Models of incompressible binary flows

with surfactant

Maurizio Grasselli

Dipartimento di Matematica — Politecnico di Milano — ITALY

maurizio.grasselli@polimi.it
Mixtures: Modeling, analysis and computing

EMS TAG MIXTURES
Charles University, Prague, February 5-7, 2025

1/18



French vinaigrette: basic ingredients and instructions

@ olive ol
@ vinegar
@ mustard
@ salt and pepper

Place mustard, salt, pepper, and vinegar in a bowl.
Whisk to dissolve mustard and salt.
Slowly whisk in olive oil into an emulsion.

Ref. H. Benabdelhalim, D. Brutin: Phase separation and
spreading dynamics of French vinaigrette, Phys. Fluids 2022
[Special Collection: Kitchen Flows]
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If you don’t use mustard...

this is what happens after some time (room temperature)
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If you use mustard...
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Surfactant in fluid mixtures

@ surfactants lower the surface tension

@ examples: detergents make the water more “wet” and
grease can be removed, emulsifying agent stabilizes an
emulsion by preventing small droplets to coalesce
(mustard in olive oil + vinegar mixture)

@ surfactant molecules spontaneously aggregate in stable
groups called micelles which have a strong preference to
occupy sites at the fluid-fluid interfaces

@ below the critical micelle concentration (CMC), surfactants
adsorb efficiently to the interfaces where their physical
effects become prominent

@ above the CMC, additionally, spontaneous formation of
micelles occurs in the bulk solution
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Phase field approach: free energy

@ Q bdd domain with smooth boundary in R9, d € {2,3}

@ ¢:Qx|[0,T)— [—1,1] relative volume fraction difference
between the two fluids

@ ¢ :Qx[0,T)— [0,1] volume fraction of the surfactant
@ free energy

Eiree (6,0) = Ey(6) + Es(®) + /Q G (6. 1) dx

Ref. S. Engblom et al., On Diffuse Interface Modeling and
Simulation of Surfactants in Two-Phase Fluid Flow, Commun.
Comput. Phys. 2013 [and refs. therein]
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Free energies E; and E,,

@ we postulate

2
<|V¢| +F¢ ) ax

Ey(v) = <|V1,Z)|2 > dx

Q

:,\

@ where ¢, 5 > 0 and

01

(1)

Fy(s) = [( +8)In(1+8)+(1—9)In(1 —s)] + =
Fy(s) = E[slns+(1 —S)In(1 —3s)] + %‘23(1 - 5)

with ©, 64,6, > 0
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Interaction energy density G: first choice

@ we postulate

G(6,¥) = 5 v6? — 20| Vof

where v1,72 > 0

@ with this choice we need to add a regularizing higher-order
termin E;, namely,

+o|Agf?
witho >0
@ also, we need to approximate F, using a smooth double
well potential
Fi(s) = 7(1 = &2
witha >0
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First hydrodynamic model

@ matched densities (p1 = po = 1)
@ u (volume averaged) fluid velocity
@ constant mobilities (= 1)

ou+ (u-V)u—V - (v(¢,v)Du) + Vr = sV + 1y Vo
divu=20

Ot +u-Vo = Apyg

o = D26 — B + (FEY(6) + V - (V)

oY +u-Vi = Apy,
{1y = —A¢ + F),(¢) — |[V¢|?

iNQx(0,T), T>0
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Main results (Di Primio, G., Wu, M3AS 2023)

@ i.c. + no-slip b.c. for u + no-flux b.c. for ¢, ¥, g, —A,

@ existence of a global weak solution if d = 2,3

@ existence of a local (global) strong solution if d = 3 (d = 3)
@ continuous dependence estimate (= uniqueness) if d = 2

@ regularization properties of the weak solution and validity
of the strict separation property for ¢ (d = 2)
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Total energy and energy identity

t
Eu(u).0(0).0(0) + | 1V/o6). ) D) o
t
[ (190 + 112007} 12) dr = it . o)

for all t > 0, where

1
b 0.0) = [ (FuP + Z1008 + 555 4 F0) ) ax

2
+/ [V + Fy(¥) + %wqbz - ’7’27//'|v¢‘2 dx
Q

G(o:¥)
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Approximating the interaction energy density G

@ Following G.-P. Zhu et al., Thermodynamically consistent
modelling of two-phase flows with moving contact line and
soluble surfactants, JFM 2019

“12¢|Vo ~ —2u(1 - ¢*)

where v3 > 0

@ so that

Ga(6,v) = Jh0? — (1 — ¢°)?

@ with this choice we no longer need the regularizing
higher-order term in Eg

@ also, we no longer need to approximate F, with a smooth
double well potential
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Second hydrodynamic model

@ unmatched densities (following Abels, Garcke, Griin,
M3AS 2012)

1 + -
p(¢):P 292¢+P12P2’ J:—p12p2m¢(¢>)vu¢

di(p(P)u) +div (U ® (p(d)u +J)) — div (v(¢,¥) Du) + Vr
= pgVo + Ve

divu=20

Ot +u - Vo =div(my(¢)Vig)

pg = =D + Fi() + 05 Gal9, ¥)

Op +u - Vip = div (my(¢)Viuy)

py = =AY + Fl,(¥) + 9y Ga(¢, V)

in Q x (0, T)
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Main results (G., Ouyang, Wu, in progress)

@ i.c. + no-slip b.c. for u + no-flux b.c. for ¢, v, g, 11y
@ non-degenerate or degenerate mobilities

@ existence of a global weak solution if d = 2,3 with a
reaction term of Oono type in the CH eq. for ¢

71(8)(¢ — ¢) +02(¢ — ¢)

where 01,00 > 0, ¢ € (—1,1), and ¢ stands for the integral
mean of ¢

@ non-degenerate my: o1 can be a positive constant
@ degenerate my: o1 must properly vanish at +1
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Total energy and energy identity

t
Ear(U(t), ¢(1), ¥(1)) + /0 1V/v(6(7), p(r)) Du(7)|[2d7

t
+ /0 <m¢(¢(7))|lvl~t¢>(7)||2 + mw(¢(7))||vﬂw(7)||2) dr
= &ot(Uo, P0, 10)

for all t > 0, where

2
utw.o.0) = [ (750 ue+ g5 4 Fio)) ax

# [ (55 + R+ Galony ) ax
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Proofs: scheme

The proofs are based on suitable adaptations of the ones
devised in Abels, Depner, Garcke (JMFM 2012 and AIHP 2013)

@ implicit time discretization scheme for the nondegenerate
mobilities
@ approximating the degenerate mobilities

@ approximating the mixing entropies in such a way that the
approximations of ¢ and v still take their values in [-1, 1]
and [0, 1], respectively

@ use the previous result (non-degenerate mob.) to get the
existence of an approximate solution

@ pass to the limit w.r.t. the regularization parameters by
extraction and compactness
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Some open issues

1st model: convergence to equilibrium? Fy singular?

2nd model (non-deg. mob.): additional results (e.g.,
well-posedness if d = 2, local strong sols. if d = 3)

2nd model (deg. mob.): more general source terms in the
CH eq. for ¢

nonlocal models for the mixture and/or the surfactant (deg.
mob.: more chances to go beyond the existence of a weak
soln.)

replacing Cahn-Hilliard egs. with conserved Allen-Cahn
egs. (X. Jiang, CMAME 2021)

dynamic boundary conditions (G. Zhu et al., JFM 2019,
2nd model)

stochastic models (T. Tachim-Medjo, DCDS 2024, 1st
model)
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THANK YOU

18/18



