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Introduction to the model

Aim: to describe the evolution of I ion species, immersed in a solvent like water, through

long and narrow channels:

Applications: batteries, human cells, ...
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The continuous model

Then, over Q x [0, +00):

0tu;j+V-F;=0, i=1,...,1
—“NAp=Y1_, ziu, A>0,z€R)

closed with some b.c. and i.c., with the flux of the species i being given by
(D; > 0) Fi= —Di(uOVu,-— uV it + uoul-zNgb).

where the solvent concentration satisfies

I
(size exclusion) u=1- u
i=1
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Two numerical schemes for the modified PNP model

Motivations: To propose and to analyze a scheme for the model which shares the best
with the approaches proposed so far ¢ 7 ¢;

- positivity and bounds of the volume fractions
- decay of free energy,

- unconditional convergence,

- second order accuracy in space,

- well behaviour (even for small 12),

- preserve the form of the steady states.

@Bailo, Carrillo, and Hu 2023
b Cances, C. Chainais-Hillairet, et al. 2019
Gerstenmayer and Jiingel 2019



The space-time discretisation

* We introduce a mesh (3,8, {xx}kes),
fulfilling the orthogonality condition
and a time discretisation ("), _, of
[0, +00).
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* The conservation laws are discretized using a backward Euler method in time and
finite volumes in space:
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The SQRA scheme

The continuous model was originally derived thanks to a hopping process®, suggesting
the choice

1 n n 1 n n
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leading to the square-root approximation scheme®.

“Burger, Schlake, and Wolfram 2012
bCances and Venel 2023



The SQRA scheme

§ 1 n n 1 n n
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The probability that a i—particle jumps from K to Lis
proportional to:

#{candidates in K for a jump}
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#{available sites to host the

i— particle in the cell L}




The SQRA scheme
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The probability that a i—particle jumps from Lto K is
proportional to:

o=K|L
. ulflL = #{candidates in L for a jump}
xi Mok xp
u jul! - n . .
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A generalisation of the Scharfetter-Gummel scheme

Hence the scheme can be re-written using the function

as

Fley = aoDi(ulicul B (z(¢] - o) - uf 1 B (zi(gp — o)) 2

where
* BeC'RR);
° B0)=1, By >0;
e in general, B(y) — B(-y) # —y, but B(=y) = B(y) = y+ G GHA).

2 Lie, Fackeldey, and Weber 2013

3Heida 2018
4Claire Chainais-Hillairet and Droniou 2011



Behaviour for small 12

However, when 12 become small,

mg n n 1 ! n
Y Pk —Po) = 5 mk )z,
dy A 4 '

(% i=1

the drift
T/

becomes too large to evaluate its exponential.



The SG scheme

Instead of using the function E——

(SQRA) B(y) =e >,

another natural choice for the drift term is 5
the function

y
-1

-10 -8 -6 -4 -2 2 4

(SG) B(y) =

’

leading to the Scharfetter-Gummel scheme, with fluxes:

n o, n Zl(gbz_(l)ln() no.n Zi(‘/’lré_ﬂbz

Fl'e =asDi|u' ) ——— — U Uy g ————— |-
Ko =70 TR KTOL pzitpp—p) 1 TRETOK pripp—o) _ 1
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Consistency of the fluxes

By taking advantages of the entropy structure of the model the fluxes re-write as
Fi= —Di(uOVui - uiVuy + uouizngb) =-Djuse %

where w; := %ezi‘l’ are the Slotboom variables.

5Heida, Kantner, and Stephan 2021



Consistency of the fluxes

By taking advantages of the entropy structure of the model the fluxes re-write as
Fi= —Di(uOVui— uVug + uouizngb) —-Djuge

where w; := %ezi‘p are the Slotboom variables. Hence

Fl'yo = g Ditg o ug (N(e” ziPk  o=aPL)
where 91 is a Stolarsky mean®:
B(y) =M, e7).
We used:

log(1/a) —log(1/b)
1/a-1/b

(a,b> 0 with a# b) MA@ b):=vVab, MC(ab):=

5Heida, Kantner, and Stephan 2021



Theorem (Existence - C. Cances, M. Herda, A. M)

There exists (at least) one solution to the scheme which satisfies

0<uZK<1 Vi=0,...,I, Keg,n=1.
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There exists (at least) one solution to the scheme which satisfies
O<u,<1 Vi=0,.,[,KeJ,n=1
Moreover, the discrete free energy /5. is decaying along the time iterations

Hq+1" < Hg 1 n=1,

where u? . = log ( ) + zip is the discrete electrochemical potentials of species i, and
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The dissipation 27 vanishes iff (Ug) xcq» (P%) xeq) is the stationary solution.



Theorem (Convergence of the scheme - C. Cances, M. Herda, A. M)

There exists a weak solution (U, ¢) such that, up to the extraction of a subsequence,

¢, 7 b and uogyn = Uo inL) (Ry;IP(Q)) Vpell, +o0),

and Ug,, z_+:x, U inthel™ R, x Q)! weak-* sense.



A simulations with 12 = 1072

e 0=(0,1)

e z1=2,zp=1,and D1 =D, =1

e $P(£,0)=10and ¢p°(£,1) = 0.

* Initial configurations: 9(x) =0.2+0.1(x—1) and u)=0.4
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Figure 1: Solid lines: Solutions at time T = 1. Dashed lines: Long-time limit.



Second order convergence of the schemes
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number of cells

A reference solution is computed on a grid made of 1638400 cells and with a constant
time step 7 = 1073, to which are compared solutions computed on successively refined
grids but with the same constant time step.



Proposition (Existence of the (discrete) steady state)

There exists a solution to the steady scheme, with constant in space potentials in the sense
; oo _ [ ,400 1
that there exists p3 = (pi’ 3.) Leier € R' such that

O—, Keg,1
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such that,
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Proposition (Existence of the (discrete) steady state)

There exists a solution to the steady scheme, with constant in space potentials in the sense
; oo _ [ ,400 1
that there exists p3 = (pi’ 3.) Leier € R' such that

) S S
logu?+zi¢>K=ui,g-, Keg,1<is<],
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such that,

Proposition (Uniqueness)

‘

The solution ($p3, p3) minimizes the strictly convex functional ¥ g : R7 xR — R
defined by

Yo (g, &) =— Z as (Yk—YKko)*+ Y mKlog(HZe" Zl”) Y. mi |fiyk + Zél Uy

2 ogeé Keg Keg




Long-time behavior of the scheme (2D)

I‘D
e 0=(0,1)?2 withoQ=TPur¥
. (PD:O
Q N e z1=2,=1,23=—1

* D1=1,D,=2,D3=2

Two initial globally neutral profiles:

I @
V(0 =0.3x 19122 (1), u® ) =0.1x u1 O (),
0 W(x)=03x Llasz,nx,1/2) (%), u‘z"@) (x) =0.1 x u2 W(x) +0.9 x lopxasen ),
0 W) =0.9% 11721y (%). 1P =01 x 12V (@x) +0.9% 10,1y 0,1/2 ().
3 3

A third initial globally charged and constant in space:

3) W¥w=02 wWw®=02 uwy®w=



Convergence towards the steady long-time behavior (A7 — #°)

102 [ I 5 _
Initialization (1), A =0.0016

) — Initialization (3), A% = 0.01
T

2 1078 +|--- Initialization (3), A> = 0.16
§ - -- TInitialization (1), 12 =0.16
Sl |[--- Initialization (2), A2 = 0.16
3 10

10—22 L ,

Time

We run our scheme with a constant time step 7 = 10~ and for two different Debye
length until a final time T = 3, and look for the evolution of the relative energy

H — A along time. The relative energy is decaying for all the curves, but the velocity
at which the decay occurs varies strongly depending on the Debye length and on the
initial profile.



