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Examples

Thin sprays:

Thick sprays:

(c) Leporini at al (2019) (d) Daniel-Wagner (2022)
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Thick spray models

Mixture Fluid-particules: Euler coupled Vlasov

∂t(αρ) +∇ · (αρu) = 0,

∂t(αρu) +∇ · (αρu⊗ u) +∇p = −m?
∫
Γfdv ,

∂t(αρe) +∇ · (αρeu) + p (∂tα+∇ · (αu)) = D?
∫
|v − u|2fdv ,

∂t f + v · ∇x f +∇v · (Γf ) = 0,

m?Γ = −m?∇p − D?(v − u),
α = 1− v?

∫
fdv , v? = 4

3
πr3
? ,

with a perfect gas pressure law p = (γ − 1)ρe where the coefficient is γ > 1.
The Vlasov equation is already very simplified with respect to Fox [2023].

The volume fraction of the fluid (in pre-normalized units) is α. The relation

α+ v?

∫
fdv = 1

means that the sum of the partial volumes is the total volume.

Thin spray is the simplification for α ≈ 1.

Thick sprays ≈ all regimes
0 < α ≤ 1.

- Boudin-Desvillettes-Motte [2003], Baranger-Desvillettes [2006],
Desvillettes-Mathiaud, . . .
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Preliminary remarks

• The mass of each phase is preserved since one has

∂t(αρ) +∇ · (αρu) = 0 and ∂t

(
m?

∫
f dv

)
+∇ ·

(
m∗

∫
v fdv

)
= 0.

• The total impulse is preserved since one has

∂t

(
αρu + m?

∫
f vdv

)
+∇ · (αρu⊗ u) +∇p +∇ ·

(
m∗

∫
v ⊗ vfdv

)
= 0.

• The total energy is preserved since one has (E = e + 1
2
|u|2)

∂t

(
αρE + m?

∫
f
|v|2

2

)
+∇·

(
αρEu + m?

∫ |v|2
2

vfdv + αpu + pm?

∫
f vdv

)
= 0.

• Thermodynamic correctness is satisfied since one has (S = log e/ργ−1)

∂t (αρS) +∇ · (αρSu) =
D?

T

∫
|v − u|2fdv ≥ 0.
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Linearization

Consider the barotropic model ∂t(αρ) +∇ · (αρu) = 0,
∂t(αρu) +∇ · (αρu⊗ u) +∇p = −m?

∫
Γfdv ,

∂t f + v · ∇x f +∇v · (Γf ) = 0,

where p = p(ρ) with p′(ρ) > 0 so that the equation for the energy is not needed.

Lemma (Buet-Desvillettes-D. 2021)

Take a Maxwellian profile for simplicity F (z) = e−z .
Then an exact solution is

ρ(t, x) = ρ0,
u(t, x) = 0,
α(t, x) = α0 = 1−m? n0,
Γ = −d?v,

f (t, x, v) = e3d?t f (0, x, ed?tv) = e3d?t n0

(K T?)
3
2

F

(
e2d?t |v|2

2T?

)
,

(1)

where d∗ = D?
m?
≥ 0. If the drag/friction coefficient is non zero, then d∗ > 0.
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Linearize around such an exact solution

The first variation of specific volume τ = 1
ρ

, velocity u and density f are τ1, u1

and g1.
One has

α0ρ0 ∂tτ1 = α0∇ · u1 + m?∇ ·
∫ √

f0 ed?t g1 v dv ,
α0ρ0 ∂tu1 = α0ρ

2
0c

2
0 ∇τ1 + m?d?

∫
v
√
f0 ed?t g1 dv −m?d?u1

∫
f0 dv ,

∂tg1 + v · ∇xg1 −
ρ2

0c
2
0

T?

√
f0 ed?t v · ∇τ1

(
− F ′

F

)(
|v|2

2Tk (t)

)
= d?

T?

√
f0 ed?t v · u1

(
− F ′

F

)(
|v|2

2Tk (t)

)
− d?g1 + d?

g1
∇v ·

(
1
2

vg2
1

)
.

(2)

This is a linear integro-differential system of equations, with coefficients which are
homogeneous in space, but with a dependency in time.
If d? = 0 (no friction), then the coefficients become constant in space and time.

Lemma (Buet-Desvillettes-D.)

L2 stability proved by means of a Lyapunov function.
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1D Frictionless and dimensionless equations

One gets the integro-differential system ∂tτ = ∂xu + ∂x
∫
R vg

√
f0(v)dv ,

∂tu = ∂xτ,

∂t f + v∂x f =
√

f0(v)v∂tτ.

In what follows we take
f0(v) = e−v2/2.
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Landau Fourier-Laplace method

We use the version explained by E. Sonnendrucker.
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Results

Linearize the equations around a solution at rest (nothing moves) with a Gaussian

profile f0(v) = e−v2/2 for the particles.
First pole is ω ≈ 0.31− i0.098.

Fournet-Buet-D. CMS (204): Analog of Linear Landau Damping in a coupled Vlasov-Euler system for thick sprays
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Similarity with Linear Landau Damping in plasma
physics

(Linear) Landau Damping yields irreversibility.
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Reformulate the fluid part

Start from 
∂t(α%) + ∂x (α%u) = 0

∂t(α%u) + ∂x (α%u2) + α∂xp = 0

∂t f + v∂x f − ∂xp∂v f = 0

p(%) = %γ , γ = 1.4.

(3)

To get rid of the non conversative product α∂xp, we write the fluid part in
conservation form∂t(α%) + ∂x (α%u) = 0

∂t

(
α%u +

4

3
πr3

p

∫
R
vf dv

)
+ ∂x (α%u2) + ∂xp + ∂x

(
4

3
πr3

p

∫
R
v2f dv

)
= 0

(4)

The fluid part writes as

∂tU + ∂xF(U, f ) = 0.

The jacobian of F w.r.t to U = (U1,U2) is

A(U, f ) := ∇UF(U, f ) =

 0 1
−(U2− 4

3
πr3

p

∫
R fv dv)2

U2
1

+
γU
γ−1
1
αγ

2(U2− 4
3
πr3

p

∫
R fv dv)

U1

 .

The eigenvalues of the matrix A(U, f ) are λ± = u ±
√

p′(%)
α

.
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Numerical methods

Given (Un, f n) at a given time tn.

Compute f ∗ by solving the free transport ∂t f + v∂x f = 0 with a
semi-lagrangian scheme during a timestep ∆t with initial condition f n.

Compute f n+1 by solving ∂t f − ∂xp∂v f = 0 with a semi-lagrangian scheme
during a timestep ∆t with initial condition f ∗.

Compute Un+1 by solving ∂tU + ∂xF(U, f ) with a Lax-Wendroff scheme
during a timestep ∆t with initial condition (Un, f n+1).

Given initial data (Un, f n+1), the quantity Un+1 is computed by the
Lax-Wendroff scheme:

Un+1 = Un −
∆t

2∆x
(F(Un

j+1, f
n+1
j+1 )− F(Un

j−1, f
n+1
j−1 ))

+
∆t2

2∆x2

(
An
j+1/2(F(Un

j+1, f
n+1
j+1 )− F(Un

j , f
n+1
j ))

−An
j−1/2(F(Un

j , f
n+1
j )− F(Un

j−1, f
n+1
j−1 ))

)
.
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A modification

The barotropic frictionless system writes (all coefficients set to 1)

∂t(α%) + ∇ · (α%u) = 0

∂t(α%u) + ∇ · (α%u ⊗ u) + ∇p = ∇p

∫
R3
〈f 〉 dv

∂t f + v ·∇x f − 〈∇xp〉 ·∇v f = 0

α = 1− v?

∫
R3
〈f 〉 dv

p = p(%) = %γ .

(5)

A natural
convolution
principle
follows from the
reintroduction
of the radius
of the particles
r∗ > 0 .

The principle is the same for smooth
functions and discontinuous functions.

One extends the function inside the par-
ticle.

~Γ =
−1

πr2
∗

∮
Γ
p~ndσ =

−1

πr2
∗

∫
|x|<r∗

∇pdx = −〈∇p〉 .

V. Fournet-D. -C. Buet: Local-in-time existence of strong solutions to an
averaged thick sprays model KRM 2024.
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Formulation of the mathematical result

Claim
Let Ω =]0,+∞[×R3, s ∈ N such that s > 3/2 + 1 and Ω1,Ω2 two open sets of Ω
such that Ω1 ⊂ Ω2 and Ω1 and Ω2 are relatively compact in Ω. Let
(%0, %0u0) : R3 → Ω1 satisfying %0 − 1 ∈ Hs(R3) and u0 ∈ Hs(R3). Let
f0 : R3 × R3 → R+ be a function in C1

c (R3 × R3) ∩ Hs(R3 × R3) satisfying

‖f0‖L∞ <
1

24‖w‖L1VM(0)3
.

Then, one can find T ∈]0, 1[ such that there exists a solution (%, %u, f ) of the
barotropic frictionless system with convolution r∗ > 0 belonging to
C1([0,T ]×R3,Ω2)×C1

c ([0,T ]×R3 ×R3,R+). Moreover this solution is unique.

Hint: adapt the iterative scheme proof of Baranger-Desvillettes [2006’] (based on
Majda technique).
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Illustration

Reintroduce the packing limit (illustrated below with a foam)

α = 1− v?

∫
fdv ≥ αpacking (v? =

4

3
πr3
?).

Example: the close packing of spheres in 3D yields αpacking = 1− π
3
√

2
≈ 0.26.
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A typical problem associated to the numerical discretization of thick sprays
equations is the positivity of the fluid volume fraction, which is a priori not
verified by the model.

α(t, x) = 1−
4

3
πr3

p

∫
R3

f (t, x , v)dv ≥ αmin

To handle close packing, a possibility (see Fox, Maury) is to introduce a pressure
ppacking=Lagrange multiplier in the Vlasov equation



∂t(α%) +∇x · (α%u) = 0

∂t(α%u) +∇x · (α%u ⊗ u) + α∇xpgas = D?

∫
R3

(v − u)f dv

∂t f +∇x ·
[
(v −∇xppacking )f

]
+∇v · (Γf ) = 0

α = 1−
4

3
πr3

p

∫
R3

f dv

m?Γ = − 4
3
πr3

p∇xpgas − D?(v − u)

α ≥ αmin, (α− αmin) ppacking = 0

(6)
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We prefer a random walk
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