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Motivation
chemical processes driven by energy from solar light
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Jülich solar tower
at DLR Institute for Solar Research
Image: DLR (CC BY-NC-ND 3.0)

� Use concentrated solar
energy to drive chemical
reactions

� Heat reactive gas mixture
flowing through porous
catalytic reactor

� E.g. conversion of CO2 with
H2 to CO



The process
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� Simulation domain delimited by red dashed lines

D. Brust, K. Hopf, J. Fuhrmann, A. Cheilytko, M. Wullenkord, and Ch. Sattler WIAS Preprint 3139, 2024



Multi-component reactive gas mixtures in porous media I
Darcy law + continuity for total mass density
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φ
∂ρ

∂t
+∇ · (ρ~v) = 0

~v = −K
η
∇p

ρi Species mass density
T Temperature
ρ =

∑n
i=1 ρi Total mass density

% = (ρ1 . . . ρn) vector of mass densities
~v Mass averaged velocity
p Total pressure
η(%,T ) Viscosity
K , φ Permeability, porosity

D. Brust, K. Hopf, J. Fuhrmann, A. Cheilytko, M. Wullenkord, and Ch. Sattler WIAS Preprint 3139, 2024



Multi-component reactive gas mixtures in porous media II
Convective-diffusive mass transport
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φ
∂ρi

∂t
+∇ · (ρi~v + ~Ji )− φri = 0, i = 1 . . . n

−
n∑

j=1
j 6=i

xixj

Dij

(
~Ji

ρi
−
~Jj

ρj

)
= ∇xi + (xi − wi )

∇p
p

n∑
i=1

xi = 1
n∑

i=1

~Ji = 0

~Ji Diffusive species mass flux
xi Species molar fractions
wi Species mass fractions
Dij Effective Maxwell-Stefan diffusivities
ri (%,T ) Reaction terms

D. Brust, K. Hopf, J. Fuhrmann, A. Cheilytko, M. Wullenkord, and Ch. Sattler WIAS Preprint 3139, 2024
A. Z. Weber et al: “A critical review of modeling transport phenomena in polymer-electrolyte fuel cells”, Journal of The Electrochemical Society 161 (12) (2014)



Multi-component reactive gas mixtures in porous media II
Thermal energy transport

Mixtures: Modeling, analysis and computing, Prague, Two point flux finite volume methods for mixture flows in porous media

2025-02-05
6/19

∂(1− φ)ρshs + φρhmix

∂t
+∇ · (cρT~v)−∇ · (λ∇T ) = φq

λ(%,T ) Effective thermal conductivity
c(%,T ) Mixture heat capacity
q(%,T ) Heat sources from chemical reactions
hs(T ) Porous matrix enthalpy
hmix (%,T ) Mixture enthalpy

D. Brust, K. Hopf, J. Fuhrmann, A. Cheilytko, M. Wullenkord, and Ch. Sattler WIAS Preprint 3139, 2024



Further elements of the model
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� Basic variables: p, x1 . . . xn,T
� Soret, Dufour effects
� Full nonlinear dependency of parameters on composition, temperature, pressure
� Boundary conditions: Defined by experimental conditions: one can control flow rate and

composition at inlet, and pressure at outlet.
� Inlet: given total mass fluxes, species mass fluxes
� Outlet:

� fixed pressure p = p0
� convective outflow (zero diffusion flux) for species: ~Ji ·~n = 0
� zero diffusion flux + heat source for heat : ∇T ·~n = Ψ(T )

� Robin boundary conditions depending on insolation for heat a surrogate for
radiation transport outside of domain

� Free energy + entropy principle for isothermal case

D. Brust, K. Hopf, J. Fuhrmann, A. Cheilytko, M. Wullenkord, and Ch. Sattler WIAS Preprint 3139, 2024



Computational realization
Finite volume discretization method
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� Subdivide computational domain into control volumes aka “representative elementary
volumes” (REV)

� Use Gauss theorem to derive balance laws for REV’s from PDE
� Tricky:

� Numerically stable fluxes between REV’s in the presence of convection
⇒ upwinding tools from semiconductor simulation

� REV generation: start with triangulation,
create REVs from joining triangle cirumcenters

−→



Two point flux finite volumes for systems of PDEs
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� System of N coupled PDEs in Ω ⊂ Rd and time interval (0,T )

∂ts(u) +∇ ·~j(u, ~∇u) + r(u) = 0,

� s : RN → RN : local amount, r : RN → RN : reaction,~j : RN × RNd → RNd : flux
� Integration over space-time control volume ωk ⊂ Ω̄, [tm−1, tm] ∈ [0,T ]:

∫
ωk

s(u(~x , tm)) d~x−
∫
ωk

s(u(~x , tm−1)) d~x+

∫ tm

tm−1

(∫
∂ωk

~j ·~n ds +

∫
ωk

r(u) d~x
)

dt = 0

� Discrete flux g(uk ,ul ) ≈ hkl
~j ·~nkl ⇒ approximation:

|ωk |
(

s(um
k )− s(um−1

k )
)

+(tm−tm−1)

 ∑
ωl neighbour ofωk

|σkl |
hkl

g(um
k ,u

m
l ) + |ωk |r(um

k )

 = 0



Deriving a software API
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The structure of the discrete system allows to separate physics described by constitutive
functions (r,s,g + function describing boundary conditions) from geometry described by
the discretization grid.

~xKuK

~xL
uL

g(uk , ul) ≈~j ·~nkl K

L
~nkl

� Storage and reaction terms s, r are similar to those
in the continuous formulation

� Similar case for boundary conditions
� Fluxes g use stabilized finite difference expressions
� Some problem classes covered by this approach

� Ion transport in electrolytes
� Charge transport in semiconductors
� Multiphase flow in porous media
� Mixture flow in porous media
� . . .

cite



Flux disceretization
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With basis unknowns u = (x1, . . . , xn,p,T ), the flux function g can be written as
g(uk ,ul ) = (gρ1

kl . . . g
ρn−1
kl ,gρkl ,g

h
kl ).

� (Arithmetic) edge averages of quantities: ξ̄kl = 1
2 (ξk + ξl )

� Darcy velocity: vkl =
(

K
η̄kl

)
(pk − pl )

� Total mass flux: gρkl = ρ̄klvkl
� Species mass fluxes: sum of convective fluxes and diffusive fluxes J i

kl

gρi
kl = J i

kl + ρ̄i
klvkl , i = 1, . . . ,n − 1

� Enthalpy flux: gh
kl = λ̄kl (Tk − Tl ) +

∑n
i=1 h̄i

klg
i
kl

D. Brust, K. Hopf, J. Fuhrmann, A. Cheilytko, M. Wullenkord, and Ch. Sattler WIAS Preprint 3139, 2024



Discrete diffusive species fluxes
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� J i
kl are defined by the solution of an (n − 1)× (n − 1) linear system: −HJ = F

F i
kl = (x i

k − x i
l ) + D̄i

p,kl
pk − pl

p̄kl
, i = 1, . . . ,n − 1,

H ii
kl =

w̄ i
kl

M iMnÐin +
n∑

o=1
o 6=i

w̄o
kl

M iMoÐio , i = 1, . . . ,n − 1

H ij
kl = −w̄ i

kl

(
1

M iM jÐij −
1

M iMnÐin

)
, (i , j) = 1, . . . ,n − 1, i 6= j

� Di
p are the pressure-diffusion coefficients xi − wi

� Implementation requires solution of linear system with solution dependent matrix

K. Ehrhardt, K. Klusáček, P. Schneider, Comput. Chem. Eng. 12 (1988) 1151–1155
P. Vágner, M. Pavelka, J. Fuhrmann, V. Klika, International Journal of Heat and Mass Transfer 199 (2022) 123405

D. Brust, K. Hopf, J. Fuhrmann, A. Cheilytko, M. Wullenkord, and Ch. Sattler WIAS Preprint 3139, 2024



Julia language
for scientific computing & data science
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� Just-in-time (JIT) compilation⇒ C-like performance
� Syntax level like python, matlab
� Best-in-class package manager supporting

reproducibility
� Open source (MIT License)

Growing package ecosystem
� SciML.ai

� LinearSolve.jl: Common interface to dense, sparse, direct and iterative solvers
� DifferentialEquations.jl: State of the art ODE solvers
� Symbolic tools for code generation/transformation

� TetGen.jl, Triangulate.jl, Gmsh.jl for mesh generation
� Various visualization tools

https://julialang.org



Forward mode automatic differentiation
ForwardDiff.jl
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� Let ε2 = 0. Ring of dual numbers D = {a + bε | a,b ∈ R}
� Evaluation of polynomial p(x) =

∑n
i=0 pix i :

p(a + ε) =
n∑

i=0

piai +
n∑

i=1

ipiai−1ε = p(a) + p′(a)ε.

� Library of differentiation rules for special function
� Generalization to multi-dual numbers
� Implement functions in a generic manner, JIT creates specialized code for “normal” or

dual numbers, depending on what is passed to a function

https://github.com/JuliaDiff/ForwardDiff.jl
J. Revels, M. Lubin, T. Papamarkou, arXiv:1607.07892



VoronoiFVM.jl
Solver for coupled nonlinear PDEs based on the Voronoi finite volume method
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� 1/2/3D
� Delaunay mesh generation using Triangle, TetGen mesh generators
� Implicit Euler time discretization

� Optionally use ODE solvers from DifferentialEquations.jl
� Newton method with analytical Jacobians (+ damping, parameter embedding)
� Use forward mode automatic differentiation to assemble Jacobians

� Write code just for functions
� Caculate “local” jacobians from flux/reaction/storage functions using AD
� Efficient assembly into global Jacobi matrix via intermediate linked list sparse

matrix structure
� Various direct and iterative linear solvers via LinearSolve.jl
� Part of WIAS-PDELib.jl: Julia packages maintained by WIAS numerical math &

scientific computing group

JF et al: https://github.com/WIAS-PDELib/VoronoiFVM.jl



VoronoiFVM.jl
More features + usage cases
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Some further features:
� Handling of surface species, different subdomain species sets
� Small signal analysis/impedance spectroscopy
� Coupling with pressure robust FEM for Navier-Stokes (WIAS-PDELib/ExtendableFEM.jl

by Christian Merdon)
� Multithreading based parallelization

Some usage cases:
� Perovskites/semiconductors with addional ionic species 1

� Solid oxide electrochemical cells 2, redox flow cells
� Liquid electrolytes: Poisson-Nernst-Planck with ion size constraints 3

� Chemical reactors with heterogeneous catalysis

1)B. Spetzler, D. Abdel, F. Schwierz, M. Ziegler and Patricio. Farrell. Advanced Electronic Materials, 2300635 (2023)
2)V. Miloš, P. Vágner, D. Budáč, M. Carda, M. Paidar, J. Fuhrmann and K. Bouzek. Journal of the Electrochemical Society 044505 (2022)

3)Ch. Keller, J. Fuhrmann, and M. Landstorfer, WIAS Preprint 3072, 2023.



Chemical reaction
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Creation of synthesis gas from CO2 and concentrated solar energy

reverse Water-Gas-Shift (intended):
CO2 + H2 
 CO + H2O

∆H0 = 41 kJ/mol (298 K)

Sabatier (unintended):
CO2 + 4 H2 
 CH4 + 2 H2O

∆H0 = −206 kJ/mol (298 K)

CO Methanation (unintended):
CO + 3 H2 
 CH4 + H2O

∆H0 = −165 kJ/mol (298 K)

D. Brust, K. Hopf, J. Fuhrmann, A. Cheilytko, M. Wullenkord, and Ch. Sattler WIAS Preprint 3139, 2024



Stationary 3D simulation results
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A

B D

C A) temperature
B) total pressure
C) molar fraction of CO
D) molar fraction of CH4

� Catalyst layer region outlined
by a thin white line

� Z axis scaled by factor of 4
to increase readability

� Solution via time embedding using implicit Euler method to obtain initial value for
stationary solve.

D. Brust, K. Hopf, J. Fuhrmann, A. Cheilytko, M. Wullenkord, and Ch. Sattler WIAS Preprint 3139, 2024



Conclusions/outlook
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Conclusions:
� Nonisothermal Darcy-Stefan-Maxwell model
� Outflow boundary conditions for gaseous species where outlet composition is unknown

a-priori due to reactions in the interior of the domain
� 1D/2D/3D implementation via two-point flux finite volume method in Julia, taking

advantage of automatic differentiation for the generation of Jacobi matrix

To be investigated:
� Entropy behaviour of the finite volume scheme à la

Cancès/Cauvin-Vila/Chainais-Hillairet/Ehrlacher
� More realistic radiation transport
� . . .


