], ψ ∈ C 1([0,T ]× Ω).
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Definition

The momentum equation

∫
Ω(ρ+ z)uφ(t)− intΩ(ρ0 + z0)u0φ(0) =

∫ t
0

∫
Ω

(
ρ+ z)u · ∂tφ+ (ρ+ z)u ⊗ u · ∇φ

+
(
b
3ϑ

4 + P+(f+(α)ρ, ϑ) + P−(f−(1− α)z , ϑ)
)
divφ−

S(ϑ,∇u) · ∇φ
)

(0.35)
is fulfilled for any t ∈ [0,T ] and φ ∈ C 1([0,T ] × Ω), where
either φ = 0 or φ · n = 0 on (0,T )× ∂Ω;
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Definition

The energy equality

∫
Ω

(
1
2(ρ+ z)|u|2 + ρe+

( ρ
α , ϑ

)
+ ze−

(
z

1−α , ϑ
))

(t)

=
∫
Ω

(
1
2(ρ0 + z0)|u0|2 + ρ0e+

(
ρ0
α0
, ϑ0

)
+ z0e−

(
z0

1−α0
, ϑ0

))

(0.36)
holds for a.a t ∈ (0,T );
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Definition

The balance of entropy holds in the following sense: There is
σ ∈ (C ([0,T ]× Ω))∗ such that

⟨σ, ϕ⟩ ≥
∫ T

0

∫

Ω

(
1

ϑ
S(ϑ,∇u) · ∇u +

κ(ϑ)

ϑ2
|∇ϑ|2

)
ϕ (0.37)

for any ϕ ∈ C ([0,T ]× Ω), ϕ ≥ 0 and

∫
Ω

(
ρs+

( ρ
α , ϑ

)
+ zs−

(
z

1−α , ϑ
))

ϕ(t)−
∫
Ω

(
ρ0s+

(
ρ0
α0
, ϑ0

)
+ z0s−

(
z0

1−α0
, ϑ0

))
ϕ(0)

=
∫ t
0

∫
Ω

((
ρs+

( ρ
α , ϑ

)
+ zs−

(
z

1−α , ϑ
))

(∂tϕ+ u · ∇ϕ)
−κ(ϑ)

ϑ ∇ϑ · ∇ϕ+ ⟨σt , ϕ⟩,
(0.38)
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Definition

where we denoted

⟨σt , ϕ⟩ =
∫

[0,t]×Ω
ϕ(τ, x)dµσ(τ, x)

and µσ is the unique Borel measure associated to σ by the Riesz
representation theorem.
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Definition

The sixtet (ξ, r, z,Σ, u, ϑ) is called a bounded energy weak solution
to (0.14) if

ξ, r, z,Σ ≥ 0 a.e. in QT , r, z,Σ ∈ Cw ([0,T ]; Lγ(Ω))
for some γ > 1,

(r, z)(t, x) ∈ Oa,a, (r+ z,Σ)(t, x) ∈ Ob,b,

(r, ξ)(t, x) ∈ Od ,d for all t ∈ [0,T ] and a.a. x ∈ Ω,

u ∈ L2(0,T ;W 1,2(Ω)),P(r, z, ϑ) ∈ L1(QT ),
Σ|u|2 ∈ L∞(0,T ; L1(Ω)),Σu ∈ Cw ([0,T ]; Lq(Ω)) for some q > 1,
ϑ ∈ L∞(0,T ; L4(Ω)), ϑ, log ϑ ∈ L2(0,T ;W 1,2(Ω));

(0.39)
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Definition

The continuity equation

∫

Ω
rψ(t)−

∫

Ω
r0ψ(0) =

∫ t

0

∫

Ω
r(∂tψ + u · ∇ψ) (0.40)

is fulfilled for any t ∈ [0,T ], ψ ∈ C 1([0,T ]×Ω) with r standing
for ξ, r, z and Σ;
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Definition

The momentum equation

∫
ΩΣuφ(t)−

∫
Ω(Σu)0φ(0) =

∫ t
0

∫
Ω (Σu · ∂tφ+Σu ⊗ u · ∇φ+P(r, z, ϑ) divφ− S(ϑ,∇u) · ∇φ)

(0.41)
is fulfilled for any t ∈ [0,T ] and φ ∈ C 1([0,T ] × Ω), where
either φ = 0 or φ · n = 0 on (0,T )× ∂Ω;
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Definition

The energy equality

∫

Ω

(
1

2
Σ|u|2 + E(r, z, ϑ)

)
(t) =

∫

Ω

( |(Σu)0|2
2Σ0

+ E(r0, z0, ϑ0)

)

(0.42)
holds for a.a t ∈ (0,T );
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Definition

The balance of entropy holds in the following sense: There is
σ ∈ (C ([0,T ]× Ω))∗ such that

⟨σ, ϕ⟩ ≥
∫ T

0

∫

Ω

(
1

ϑ
S(ϑ,∇u) · ∇u +

κ(ϑ)

ϑ2
|∇ϑ|2

)
ϕ (0.43)

for any ϕ ∈ C ([0,T ]× Ω), ϕ ≥ 0 and

∫
Ω S(r, z, ϑ)ϕ(t)−

∫
Ω S(r0, z0, ϑ0)ϕ(0) =∫ t

0

∫
Ω

(
S(r, z, ϑ) (∂tϕ+ u · ∇ϕ)− κ(ϑ)

ϑ ∇ϑ · ∇ϕ
)
+ ⟨σt , ϕ⟩,

(0.44)

68



Definition

where we denoted

⟨σt , ϕ⟩ =
∫

[0,t]×Ω
ϕ(τ, x)dµσ(τ, x)

and µσ is the unique Borel measure associated to σ by the Riesz
representation theorem.
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Theorem

Let T > 0, Ω ⊂ R3 be a bounded domain of class C 2 and the
hypotheses. If γ = γβ we assume 1

γ+1 + 1
pβ

≤ 1
2 additionaly, where

γβ and pβ are defined in (0.23). Then problem (0.14) admits at
least one bounded energy weak solution in the sense of
Definition 0.7
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Theorem

Let T > 0, Ω ⊂ R3 be a bounded domain of class C 2. Suppose
that f+, f− : [0, 1] → [0, 1] are continuously differentiable, strictly
monotone and non-vanishing on [0, 1]. Let γ+ ≥ 9

5 , γ− > 0

0 < ρ0(x), 0 < α ≤ α0(x) ≤ α < 1,

(f (α0)ρ0, f−(1− α0)z0)(x) ∈ Oa,a for a.a. x ∈ Ω,
α0 ∈ L∞(Ω), ρ0 ∈ Lγ+(Ω),

∫
Ω ρ0 > 0, z0 ∈ Lγ−(Ω) if γ− > γ+,∫

Ω z0 > 0,
(ρ0 + z0)|u0|2 ∈ L1(Ω), ϑ0 ∈ L4(Ω), log ϑ0 ∈ L2(Ω),

ρ0s+
(

ρ0
α0
, ϑ0

)
+ z0s−

(
z0

1−α0
, ϑ0

)
∈ L1(Ω),

ρ0e+
(

ρ0
α0
, ϑ0

)
+ z0e−

(
z0

1−α0
, ϑ0

)
∈ L1(Ω)

(0.45)
be given.
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Theorem

Let the hypothesis (H) be satisfied. If γ = γβ we assume
1

γ+1 + 1
pβ

≤ 1
2 additionaly, where γβ and pβ are defined in (0.23).

Then original problem admits at least one bounded energy weak
solution in the sense of Definition 0.1.
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Scheme of proof:
Solving the regularized form of (0.14) with two small
parameters ε > 0 characterizing the dissipation in all continuity
equations and δ > 0 characterizing the artificial pressure in (0.14)5
and the balance of internal energy is considered instead of the
entropy production equation (0.14)6.
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(1) The existence of solution to the approximate problem is shown
via the Faedo – Galerkin scheme in the spirit of monofluid
situation.

(a) First, a solution to the Faedo- Galerkin approximation of the
regularized momentum equation is shown to exist locally in time by
the Schauder fixed point theorem. (b) Next, deriving suitable

uniform estimates of the solution allows for extending the solution
to the whole given time interval. (c) Then the balance of internal

energy is converted to the entropy production equation provided
that the approximate tempera- ture is positive. Eventually, the
limit passage to infinity with the Faedo-Galerkin parameter is
performed.
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(2) Performing the passage ε→ 0+, i.e. letting the artificial
viscotity in continuity equations tend to zero, (improved uniform
integrability of a density approximation sequence, the compen-
sated compactness arguments for showing the compactness of
temperature approximations, the almost compactness of the ratio
of density approximations and a variant of the effective viscous flux
identity.)

(3) Performing the passage δ → 0+, i.e. letting the artificial
pressure term in the momentum equation tend to zero, follows the
same procedure as in the previous step with minor differences
caused by a lower exponent characterizing the uniform integrability
of density approximations.
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Multi-component FSI problem
M. Kalousek, S. Mitra, Š. N.
Modelling assumptions

Flow of a viscous compressible two-fluid model with a pressure law
depending on both fluid densities.

A shell of Koiter type located at the fluid boundary.

Simplifying assumption: The shell moves only in the normal direction to
the reference domain.

The fluid-solid interface is supplemented with adherence type condition.

ν⃗

ν⃗η

Ωη(t)

Γ
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The model we consider

Continuity equations:

{
∂t(ρ) + div(ρu) = 0,
∂t(Z) + div(Zu) = 0

Momentum balance:
{

∂t ((ρ+ Z)u) + div ((ρ+ Z)u ⊗ u) = div S(∇u)−∇P(ρ,Z)

Dynamics of the structure:
{

∂2
t η − ζ∂t∆η + K ′(η) = F · ν, in (0,T )× Γ

F = (−(S(∇u)− P(ρ,Z)I3) · νη) ◦ φη|detDφη(t)|, in (0,T )× Γ.

where

S(∇u) = 2µ

(∇u +∇uT

2
− 1

3
div uI3

)
+ λ div uI3

and
φη(x , t) = φ(x) + η(x , t)ν(φ(x)) for x ∈ Γ.

Ω is a reference domain, whose boundary is parametrized by a C 4 injective
mapping φ : Γ → R2, η ∈ (a∂Ω, b∂Ω)

Continuity of velocities at the interface:
{

u(t, φη(t, x)) = ∂tη(x , t)ν(φ(x)) on Γ× I

Supplemented with initial condition:

(ρ,Z , (ρ+ Z)u, η, ∂tη) = (ρ0,Z0, (ρ0 + Z0)u0, η0, η1).
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Some comments on the structure of the pressure and the
Koiter energy

Some assumptions on the structure of pressure and initial density:

For some 0 < a < a < ∞ we assume

(ρ0,Z0) ∈ Oa = {(ρ,Z) ∈ R2| ρ ∈ [0,∞), aρ ≤ Z ≤ aρ},

for all (ρ,Z) ∈ Oa, C(ργ + Zβ − 1) ≤ P(ρ,Z) ≤ C(ργ + Zβ + 1)

with some γ ≥ 2, β > 0 and positive constants C , C and

for all (ρ,Z) ∈ Oa, |∂ZP(ρ,Z)| ≤ C(ρκ + ρκ)

for some κ ∈ (0, 1] and κ ∈ [1, γ̃), γ̃ = max{γ + γbog , β + βbog}.

P(ρ, ρs) = P(ρ, s)−R(ρ, s), s =

{
Z
ρ

if ρ > 0,

0 if ρ = 0.

where [0,∞) ∋ ρ 7→ P(ρ, s) is non decreasing for any s ∈ [0, a] and
⋃

s∈[0,a]

suppR(·, s) ⊂ [0,R], sup
s∈[0,a]

∥R(·, s)∥C2([0,R]) < ∞.

the function ρ → P(ρ,Z),Z > 0 and the function Z → ∂ZP(ρ,Z), ρ > 0
are Lipschitz on (Z/a,Z/a) ∩ (r ,∞), (aρ, aρ) ∩ (r ,∞), respectively.
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Example of such a pressure and Koiter energy

A typical example of pressure:

P(ρ,Z) = ργ + Zβ +
M∑

i=1

Fi (ρ,Z),

where

Fi (ρ,Z) = Ciρ
riZ si , where 0 ⩽ ri < γ, 0 ⩽ si < β, ri+si < max{γ, β}, Ci ⩾ 0.

Very roughly the elasticity operator:

⟨K ′(η), b⟩ = h3

24

∫

Γ

(
A(γ(η)∇2η) : (γ′(η)b∇2η)+A(γ(η)∇2η) : (γ(η)∇2b)

)
+L.O.T .

∀ b ∈ W 2,p(Γ), p > 2.

h : thickness of the structure, A : elasticity tensor

γ(η) : a second order polynomial in η.

For details we refer to:
P.G. Ciarlet: Mathematical elasticity, Vol III.
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Weak formulations and main result

Comments on weak formulation:
∫ t

0

∫

Ωη(s)

(ρ+ Z)u · ∂tϕ+

∫ t

0

∫

Ωη(s)

((ρ+ Z)u ⊗ u) · ∇ϕ−
∫ t

0

∫

Ωη(s)

S(∇u) · ∇ϕ

+

∫ t

0

∫

Ωη(s)

P(ρ,Z)div ϕ+

∫

(0,t)×Γ

∂tη∂tb −
∫ t

0

⟨K ′(η), b⟩+ ζ

∫ t

0

∫

Γ

∂t∇η∇b

=

∫

Ωη(t)

(ρ+ Z)u(t, ·)ϕ(t, ·)−
∫

Ωη0

M0ϕ(0, ·) +
∫

Γ

∂tη(t, ·)b(t, ·)−
∫

Γ

η1b(0, ·)

for all t ∈ [0,T ],
(ϕ, b) ∈ C∞([0,T ]× R3)× (L∞(0,T ;W 2,2(Γ)) ∩W 1,∞(0,T ; L2(Γ)), with
trΣηϕ = bν and trΣηu = ∂tην.
where the trace trΣη is defined roughly as:

trΣηϕ ≈ ϕ ◦ ην on Γ.

Please notice that:

The stress tensor due to the fluid does not appear at the interface in the
weak formulation.

80



Apriori estimate and functional spaces

A formal energy inequality

∫

Ωη(t)

(
1

2
(ρ+ Z)|u|2 + HP(ρ,Z)

)
(t, ·) +

∫

I

∫

Ωη(t)

S(Du) · ∇u

+

(∫

Γ

1

2
|∂tη|2 + K(η)(t, ·)

)
+ ζ

∫

I

∫

Ωη(t)

|∂t∇η|2

≤
∫

Ωη0

( |M0|2
2(ρ0 + Z0)

+ HP(ρ0,Z0)

)
+

(
1

2

∫

Γ

|η1|2 + K(η0)

)

holds for a.a. t ∈ I .
We expect to solve in the frame-work:

ρ ∈ Cw ([0,T ]; Lγ(Ωη(t))), Z ∈ Cw ([0,T ]; Lβ(Ωη(t))),

u ∈ L2(0,T ;W 1,q(Ωη(t))), q < 2, (Korn inequality in uniformly Holder domains)

η ∈ L∞(0,T ;W 2,2(Γ)) ∩ L2(0,T ;W 2,2+σ(Γ)) for σ > 0
(Coercivity of K(η) in W 2,2(Γ)),

∂tη ∈ Cw ([0,T ]; L2(Γ)) ∩ L2([0,T ];W σ,2(Γ)), for σ > 0.
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The central result at a glance

Case I: Let max{γ, β} > 2, 0 < min{γ, β}, the dissipation parameter ζ=0,

ρ0,Z0 ⩾ 0, ρ0,Z0 ̸≡ 0 a.e. in Ωη0 , ρ0 ∈ Lγ(Ωη0), Z0 ∈ Lβ(Ωη0),

M0 = (ρ0 + Z0)u0 ∈ L1(Ωη0), (ρ0 + Z0)|u0|2 ∈ L1(Ωη0), η0 ∈ W 2,2(Γ), η1 ∈ L2(Γ),

+compatibity between intial velocities.

Case II: Let max{γ, β} ⩾ 2, 0 < min{γ, β}, the dissipation parameter ζ > 0,
Conclusion:
Existence of at least one weak solution.
Moreover, one of the following holds:

T = +∞,

T < ∞ if
(a) Ωη(s) approaches a self–intersection as s → T ,
(b) the Koiter energy degenerates, i.e., lims→T γ̄(η(s, y)) = 0 for some
y ∈ Γ.

Further in Case II:

u ∈ L2(0,T ;W 1,2(Ωη(t))), η ∈ W 1,2(0,T ;W 1,2(Γ)).
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Thank you for your attention
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