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Prague, February 5, 2025
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Physical background

Goal

We consider a flow of a L-constituent mixture in a space time cylinder Q := (0,T )× Ω with Ω ⊂ Rd and
d = 2, 3. Our goal is to find a model that is

mathematically treatable - existence of a (weak, very weak, entropy, etc.) solution

as easy as possible - could be also very naive in some aspects (not reflecting all phenomena)

able to handle the cases with L > 2

thermodynamically and mechanically consistent (first and second law of thermodynamics, etc.)

capable to describe the observable laws/effect: Fick law, Ohm law, Peltier effect, Joul heat, Soret effect,
Dufour effect, Tomphson effect and the Seebeck effect. But we require the system to be
thermodynamically and mechanically compatible.
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Physical background

Balance of mass

ρi : Q → R+ - the density of the i-th constituent

v i : Q → Rd - the velocity of the i-th consitutent

ϱ : Q → R+ - the density and c = (c1, . . . , cL) : Q → [0, 1]L the concentration vector, i.e.,

ϱ :=
L∑

i=1

ρi , ci :=
ρi
ϱ

v : Q → Rd - the barycentric velocity, i.e.,

v :=

∑L
i=1 ρiv i

ϱ

r := (r1, . . . , rL) : Q → RL with ri being the production rate of the i-th constituent

∂tρi + div(ρiv i ) = ri for i = 1, . . . , L,

∂tϱ+ div(ϱv) =
L∑

i=1

ri .
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Physical background

Balance of mass - modelling - incompressible

We consider the mixture that is homogeneous and incompressible, i.e.

ϱ = const = 1, div v = 0, ρi = ci

We consider that the only macroscopic velocity is the barycentric one and we intend to describe all
quantities and laws in terms of v instead of v i . We introduce the diffusion flux
qc := (q1

c , . . . , q
L
c ) : Q → Rd×L which models

qi
c

∼
:= civ i − civ , i = 1, . . . , L

and the balance of mass for the i-th constituent takes the form

∂tc+ div(cv) + div qc = r

total charge balance (z := (z1, . . . , zL) where zi is the specific charge of ci )

∂tQ + div(Qv) + div(qcz) = r · z

The necessary compatibility conditions

L∑
i=1

ri = 0,
L∑

i=1

rizi = 0,
L∑

i=1

qi
c = 0
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Physical background

Linear momentum and electric potential

We consider the possibly non-Newtonian electrically charged fluid described by

∂tv + div(v ⊗ v)− div S = −∇p + f − Q∇φ

−∆φ = Q :=
L∑

i=1

zici = z · c, div v = 0,

where

p - is the pressure

f - the external body forces; −Q∇φ - Lorentz force

S - the constitutively determined part of the Cauchy stress, eg.,

S = S∗(invariants,D) = 2ν(invariants)(1 + |D|2)
r−2
2 D,

φ - electrostatic potential

zi - specific charge of ci ; Q - total charge; z := (z1, . . . , zL)

where

D :=
1

2
(∇v + (∇v)T )
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Physical background

Balance of global energy

We define

E :=
|v |2

2
+ e +

|∇φ|2

2
total energy,

where e : Q → R+ denotes the internal energy.

The balance of the total energy of the problem can be written in the following form (we assume that there
are no sources)

∂tE + div((|v |2/2 + p + e + Qφ)v − φ∇∂tφ)− div(Sv) + div qE = f · v

where qE : Q → Rd denotes the flux of the global energy not coming from the Cauchy stress.

Balance of kinetic energy (only for “regular” solutions)

∂t

(
|v |2

2

)
+ div(|v |2/2 + p)v − div(Sv) + S · ∇v = f · v
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Physical background

Balance of electrostatic energy

Multiply balance of total charge by φ

φ (∂tQ + div(Qv) + div(qcz)) = 0

leads to (−∆φ = Q)

∂t

(
|∇φ|2

2

)
+ div (−φ∇∂tφ+ φQv + φqcz)− Qv · ∇φ− qc · (∇φ⊗ z) = 0

Write the equation for internal energy e = E − |v |2/2− |∇φ|2/2

∂te + div(ev) + div(qE − φqcz) + qc · (∇φ⊗ z) = S · ∇v
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Physical background

Constitutive equations

We need to specify the structure of fluxes in terms of unknowns

Set (e, c) the primary state variable and express all fluxes w.r.t them, i.e.,

qc := q∗c (e, c, φ,∇e,∇c,∇φ . . .),

qE := q∗E (e, c, φ,∇e,∇c,∇φ . . .),

where q∗c and q∗e are “proper” functions

What is “proper” will be identified with the help of the entropy inequality
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Physical background

Entropy inequality

We assume that there exists an entropy s, which is given by

s := s∗(e, c) ,

where s∗ : R+ × (0, 1)L → R is a concave smooth function, that fulfils

∂ts + div(sv) + div qs ≥ 0

we introduce a temperature θ : Q → R+ defined as

θ := θ∗(e, c), where θ∗ :=
1

∂es∗

we introduce the vector of re-scaled chemical potentials ζ : Q → RL as

ζ := ζ∗(e, c), where ζ∗ := −∂cs
∗
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Physical background

Entropy inequality & constraints

We “deduce” the entropy inequality from the internal energy balance and from the equations for c

multiplying the internal energy balance by 1
θ
= ∂es

∗(e, c)

∂es
∗(e, c)∂te + ∂es

∗(e, c)∇e · v + div
qE − φqcz

θ
=

S ·D− qc · (∇φ⊗ z)

θ
+ (qE − φqcz) · ∇

1

θ

multiplying the equation for ci by −ζi = ∂ci s
∗(e, c) and summing over i = 1, . . . , L we get

∂cs
∗(e, c) · ∂tc+∇c · (v ⊗ ∂cs

∗(e, c))− div(qcζ) = −r · ζ − qc · ∇ζ

summing the result

∂ts + div(sv) + div
(qE − φqcz

θ
− qcζ︸ ︷︷ ︸

qs

)

=
S ·D
θ

+

(
(qE − φqcz) · ∇

1

θ
− qc · ∇ζ −

qc · (∇φ⊗ z)

θ

)
− r · ζ︸ ︷︷ ︸

≥0
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Assumptions

Constitutive laws - only linear case

For simplicity, we consider that the diffusion flux and the heat flux are linear functions of the
chemical potential gradients, the temperature gradients and the electrostatic potential
gradients, then necessarily

qic := −
L∑

j=1

M ij(c, θ, φ)
(
∇ζ j +

zj
θ
∇φ

)
−mi (c, θ, φ)∇1

θ

qE := φqcz− κ(c, θ)∇θ −
L∑

i=1

mi (c, θ)
(
∇ζ i +

zi
θ
∇φ

)
with M : [0, 1]L × R× R+ → RL×L

sym , m : [0, 1]L × R× R+ → RL and

κ : [0, 1]L × R× R+ → R+ being continuous mappings.
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Assumptions

Constitutive laws - constraints & assumptions

Due to the requirements on c we specify certain algebraic notation

We define the so-called Gibs simplex as

G := {x ∈ RL; xi ≥ 0 for i = 1, . . . L,
L∑

i=1

xi = 1}

and our goal is to look for c ∈ G a.e. in Q.

We denote
ℓ := (1, . . . , 1) ∈ RL

and define the orthogonal projection Pℓ as

Pℓx := x − x · ℓ
|ℓ|2

ℓ.

Buĺıček (Charles University & NCMM) Mixtures Prague, February 5, 2025 13 / 24



Assumptions

Constitutive laws - constraints & assumptions

diffusion flux
L∑

i=1

M ij =
L∑

i=1

mi = 0 =⇒ ℓ is eigenvector of M with eigenvalue 0

α(θ)|Pℓx |2 ≤
L∑

i,j=1

M ij(Pℓx)i (Pℓx)j =
L∑

i,j=1

M ijxixj ≤ α−1|x |2, |m| ≤ α−1 min(1, θ)

with α(θ) → 0 as θ → 0.

heat flux - for some β ∈ (0, 1]

c1 ≤
κ(θ)

1 + θ−β
≤ c2

the production rate r
L∑

i=1

ri = 0 =⇒ Pℓr
∗(c, θ, ζ) = r∗(c, θ, ζ)

entropy

s∗(e, c) = s∗e (e) + s∗c (c) the most restrictive one =⇒ ψ(θ, c) = ψ1(θ) + θψ2(c)
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Assumptions

Constitutive laws - entropy

the assumptions on s∗e : it is strictly concave, strictly increasing C2 function such that s∗e (0) = 0 and

(s∗e )
′(e) → ∞ as e → 0+ =⇒ e = cv (θ)θ

with bounded cv but cv (θ) → 0 as θ → 0+

the assumption on s∗c : it is strictly concave C2 function such that

C1|x |2 ≤ −
L∑

i,j=1

∂2
ci cj s

∗
c (c)xixj

In addition, we assume that for all K > 0 there exists ε > 0 such that

|∂csc(c)| ≤ K =⇒ ci ≥ ε for all i = 1, . . . , L entropy does not like 0
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Analysis

A priori estimates

We formally derive a priori estimates - all boundary integral vanish - no-slip or slip bc for v , Neumann or
Newton for c and θ

kinetic energy

sup
t∈(0,T )

∥v(t)∥22 +
ˆ T

0

∥∇v∥rr ≤ ∥v 0∥22 + C(f , . . .)

total energy

sup
t∈(0,T )

∥e(t)∥1 ≤ ∥e0∥1 + C(f , . . .)

entropy inequality (Dafour and Sorret effects are not “visible”)

d

dt

ˆ
Ω

s ≥
ˆ
Ω

κ|∇θ|2

θ2
+

L∑
i,j=1

M ij∇ζ i · ∇ζ j − r · ζ

which leads to (under proper boundary conditions )

sup
t∈(0,T )

(∥θ(t)∥1 + ∥v(t)∥2) +
ˆ T

0

∥ ln θ∥21,2 + ∥∇(θ−β/2)∥22 + ∥Pℓζ∥21,2+ ≤ C(f , . . .)

Buĺıček (Charles University & NCMM) Mixtures Prague, February 5, 2025 16 / 24



Analysis

Further estimates

from entropy inequality, we see that (we control ln θ)

θ > 0 a.e.

According to the assumption on M and m the quantity c · ℓ satisfies the transport equation with initial
data identically equal to one:

c · ℓ = 1 a.e

Due to the entropy estimates we can now look onto the equation for internal energy as on the heat
equation with right hand side being in L1 ∩ (W 1,2)∗. Hence the standard procedure leads to

ˆ
Q

|∇θ|2

(1 + θ)1+ε
≤ C(ε−1)

Using the assumption on s∗ one can deduce that |ζ| ≤ C(1 + |Pℓζ|):
ˆ
Q

|ζ|q + |r|q
′
≤ C

s does not like 0
=⇒ ci > 0 a.e. for i = 1, . . . , L =⇒ ∥c∥∞ ≤ C
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Analysis

Existence of a weak solution

Theorem

For any “reasonable” data there exists a weak solution.
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Analysis

Balance of mass - modelling - compressible

Compressible mixtures

ϱ :=
L∑

i=1

ρi .

We consider that the only macroscopic velocity is the barycentric one and we intend to describe all
quantities and laws in terms of v instead of v i . We introduce the diffusion flux
qc := (q1

c , . . . , q
L
c ) : Q → Rd×L which models

qi
c

∼
:= ρiv i − ρiv , i = 1, . . . , L

and the balance of mass for the i-th constituent takes the form

∂tρ+ div(ρv) + div qc = r

The necessary compatibility conditions

L∑
i=1

ri = 0,
L∑

i=1

qi
c = 0
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Analysis

Linear momentum

We consider the Newtonian fluid described by

∂t(ϱv) + div(ϱv ⊗ v)− div(2µ(θ)(D− Idiv v/3) + λ(θ)Idiv v) = −∇p(θ,ρ) + ϱf ,

where

p - is the pressure

f - the external body forces;

where

D :=
1

2
(∇v + (∇v)T )

We require the growth conditions for viscosities

µ(θ) ∼ (1 + θ)

0 ≤ λ(θ) ≲ (1 + θ)
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Analysis

Constitutive equations

Free energy

ρψ := θ
L∑

i=1

ρi
mi

log
ρi
mi

+ F (ρ)− cW ϱθ log θ − G(θ)

here mi are molar masses, the first term corresponds to the ideal fluid, the function F is assumed to be
convex and giving the “sufficient” growth for ϱ, e.g.

F (ρ) :=

(
L∑

i=1

ρi
mi

)γ

, or easier case F (ρ) :=
L∑

i=1

(
ρi
mi

)γ

further quantities

µi =
∂(ϱψ)

∂ρi
, ϱe = ϱψ − θ

∂(ϱψ)

∂θ
, −ϱs =

∂(ϱψ)

∂θ
, p = −ϱψ +

L∑
i=1

ρi
∂(ϱψ)

∂ρi
.

Constitutive equations: for i = 1, . . . ,N,

qi = −
L∑

j=1

Mij∇
µj

θ
−Mi∇

1

θ
, qθ := −κ(θ)∇θ −

L∑
i=1

Mi∇
µi

θ
.

Buĺıček (Charles University & NCMM) Mixtures Prague, February 5, 2025 21 / 24



Analysis

Necessary conditions - theorem

The quantities (Mij)i,j=1,...,L, (Mi )i=1,...,L satisfy

N∑
i=1

Mij =
L∑

i=1

Mi = 0 j = 1, . . . , L.

This is required by mass conservation.

Moreover we assume that (maximal coercivity)

L∑
i,j=1

Mijzizj ≥ c|Pℓz |2 z ∈ RL

Further, we assume that the reaction term r = r(Pℓ(µ/θ), θ) and again has maximal coercivity

r(Pℓ(z), θ) · z ≥ C |Pℓz |2

Theorem

For steady case and reasonable data, there is always a weak solution.
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Analysis

Notes to proof

sequence of regularized problems for (ρn, θn, v n) with a priori bounds (ϱn :=
∑L

i=1 ρ
n
i )

∥v n∥1,2 + ∥θn∥1,q + ∥Pℓ(µ
n/θn)∥1,2 + ∥ϱn∥γ+ε ≤ C

standard identification of limiting equation, it remains to identify the nonlinearities

v n → v a.e. in Q

θn → θ a.e. in Q

Pℓ(µ
n/θn) → Pℓ(µ/θ) a.e. in Q

Pℓ(µ
n) → Pℓ(µ) a.e. in Q

ρn ⇀ ρ weakly

pn ⇀ p(ρ, θ) weakly

how to get the compactness of ρn: assume that µi ∼ ρi then

(ρn1, . . . , ρ
n
L)− ϱn(1, . . . , 1)/L → (ρ1, . . . , ρL)− ϱ(1, . . . , 1)/L a.e. in Q

it is enough to show
ϱn → ϱ a.e. in Q
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Analysis

Main key sub-results

The most problematic is the compactness of densities ρi . But Pℓ(µj) is compact so what
is enough is

lim
k→∞

lim
n,m→∞

∥Tk(ϱ
n)− Tk(ϱ

m)∥2 = 0

It is true as far as we can renormalize the equation for ϱ - ok for large γ

The standard trick which works for lower gamma is based on the control of

sup
k

lim
n→∞

∥Tk(ϱ
n)− Tk(ϱ)∥2+ε ≤ C

but we only have (for the difficult choice of F )

sup
k

lim
n,m→∞

∥
√
θ(Tk(ϱ

n)− Tk(ϱ
m))∥2 ≤ C

But using once again the effective viscous flux equation, we get that the above estimate
is sufficient for the renormalization.
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