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Examples

Introduction

Thin sprays:

(a) Diesel engine fuel injector (b) Medical spray
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Fig. 1. Sand flow regime in horizontal pipelines.

(c) Leporini at al (2019) (d) Daniel-Wagner (2022)
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Thick spray models

Introduction

Mixture Fluid-particules: Euler coupled Vlasov
Or(ap) + V - (apu) =0,
t(apu) + V- (apu ® u) + Vp = —m, [ T'fdv,
Ot(ape) + V - (apeu) + p (Ot + V - (au)) = Dy [ |v — u|?fdv,
Oef +v - Vif +V, - (I'f) =0,

m,I' = —=m,Vp — Dy (v — u),

a=1-—v, [fdv, Vi = %er,
with a perfect gas pressure law p = (v — 1)pe where the coefficient is v > 1.
The Vlasov equation is already very simplified with respect to Fox [2023].

The volume fraction of the fluid (in pre-normalized units) is . The relation

oz-l—v*/fdv:l

means that the sum of the partial volumes is the total volume.
Thin spray is the simplification for o ~ 1.

Thick sprays ~ all regimes
0<a<l

- Boudin-Desvillettes-Motte [2003], Baranger-Desvillettes [2006],
Desvillettes-Mathiaud, ...
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Preliminary remarks

Introduction

e The mass of each phase is preserved since one has

Be(ap) + V- (apu) =0  and 8t(m*/fdv> +V. (m*/vfdv) =0

e The total impulse is preserved since one has
Ot (apu+m*/fvdv) + V- -(apu®u)+Vp+V- (m*/v®vfdv) =0.

e The total energy is preserved since one has (E = e + %\u|2)

2 2
Ot (apEer*/fl | >+V-<apEu+m* %vfdv+apu+pm*/fvdv) =0

e Thermodynamic correctness is satisfied since one has (S = loge/pY™1)

Ot (apS) + V - (apSu) = /\v7u|2fdv >0.
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Linearization

An interesting

collective Consider the barotropic model

phenomenon
9t(ap) + V - (apu) =0,
Ot(apu) + V- (apu @ u) + Vp = —m, [ Tfdv,
Oef +v - Vuf +V, - (I'f) =0,

where p = p(p) with p’(p) > 0 so that the equation for the energy is not needed.

Lemma (Buet-Desvillettes-D. 2021)

Take a Maxwellian profile for simplicity F(z) = e 2.
Then an exact solution is

p(t,X) = PO,
u(t,x) =0,
a(t,x) = ag =1— my ng,
I'=—dv, 1)
2dy 2
f(t,x,v) = e39tf(0,x, edxtv) = 3%t 0 __ F (76 2t L ) ]
(K Ty)2 *

where d, = Z—: > 0. If the drag/friction coefficient is non zero, then di > 0.
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An interesting
collective
phenomenon

Linearize around such an exact solution

The first variation of specific volume 7 = %, velocity u and density f are 71, uy
and gi.
One has

Qopo Oy = aoV~u1 +m V- [ hyeht glvdv
appo Orur = aopoco VTl + mudi [v/fo et gidv — modeuy [ fydv,

7 2
dtg1 +v - Vg — p°° Vi edstv. Vn( i)(z‘#l(t)) (2)
= $ ety (— £) () ~demn+ 290 Guad).

This is a linear integro-differential system of equations, with coefficients which are

homogeneous in space, but with a dependency in time.
If di =0 (no friction), then the coefficients become constant in space and time.

Lemma (Buet-Desvillettes-D.)

L2 stability proved by means of a Lyapunov function.
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1D Frictionless and dimensionless equations

An interesting
collective
phenomenon

One gets the integro-differential system
O¢T = Oxu + Ox fR vgy/fo(v)dv,
Oru = Ok,
Otf 4 vOxf = \/fo(v)vOeT.

In what follows we take )
fo(v) =e™" /2,

!
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Landau Fourier-Laplace method

An interesting We use the version explained by E. Sonnendrucker.

;ﬁtﬁ':ri“"smn Goal: Compute the rate of the damping, following the technique of Landau.

Introduce the Fourier-Laplace transform of 7 € L (R4; L2(T)):
+o00 . .
T(w, k) = / / eWte k(¢ x)dxdt, k€ Z, Im(w) > 0.
0 T

Apply Fourier Laplace transform in x-t yields
—iwT(w, k) = iki(w, k) + ik [ v~/ B(V)F(w, k,v)dv + i (k), k €Z, Im(w) >0
—iwt(w, k) = ikT(w, k) + Gini (k)
(—iw + ikv)F(w, k, v) — ikvv/ BT (w, k) = fini(k, v).

It yields for Im(w) > 0,

N(w, k

D(w, k)

7":(“)7 k) =
with A(w, k) = L (am(k) — ki (k) + [ —Vf"(jf%(“ dv) and

2
D(w,k):l—k—z—/ﬂ(‘:})dv.
w

R V— %

Landau, On the vibration of the electronic plasma. Journal of Physics, 10(1):25-34, 1946.
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B To reconstruct the density 7(t, x), one needs to compute the integral

An"mt_erestmg 1 +oo+iy .
collective (¢, k) / et (w, k) dw.

phenomenon 3
2’7" —oco+iy

B Analytic continuation of Dy on C*:

2 W2 w_
’D(wk)_2_k7+ﬁwe 2K i—i/kﬁetzdt .
VT Jo

N

B Following Landau, one formally obtain expansion

7t k) = D Res(7(:, k), wp)e ™", (
wj
and the wj(k) are solutions of the dispersion relation
D(w, k) = 0.
We recover an exponential decay if the w; all verify Im(w;) < 0.
i
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Results

Linearize the equations around a solution at rest (nothing moves) with a Gaussian

An interesting

collective profile fo(v) = e="*/2 for the particles.
phenomenon First pole is w ~ 0.31 —i0.098.

Initial conditions: )
0=1 wuw=0, fy(x,v)=(1+ecos(kx))e™" /%, e=10"°

Orange curve o e¥™“)t cos(Re(w)t), w(k) solution of :—22 +f ffi% =1
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Fournet-Buet-D. CMS (204): Analog of Linear Landau Damping in a coupled Vlasov-Euler system for thick sprays
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Similarity with Linear Landau Damping in plasma
physics

An interesting
collective

phenomenon

B First predicted by Landau[46'] for the
linearized Vlasov-Poisson system

1072
Bef +v-Vif —E-V,fo=0, 3 Z Ho e
VX-E:—ffdv 102 {
around maxwellian equilibrium 1074 '
fo(v) = e /2
107°
B | andau showed the damping of the electric
field 10-6 A
| VN,
IE@) 1= © (™) cos(Re(w))) , T
with w(k) € C verifies a dispersion relation ’ \ ‘
1078
0,
/ Vho(v) dv = K2
RV — w/k 0 10 20 30 40 50 60

B To show this, take the ansatz f(t,x, v) =
a(v)e @ie®  E(t,x) = e e, Figure 1: Landau damping for (nonlinear)
Vlasov-Poisson

(Linear) Landau Damping yields irreversibility.
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Reformulate the fluid part

@ Start from
Ot(ag) + Ox(apu) =0
Structure of our Ot (cou) + Ox(apu?) + adxp =0
method Ocf + vOif — Bxpduf =0
p(e) = o,y =14

3

@ To get rid of the non conversative product adxp, we write the fluid part in
conservation form

O¢(cp) + Ox(cpu) =0
4 5 2 4 3 2
Ot [ aou + §7rrp vfdv | + Ox(aou®) + Oxp + O« gﬂrp vifdv ] =0
R R
(4)
@ The fluid part writes as
9:U + 0xF(U, f) = 0.
The jacobian of F w.r.t to U = (U, U) is

0 1
A(U, f) = VuF(U7 f) = <(U2g7rrg Jr fv dv)? 4 WU?71 2(U27§7rr3 Jr fvdv))
u? ay Up

The eigenvalues of the matrix A(U, f) are Ay = u+ 4/ @.
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Structure of our
numerical
method

Numerical methods

Given (U™, ") at a given time t".
@ Compute f* by solving the free transport 0:f + vOxf = 0 with a

semi-lagrangian scheme during a timestep At with initial condition .

@ Compute ™1 by solving 8:f — 9xpd,f = 0 with a semi-lagrangian scheme
during a timestep At with initial condition *.

@ Compute U™t by solving 9:U + 9xF(U, f) with a Lax-Wendroff scheme
during a timestep At with initial condition (U", f"1).

@ Given initial data (U”, f"+1), the quantity U"*! is computed by the
Lax-Wendroff scheme:

At
urtt =y — E(F(Uﬂrl? C‘nﬂl) —F(Ui_y, 'j'njll))
At? A7 F(U™. . £71) _ E(un. £
+ ony (Al a(FULL £ — F(U7 7))

—AT o (F(UP, 670 = FUT,, £70)) )
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On
well-posedness

A modification

The barotropic frictionless system writes (all coefficients set to 1)
Ot(00) + V - (apu) =0
Ot(cou) + V - (cpu @ u) + Vp = Vp/3<f) dv
R
Of +v-Vif —(Vxp)-V,f=0
a=1—vs (f)ydv

R3
p=p(e) = 0"
Shock
A | — .. .
natura_ The principle is the same for smooth
convolution h X . .
L functions and discontinuous functions.
principle M
follows from the One extends the function inside the par-
reintroduction ticle.
of the radius r. 1 ?{ oy -1 Yod
i = — ¢ pido = —; pdx =
of the particles p, p. w2 Jr w2 |
re >0.
—

®)

—(Vp).

V. Fournet-D. -C. Buet: Local-in-time existence of strong solutions to an
averaged thick sprays model KRM 2024.
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Formulation of the mathematical result

ngposed"ess Let © =]0, +00[xR3, s € N such that s > 3/2+1 and Q;, Q> two open sets of Q
such that Q3 C 2, and €3 and Q are relatively compact in Q. Let
(00, 0oup) : R® — Qy satisfying go — 1 € H5(R3) and ug € H*(R3). Let
fo : R3 x R® — R} be a function in C2(R3 x R3) N H5(R3 x R3) satisfying

olli < s

0| Lo IR

24wl 2 Vin(0)®

Then, one can find T €]0, 1] such that there exists a solution (g, ou, f) of the
barotropic frictionless system with convolution r. > 0 belonging to

CL([0, T] x R3,Q,) x CX([0, T] x R x R, R..). Moreover this solution is unique.

Hint: adapt the iterative scheme proof of Baranger-Desvillettes [2006'] (based on
Majda technique).
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[[lustration

Reintroduce the packing limit (illustrated below with a foam)

Packing/congestion

3
Example: the close packing of spheres in 3D yields apacking = 1 —

4
a=1- v, / fdv > apacking (va = 77rrf).

3xf

=~ 0.26.

Prague 2025
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Packing/congestion

A typical problem associated to the numerical discretization of thick sprays
equations is the positivity of the fluid volume fraction, which is a priori not
verified by the model.

4
a(t,x) =1— 57‘”’3 /]1&3 f(t,x,v)dv > amin

To handle close packing, a possibility (see Fox, Maury) is to introduce a pressure
ppack,-,,g:Lagrange multiplier in the Vlasov equation

dt(@@) + Vx - (cu) = 0

Ot(cvou) + Vi - (aou @ u) + aVxpgas = Dy / (v —u)fdv
R3
Otf + Vi - [(v = VxPpacking )f] + Vv - (Tf) =0

(6)
a:l—fwrg/ fdv
3 R3
myl = 7%7Trgvxpgas — Dy(v —u)

[ 2 Qmin» (U‘ - C“min) Ppacking = 0

:
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We prefer a random walk

Given a discretized distribution function flkj such that there is a saturated cell i :
O(f-( < Omin,

We start from a cell i where af‘ < Omin-

A We compute the exceeding mass Am. We set,

K
Packing/congestion f'.k.‘*'l = (1 — min) %, for all j.
4 myAv s Y
,

k+1 _
Then o™ = amin.

Start a random walk (Sm), when the walk meets a cell Sy, such that ozg-m > Qmin,
get rid of as much mass as possible

Am K

fAHl— gk 4 T gk
Smsj Smsj m*AVZI f:fl ij?

for all j.

When all the exceeding mass has been distributed, the volume fraction ocffﬂ
admissible.

By construction, this method is conservative

is

Conjecture: This method approximate the ”hard” model with added pressure.
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B Particle phase: Each phase has the restriction on the timestep

max(|vj|)Atf < Ax
J

Av

Atk < —

my

(maxy(151) + mas; (1)) + max; (19-F)

B For the resolution of the fluid part, the eigenvalues write

Packing/congestion /( )
Ar =uty/ u
«a

For stability reasons, we impose
Ax
Af < ——— .
m,.ax()‘i(u,' ) f,d))
B |n pratice, we impose

Atfpo = CFL min(Atf, Atf, Atf)

with CFL = 0.5.

Prague 2025
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Packing/congestion

The initial condition for the gas is

(0, w)(x) = (1,0).
The initial condition for the particles is

1 _ v—622 1 ()(72.26)2 1 _ v+622 1 (x—3.4)2
fo(x,v) = 2y 2% 1yso(v)+ e 7 2% 1y<o(v,

—€ —¢€ e
V2roy, V2mox V2ro, V2mox

We set the value for close-packing as ayin = 0.4.

a0 =04, ¢ =106
an o

Figure 3: Soft congestion. Video. Figure 4: Hard congestion. Video
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