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Introduction

The Onsager–Stefan–Maxwell equations describe diffusive transport in concentrated solutions.

Isobaric, isothermal, reaction-free OSM + continuity equations

−∇µi =

n∑
j=1

MijNj , i = 1, . . . , n,

∂tci = −∇ ·Ni, i = 1, . . . , n,

▶ n is the number of species;
▶ µi and ci are the electrochemical potential and molarity of species i;
▶ M is the (symmetric positive semidefinite) Onsager transport matrix;
▶ Ni is the molar flux of species i.

The equations are closed . . .

. . . with a convective velocity and thermodynamic constitutive laws.
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Introduction

When modelling electrolytic solutions with charged species on length scales beyond the Debye
length (∼ 1 nm), thermal motion screens local charge imbalances.

In this case, we have local electroneutrality: at every point

ρe = F

n∑
j=1

zjcj = 0

where ρe is the local excess charge density, F is Faraday’s constant, and zi is the equivalent
charge of species i.

We also need to solve an equation for the electric potential.

Challenge

How do we reconcile this constraint/equation with the Onsager–Stefan–Maxwell equations?
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Introduction

Newman et al., through careful/complicated manipulation, worked out

✓ binary electrolytes (e.g. LiPF6 in ethyl methyl carbonate),

✓ molten salts that share a common ion (e.g. Li2CO3 and K2CO3).

But this manual approach is cumbersome: not yet carried out for important
systems like

✗ electrolytes with cosolvents (e.g. what’s used in lithium ion batteries);

✗ electrolytes with additives, contaminants, or products of side reactions;

✗ flow batteries (e.g. vanadium flow battery, 8 distinct species);

✗ Nafion membranes with cation contaminants (H+, SO3
– , H2O, Fe

3+)
for hydrogen electrolysers and fuel cells.

John S. Newman

This talk

A general, elegant formulation, using linear algebra.
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The key idea

Section 2

The key idea
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The key idea

The key idea

Express concentrations as linear combinations of a neutrally charged basis.

We call this the salt-charge basis.

This idea dates back at least to Guggenheim in 1928; we merely
systematise it and phrase it in the language of linear algebra.

Edward A. Guggenheim
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The key idea

As an example, consider a solution in H2O of Na+, Cl– , Mg2+, and SO4
2– (n = 5).

We postulate a minimal set of n− 1 independent hypothetical equilibrium reactions:

H2O ⇋ H2O

Na+ +Cl− ⇋ NaCl

Mg2+ + 2Cl− ⇋ MgCl2

2Na+ + SO4
2− ⇋ Na2SO4.

We refer to the products of these equilibria as components.

The choice of reactions is not unique, but any neutral component not defined can always be
recovered from those chosen, e.g. the last possible binary salt MgSO4:

MgCl2 +Na2SO4 ⇋ 2NaCl +MgSO4.
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The key idea

In a matrix with n rows (species) and n− 1 columns (equilibria), tabulate the stoichiometric
coefficients:

H2O ⇋ H2O 1

Na+ +Cl− ⇋ NaCl 2

Mg2+ + 2Cl− ⇋ MgCl2 3

2Na+ + SO4
2− ⇋ Na2SO4 4

gives us

1 2 3 4
H2O 1 0 0 0
Na+ 0 1 0 2
Cl− 0 1 2 0

Mg2+ 0 0 1 0
SO4

2− 0 0 0 1




Call the columns νi, i = 1, . . . , n− 1.
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The key idea

If we define the species charges
z = [0, 1,−1, 2,−2]⊤.

then since the components are always neutral, we must have

ν⊤
i z = 0, i = 1, . . . , n− 1.

Since the stoichiometric coefficients are linearly independent by construction,

{ν1, . . . ,νn−1, z}

forms a basis for the entire n-dimensional composition space.
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The key idea

Encoding our basis in the transformation matrix

Z =


ν⊤
1
...

ν⊤
n−1

z⊤/∥z∥



we solve for component chemical potentials, defined as

µZ := Zµ =

[
µν

µz

]
since at equilibrium the (electro)chemical potentials (weighted by stoichiometric coefficients)
are equal.

The last entry µz encodes a solution voltage (the salt-charge potential).
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The key idea

Everything else follows by thermodynamic structure preservation.

The Euler equation defines volumetric Gibbs free energy G̃:

G̃ =

n∑
j=1

µjcj = µ⊤c

= µ⊤
ZcZ

where the component concentrations are

cZ := Z−⊤c =

[
cν
cz

]
.

Faraday’s law of charge states that the excess charge density can be written as

ρe = Fz⊤c = F (Zz)⊤cZ

and calculating (Zz) = ∥z∥en, we derive

cz =
ρe

F∥z∥
= 0 under electroneutrality.
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The key idea

Applying the same principle to the dissipation function

T ṡ =

n∑
j=1

N⃗j · (−∇µj) = N⊤ (−∇µ)

= N⊤
Z (−∇µZ)

means that we define the fluxes in the salt-charge basis as

NZ := Z−⊤N.

Faraday’s law of current states that the current is

i⃗ = Fz⊤N = F (Zz)⊤NZ

and expanding this shows that the last component is a renormalised current:

(NZ)n =
i⃗

F∥z∥
.
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T ṡ =

n∑
j=1

N⃗j · (−∇µj) = N⊤ (−∇µ) = N⊤
Z (−∇µZ)

means that we define the fluxes in the salt-charge basis as

NZ := Z−⊤N.

Faraday’s law of current states that the current is

i⃗ = Fz⊤N = F (Zz)⊤NZ

and expanding this shows that the last component is a renormalised current:

(NZ)n =
i⃗

F∥z∥
.

12 / 18



The key idea

Applying the same principle to the dissipation function

T ṡ =

n∑
j=1

N⃗j · (−∇µj) = N⊤ (−∇µ) = N⊤
Z (−∇µZ)

means that we define the fluxes in the salt-charge basis as

NZ := Z−⊤N.

Faraday’s law of current states that the current is

i⃗ = Fz⊤N = F (Zz)⊤NZ

and expanding this shows that the last component is a renormalised current:

(NZ)n =
i⃗

F∥z∥
.

12 / 18



The key idea

Applying the same principle to the dissipation function

T ṡ =
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The key idea

The OSM equations transform in a simple way.

∂tc = −∇ ·N

=⇒ ∂tZ
−⊤c = −∇ · Z−⊤N =⇒ ∂tcZ = −∇ ·NZ

−∇µ = MN

=⇒ −∇Zµ =
(
ZMZ⊤

)
Z−⊤N =⇒ −∇µZ =

(
ZMZ⊤

)
NZ

The spectral structure of the Onsager transport matrix M is crucial for numerics.
Conveniently, the salt-charge transport matrix

ZMZ⊤

is a congruence transformation of M, and hence remains symmetric positive semidefinite.

The thermodynamic constitutive relations between cZ and µZ also transform in a nice way.
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Example

Section 3

Example
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Example

We consider LiPF6 in ethyl methyl carbonate and ethylene carbonate, with independent
equilibrium reactions

EMC ⇋ EMC, EC ⇋ EC, Li+ + PF6
− ⇋ LiPF6.

an
o
d
e
(s
tr
ip
p
in
g) cathode

(plating)

insulated

insulated

We model the electroplating of lithium from the anode to the cathode (a Hull cell). We
impose a voltage difference of 10 mV, and Robin conditions on the current and lithium flux.

We (mostly) fit ionic conductivity, Stefan–Maxwell diffusivity, Darken factor, cation
transference number, and density from experimental data reported by Wang et al.

15 / 18



Example

We consider LiPF6 in ethyl methyl carbonate and ethylene carbonate, with independent
equilibrium reactions

EMC ⇋ EMC, EC ⇋ EC, Li+ + PF6
− ⇋ LiPF6.

an
o
d
e
(s
tr
ip
p
in
g) cathode

(plating)

insulated

insulated

We model the electroplating of lithium from the anode to the cathode (a Hull cell). We
impose a voltage difference of 10 mV, and Robin conditions on the current and lithium flux.

We (mostly) fit ionic conductivity, Stefan–Maxwell diffusivity, Darken factor, cation
transference number, and density from experimental data reported by Wang et al.
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Example

The current concentrates at the upper corner because it is closer to the anode.

16 / 18



Conclusions

Section 4

Conclusions
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Conclusions

We present a simple, structure-preserving way to formulate the electroneutral
Onsager–Stefan–Maxwell equations.

By constructing the salt-charge basis, we can build electroneutrality into the equations, rather
than adding it as an additional algebraic constraint.

This lets us treat the charged case essentially the same as the uncharged case: same structure
and discretisation.

Our formulation has been implemented by COMSOL AB in v. 6.3. They have a demo using it
to model transport in molten carbonates.

We can simulate much more complex mixtures, such as solutions with two solvents, like those
used in lithium ion batteries.

A major obstacle is that experiments to measure the composition-dependent thermodynamic
properties are expensive and slow.
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