

Sharp-interface modeling of mass transfer in multicomponent two-phase fluid systems

Dieter Bothe

Mathematical Modeling and Analysis

Mixtures: Modeling, Analysis & Computing EMS Topical Activity Group *Mixtures* Charles University, Prague, February 5-7, 2025

Motivation: Reactive Mass Transfer

Chemical Engineering Lab, U Paderborn

Time Resolved Scanning Laser Induced Fluorescence

Michael Schlüter, IMS, TU Hamburg-Harburg

Rüttinger, Spille, Hoffmann, Schlüter, *ChemBioEng reviews* 5.4 (2018): 253-269

Surface Active Agents

surfactant = <u>surface active agent</u>

http://www.bubbleology.com

- Surface equation of state: $\sigma = \sigma(T, c_1^{\Sigma}, ..., c_N^{\Sigma})$
- Surface tension gradients induce Marangoni stress
- Surface coverage hinders mass transfer

Dissolving CO₂ Bubbles in Surfactant Solutions

	— t = 0.0 —	0.2	- 0.4	0.6	0.8	— 1.0 —	━ 1.2 →
Clean water σ = 72 mN/m	3	6	9		0	0	0
1-pentanol 3.2 mol/m³ σ = 68 mN/m	0	0	0	0	0	0	0
1-octanol 0.097 mol/m³ σ = 68 mN/m	0	0	0	0	0	0	0
Triton X-100 0.5 mmol/m³ σ = 67 mN/m	0	0	0	0	0	0	0

A. Tomiyama et al., Kobe University

Cf. Hori, B., Hayashi, Hosokawa, Tomiyama, Int. J. Multiph. Flow 124 (2020)

Experimental Findings by Akio Tomiyama et al.

Cf. Hori, B., Hayashi, Hosokawa, Tomiyama, Int. J. Multiph. Flow 124 (2020)

experimental findings

- surfactant coverage leads to local mass transfer hindrance
- mass transfer reduction depends on the *reduction of surface tension* rather than on the surfactant concentration (type of surfactant seems irrelevant)

$$\dot{m}_i^{\text{contam}} = \alpha(\sigma) \, \dot{m}_i^{\text{clean}}$$

Thermodynamically consistent continuum model of hindered mass transfer?

J. Aoki, et int., Tomiyama, Chem. Eng. Techn. 38 (2015) Y. Hori, et int., Tomiyama, Int. J. Heat Mass Trans. 136 (2019)

Effects of surface active agents on mass transfer

hindrance of mass transfer due to surface coverage

Surfactant surface concentration $[C_s] = mol/m^2$, t = 0.08 s.

Sardeing model : $Sh = (1 - Se)Sh_{clean} + SeSh_{dirty}$ $Sh_{clean} = 0.42[\Delta \rho g d^3 / \rho_L v_L^2]^{1/3} Sc^{1/2}$ $Sh_{dirty} = 0.54(\alpha / \beta)^{0.0837} (g d^3 / v_L^2)^{1/3} Sc^{1/3}$ R. Sardeing et al., Chem. Eng. Sci. 61 (2006)

No quantitative match with experimental data (A. Tomiyama, Kobe Univ.)

surface coverage ratio

$$Se = \frac{\Gamma_{eq}}{\Gamma_{\infty}} = \frac{\beta C_{sol}}{\alpha + \beta C_{sol}}$$

I – Motivation

II – Sharp-Interface Framework

- III Interfacial Entropy Principle
- IV Mass Transfer Closure with Surfactant Influence

phase + phase – δ

Guggenheim's interface layer

Gibbs' dividing interface

Gibbs' construction of a dividing interface

- replace steep gradient by discontinuous field
- introduce excess quantities to conserve (partial) mass

- Gibbs' construction tricky for multicomponent systems
 - excess concentrations can become negative
 - components appear/disappear on Σ depending on position of Σ
 - modified construction of van den Tempel / Lucassen-Reynders: positive excess, but interface can be shifted far away
- Is a transfer species like CO₂ present on the interface ?
 - answer depends on the modeling approach !
 - in diffuse interface models, any species is present in the transition layer
 - unspecified in the Gibbs construction
 - model by Guggenheim keeps the interface layer

Guggenheim's interface layer

Effects of surface active agents on mass transfer

 sharp-interface continuum thermodynamics of multicomponent fluid systems with *non-vanishing interfacial mass densities* for all constituents !

Aim: Thermodynamically consistent theory of local mass transfer resistance

D. Bothe: Sharp-interface continuum thermodynamics of multicomponent fluid systems with interfacial mass. Int. Journal of Engineering Science **179**, 103731 (2022).

D. Bothe: Multi-velocity sharp-interface continuum thermodynamics of fluid systems with adsorption. arXiv:2502.00906 (2025).

- I Motivation
- II Sharp-Interface Framework

III – Interfacial Entropy Principle

IV – Mass Transfer Closure with Surfactant Influence

Two-phase integral balance equations

- \mathbf{n}_{Σ} unit interface normal (into Ω^{-})
- $\bullet\, {\bf n}$ outer unit normal to V
- $\Sigma(t)$ interface, $\Sigma_V(t) := \Sigma(t) \cap V$
- $\bullet\,\partial\Sigma_V$ boundary curve of Σ_V
- N outer unit normal to $\partial \Sigma_V$, $\mathbf{N} \perp \mathbf{n}_{\Sigma}$

partial mass balance $\partial_t \rho_i + \operatorname{div} \left(\rho_i \mathbf{v} + \mathbf{j}_i \right) = M_i r_i$ $\partial_t^{\Sigma} \rho_i^{\Sigma} + \operatorname{div}_{\Sigma} \left(\rho_i^{\Sigma} \mathbf{v}^{\Sigma} + \mathbf{j}_i^{\Sigma} \right) + \left[\rho_i (\mathbf{v} - \mathbf{v}^{\Sigma}) + \mathbf{j}_i \right] \cdot \mathbf{n}_{\Sigma} = M_i r_i^{\Sigma}$

momentum balance $\partial_t(\rho \mathbf{v}) + \operatorname{div}\left(\rho \mathbf{v} \otimes \mathbf{v} - \mathbf{S}\right) = \rho \mathbf{b},$ $\partial_t^{\Sigma}(\rho^{\Sigma} \mathbf{v}^{\Sigma}) + \nabla_{\Sigma} \cdot (\rho^{\Sigma} \mathbf{v}^{\Sigma} \otimes \mathbf{v}^{\Sigma} - \mathbf{S}^{\Sigma}) + \left[\!\left[\rho \mathbf{v} \otimes (\mathbf{v} - \mathbf{v}^{\Sigma}) - \mathbf{S}\right]\!\right] \cdot \mathbf{n}_{\Sigma} = \rho^{\Sigma} \mathbf{b}^{\Sigma}$

internal energy balance

$$\partial_t(\rho e) + \nabla \cdot (\rho e \mathbf{v} + \mathbf{q}) = \nabla \mathbf{v} : \mathbf{S} + \sum_{i=1}^N \mathbf{j}_i \cdot \mathbf{b}_i$$
$$(\mathbf{v} - \mathbf{v}^{\Sigma})^2$$

ΛT

$$\partial_t^{\Sigma}(\rho^{\Sigma} e^{\Sigma}) + \nabla_{\Sigma} \cdot (\rho^{\Sigma} e^{\Sigma} \mathbf{v}^{\Sigma} + \mathbf{q}^{\Sigma}) + \left[\!\!\left[\dot{m}\left(e + \frac{(\mathbf{v} - \mathbf{v}^{-})^2}{2}\right)\!\right]\!\!\right]$$

$$- \left[\!\left[(\mathbf{v} - \mathbf{v}^{\Sigma}) \cdot (\mathbf{S} \, \mathbf{n}_{\Sigma}) \right]\!\right] + \left[\!\left[\mathbf{q} \cdot \mathbf{n}_{\Sigma} \right]\!\right] = \nabla_{\Sigma} \mathbf{v}^{\Sigma} : \mathbf{S}^{\Sigma} + \sum_{i=1} \mathbf{j}_{i}^{\Sigma} \cdot \mathbf{b}_{i}^{\Sigma}$$

integral entropy balance

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\int_{V(t)} \rho s \,\mathrm{d}x + \int_{A(t)} \rho^{\Sigma} s^{\Sigma} \,\mathrm{d}o \right) = - \int_{\partial V(t)} \Phi \cdot \mathbf{n} \,\mathrm{d}o + \int_{V(t)} \zeta \,\mathrm{d}x$$
$$- \int_{\partial A(t)} \Phi^{\Sigma} \cdot \mathbf{N} \,\mathrm{d}s + \int_{A(t)} \zeta^{\Sigma} \,\mathrm{d}o$$

local entropy balance

$$\partial_t(\rho s) + \nabla \cdot (\rho s \mathbf{v} + \mathbf{\Phi}) = \zeta \quad \text{in } \Omega \setminus \Sigma$$
$$\partial_t^{\Sigma}(\rho^{\Sigma} s^{\Sigma}) + \nabla_{\Sigma} \cdot (\rho^{\Sigma} s^{\Sigma} \mathbf{v}^{\Sigma} + \mathbf{\Phi}^{\Sigma}) + [\![\rho s(\mathbf{v} - \mathbf{v}^{\Sigma}) + \mathbf{\Phi}]\!] \cdot \mathbf{n}_{\Sigma} = \zeta^{\Sigma} \quad \text{on } \Sigma$$

$$\llbracket \phi \rrbracket(t, \mathbf{x}) := \lim_{h \to 0+} \left(\phi(t, \mathbf{x} + h\mathbf{n}_{\Sigma}) - \phi(t, \mathbf{x} - h\mathbf{n}_{\Sigma}) \right)$$

Reduced interfacial entropy production (zero interfacial viscosities):

$$\begin{split} \zeta^{\Sigma} &= \mathbf{q}^{\Sigma} \cdot \nabla_{\Sigma} \frac{1}{T^{\Sigma}} - \sum_{i=1}^{N} \mathbf{j}_{i}^{\Sigma} \cdot \left(\nabla_{\Sigma} \frac{\mu_{i}^{\Sigma}}{T^{\Sigma}} - \frac{\mathbf{b}_{i}^{\Sigma}}{T^{\Sigma}} \right) - \frac{1}{T} \sum_{a=1}^{N_{R}^{\Sigma}} R_{a}^{\Sigma} \mathcal{A}_{a}^{\Sigma} \\ &- \frac{1}{T^{\Sigma}} (\mathbf{v}^{+} - \mathbf{v}^{\Sigma})_{\parallel} \cdot (\mathbf{S}^{+} \mathbf{n}^{+})_{\parallel} - \frac{1}{T^{\Sigma}} (\mathbf{v}^{-} - \mathbf{v}^{\Sigma})_{\parallel} \cdot (\mathbf{S}^{-} \mathbf{n}^{-})_{\parallel} \\ &+ \left(\frac{1}{T^{\Sigma}} - \frac{1}{T^{+}} \right) \left(\dot{m}^{+,\Sigma} (e^{+} + \frac{p^{+}}{\rho^{+}}) + \mathbf{q}^{+} \cdot \mathbf{n}^{+} \right) \\ &+ \left(\frac{1}{T^{\Sigma}} - \frac{1}{T^{-}} \right) \left(\dot{m}^{-,\Sigma} (e^{-} + \frac{p^{-}}{\rho^{-}}) + \mathbf{q}^{-} \cdot \mathbf{n}^{-} \right) \\ &+ \sum_{i=1}^{N} \dot{m}_{i}^{+,\Sigma} \left(\frac{\mu_{i}^{+}}{T^{+}} - \frac{\mu_{i}^{\Sigma}}{T^{\Sigma}} + \frac{1}{T^{\Sigma}} \left(\frac{(\mathbf{v}^{+} - \mathbf{v}^{\Sigma})^{2}}{2} - \mathbf{n}^{+} \frac{\mathbf{S}^{+,\mathrm{irr}}}{\rho^{+}} \mathbf{n}^{+} \right) \right) \\ &+ \sum_{i=1}^{N} \dot{m}_{i}^{-,\Sigma} \left(\frac{\mu_{i}^{-}}{T^{-}} - \frac{\mu_{i}^{\Sigma}}{T^{\Sigma}} + \frac{1}{T^{\Sigma}} \left(\frac{(\mathbf{v}^{-} - \mathbf{v}^{\Sigma})^{2}}{2} - \mathbf{n}^{-} \frac{\mathbf{S}^{-,\mathrm{irr}}}{\rho^{-}} \mathbf{n}^{-} \right) \right) \end{split}$$

Interfacial Entropy Production - Literature

Kovac, J.: Non-equilibrium thermodynamics of interfacial systems, Physica A renl **86**, 1-24 (1977). thermodynamics and statistical physics of sur-Bedeaux, D.: Nonequilibrium faces, pp. 47-109 in Advance in Chemical Physics 64 (L. Prigogine, S.A. Rice, t1()[13 eds), Jon Wiley & Sons 1986. Slattery, J.C.: Interna Transport Phenomena. Springer, New York 1990. Sagis, L.M.C.: Dynamic behavior of interfaces: Hodeling with nonequilibrium thermodynamics Adv. Colloid & Interi. Sci. **206**, 328-343 (2014). Dreyer, W., Guhlke, C., Müller, R.: Bulk-surface electrothermodynamics and applications to electrochemistry, Entropy 20, 939,1-44 (2018). Bothe, D.: Sharp-interface continuum thermodynamics of multicomponent

fluid systems with interfacial mass^{*}, Int. J. Eng. Sci. **179**, 103731 (2022).

*based on conference proceedings: D.B. IBW7 (2015), D.B. RIMS (2016)

Reduced interfacial entropy production (zero interfacial viscosities):

$$\begin{split} \zeta^{\Sigma} &= \mathbf{q}^{\Sigma} \cdot \nabla_{\Sigma} \frac{1}{T^{\Sigma}} - \sum_{i=1}^{N} \mathbf{j}_{i}^{\Sigma} \cdot \left(\nabla_{\Sigma} \frac{\mu_{i}^{\Sigma}}{T^{\Sigma}} - \frac{\mathbf{b}_{i}^{\Sigma}}{T^{\Sigma}} \right) - \frac{1}{T} \sum_{a=1}^{N_{R}^{\Sigma}} R_{a}^{\Sigma} \mathcal{A}_{a}^{\Sigma} \\ &- \frac{1}{T^{\Sigma}} (\mathbf{v}^{+} - \mathbf{v}^{\Sigma})_{\parallel} \cdot (\mathbf{S}^{+} \mathbf{n}^{+})_{\parallel} - \frac{1}{T^{\Sigma}} (\mathbf{v}^{-} - \mathbf{v}^{\Sigma})_{\parallel} \cdot (\mathbf{S}^{-} \mathbf{n}^{-})_{\parallel} \\ &+ \left(\frac{1}{T^{\Sigma}} - \frac{1}{T^{+}} \right) \left(\dot{m}^{+,\Sigma} (e^{+} + \frac{p^{+}}{\rho^{+}}) + \mathbf{q}^{+} \cdot \mathbf{n}^{+} \right) \\ &+ \left(\frac{1}{T^{\Sigma}} - \frac{1}{T^{-}} \right) \left(\dot{m}^{-,\Sigma} (e^{-} + \frac{p^{-}}{\rho^{-}}) + \mathbf{q}^{-} \cdot \mathbf{n}^{-} \right) \\ &+ \sum_{i=1}^{N} \dot{m}_{i}^{+,\Sigma} \left(\frac{\mu_{i}^{+}}{T^{+}} - \frac{\mu_{i}^{\Sigma}}{T^{\Sigma}} + \frac{1}{T^{\Sigma}} \left(\frac{(\mathbf{v}^{+} - \mathbf{v}^{\Sigma})^{2}}{2} - \mathbf{n}^{+} \frac{\mathbf{S}^{+,\mathrm{irr}}}{\rho^{+}} \mathbf{n}^{+} \right) \right) \\ &+ \sum_{i=1}^{N} \dot{m}_{i}^{-,\Sigma} \left(\frac{\mu_{i}^{-}}{T^{-}} - \frac{\mu_{i}^{\Sigma}}{T^{\Sigma}} + \frac{1}{T^{\Sigma}} \left(\frac{(\mathbf{v}^{-} - \mathbf{v}^{\Sigma})^{2}}{2} - \mathbf{n}^{-} \frac{\mathbf{S}^{-,\mathrm{irr}}}{\rho^{-}} \mathbf{n}^{-} \right) \right) \end{split}$$

are these terms grouped correctly?

Interfacial Entropy Production – Class II

$$\begin{split} \zeta^{\Sigma} &= \frac{1}{T^{\Sigma}} \sum_{i=1}^{N} \nabla_{\Sigma} \mathbf{S}_{i}^{\Sigma,\circ} : \mathbf{D}_{i}^{\Sigma,\circ} + \frac{1}{T^{\Sigma}} \sum_{i=1}^{N} \pi_{i}^{\Sigma} \nabla_{\Sigma} \cdot \mathbf{v}_{i}^{\Sigma} + \mathbf{q}^{\Sigma} \cdot \nabla_{\Sigma} \frac{1}{T^{\Sigma}} - \frac{1}{T^{\Sigma}} \sum_{a} R_{a}^{\Sigma} \mathcal{A}_{a}^{\Sigma} \\ &- \sum_{i=1}^{N} \mathbf{u}_{i}^{\Sigma} \cdot \left(\rho_{i}^{\Sigma} \nabla_{\Sigma} \frac{\mu_{i}^{\Sigma}}{T^{\Sigma}} + \frac{1}{T^{\Sigma}} (\mathbf{f}_{i}^{\Sigma} - r_{i}^{\Sigma} (\mathbf{v}_{i}^{\Sigma} - \frac{\mathbf{u}_{i}^{\Sigma}}{2}) - \nabla_{\Sigma} p_{i}^{\Sigma}) \right) \quad \mathbf{Class} \ \mathbf{II} \\ &- \frac{1}{T^{\Sigma}} \sum_{i=1}^{N} (\mathbf{v}_{i}^{+} - \mathbf{v}_{i}^{\Sigma})_{||} \cdot (\mathbf{S}_{i}^{+,\operatorname{irr}} \mathbf{n}^{+})_{||} - \frac{1}{T^{\Sigma}} \sum_{i=1}^{N} (\mathbf{v}_{i}^{-} - \mathbf{v}_{i}^{\Sigma})_{||} \cdot (\mathbf{S}_{i}^{-,\operatorname{irr}} \mathbf{n}^{-})_{||} \\ &- \left(\frac{1}{T^{+}} - \frac{1}{T^{\Sigma}}\right) (\dot{m}^{+,\Sigma} h^{+} + \mathbf{q}^{+} \cdot \mathbf{n}^{+}) - \left(\frac{1}{T^{-}} - \frac{1}{T^{\Sigma}}\right) (\dot{m}^{-,\Sigma} h^{-} + \mathbf{q}^{-} \cdot \mathbf{n}^{-}) \\ &+ \sum_{i=1}^{N} \dot{m}_{i}^{+,\Sigma} \left(\frac{\mu_{i}^{+}}{T^{+}} - \frac{\mu_{i}^{\Sigma}}{T^{\Sigma}} + \frac{1}{T^{\Sigma}} \left(\underbrace{(\mathbf{v}_{i}^{-} + \mathbf{v}_{i}^{\Sigma})^{2}}{2} - \mathbf{n}^{+} \cdot \underbrace{\mathbf{S}_{i}^{+,\operatorname{irr}}}_{\rho_{i}} \mathbf{n}^{+}\right) \right) \Rightarrow \underbrace{\mathbf{correctly}}_{\text{grouped I}} \\ &+ \sum_{i=1}^{N} \dot{m}_{i}^{-,\Sigma} \left(\frac{\mu_{i}^{-}}{T^{-}} - \frac{\mu_{i}^{\Sigma}}{T^{\Sigma}} + \frac{1}{T^{\Sigma}} \left(\underbrace{(\mathbf{v}_{i}^{-} + \mathbf{v}_{i}^{\Sigma})^{2}}{2} - \mathbf{n}^{-} \cdot \underbrace{\mathbf{S}_{i}^{-,\operatorname{irr}}}_{\rho_{i}} \mathbf{n}^{-}\right) \right), \end{split}$$

D. Bothe: Multi-Velocity Sharp-Interface Continuum Thermodynamics of Fluid Systems with Adsorption. arXiv:2502.00906 (2025).

- I Motivation
- II Sharp-Interface Framework
- III Interfacial Entropy Principle

IV – Mass Transfer Closure with Surfactant Influence

One-sided Mass Transfer Processes in Series

mass transfer as a sequence of "ad- and desorption" processes

transfer species pass through the force field of the other (adsorbed) constituents

Reduced interfacial entropy production (zero interfacial viscosities):

$$\begin{split} \zeta^{\Sigma} &= \mathbf{q}^{\Sigma} \cdot \nabla_{\Sigma} \frac{1}{T^{\Sigma}} - \sum_{i=1}^{N} \mathbf{j}_{i}^{\Sigma} \cdot \left(\nabla_{\Sigma} \frac{\mu_{i}^{\Sigma}}{T^{\Sigma}} - \frac{\mathbf{b}_{i}^{\Sigma}}{T^{\Sigma}} \right) - \frac{1}{T} \sum_{a=1}^{N_{R}^{\Sigma}} R_{a}^{\Sigma} \mathcal{A}_{a}^{\Sigma} \\ &- \frac{1}{T^{\Sigma}} (\mathbf{v}^{+} - \mathbf{v}^{\Sigma})_{\parallel} \cdot (\mathbf{S}^{+} \mathbf{n}^{+})_{\parallel} - \frac{1}{T^{\Sigma}} (\mathbf{v}^{-} - \mathbf{v}^{\Sigma})_{\parallel} \cdot (\mathbf{S}^{-} \mathbf{n}^{-})_{\parallel} \\ &+ \left(\frac{1}{T^{\Sigma}} - \frac{1}{T^{+}} \right) \left(\dot{m}^{+,\Sigma} (e^{+} + \frac{p^{+}}{\rho^{+}}) + \mathbf{q}^{+} \cdot \mathbf{n}^{+} \right) \\ &+ \left(\frac{1}{T^{\Sigma}} - \frac{1}{T^{-}} \right) \left(\dot{m}^{-,\Sigma} (e^{-} + \frac{p^{-}}{\rho^{-}}) + \mathbf{q}^{-} \cdot \mathbf{n}^{-} \right) \\ &+ \sum_{i=1}^{N} \dot{m}_{i}^{+,\Sigma} \left(\frac{\mu_{i}^{+}}{T^{+}} - \frac{\mu_{i}^{\Sigma}}{T^{\Sigma}} - \frac{1}{T^{\Sigma}} \left(\frac{(\mathbf{v}^{+} - \mathbf{v}^{\Sigma})^{2}}{2} - \mathbf{n}^{+} \frac{\mathbf{S}^{+,\mathrm{irr}}}{\rho^{+}} \mathbf{n}^{+} \right) \right) \\ &+ \sum_{i=1}^{N} \dot{m}_{i}^{-,\Sigma} \left(\frac{\mu_{i}^{-}}{T^{-}} - \frac{\mu_{i}^{\Sigma}}{T^{\Sigma}} - \frac{1}{T^{\Sigma}} \left(\frac{(\mathbf{v}^{-} - \mathbf{v}^{\Sigma})^{2}}{2} - \mathbf{n}^{-} \frac{\mathbf{S}^{-,\mathrm{irr}}}{\rho^{-}} \mathbf{n}^{-} \right) \right) \end{split}$$

Interfacial mass transfer: decompose into ad- and desorption

$$\dot{m}_i^{+,\Sigma} = s_i^{\mathrm{ad},+} - s_i^{\mathrm{de},+}, \qquad \dot{m}_i^{-,\Sigma} = s_i^{\mathrm{ad},-} - s_i^{\mathrm{de},-}$$

Mass transfer entropy production (simplified):

$$\zeta_{\text{TRANS}}^{\pm} = \frac{1}{T} \sum_{i=1}^{N} (s_i^{\text{ad},\pm} - s_i^{\text{de},\pm}) (\mu_i^{\pm} - \mu_i^{\Sigma})$$

Closure of sorption kinetics: analogous to chemical reactions!

$$\ln \frac{s_i^{\mathrm{ad},\pm}}{s_i^{\mathrm{de},\pm}} = \frac{a_i^{\pm}}{RT}(\mu_i^{\pm} - \mu_i^{\Sigma}) \quad \text{with} \quad a_i^{\pm} \ge 0$$

Desorption modeled explicitly, adsorption follows: $(a_i^{\pm} \text{ set to 1})$

$$s_i^{\mathrm{de},\pm} = k_i^{\mathrm{de},\pm} x_i^{\Sigma}, \qquad s_i^{\mathrm{ad},\pm} = k_i^{\mathrm{de},\pm} x_i^{\Sigma} \exp\left(\frac{\mu_i^{\pm} - \mu_i^{\Sigma}}{RT}\right)$$

Simple mixture assumption:

$$\mu_i^{\pm}(T, p, x_1, \dots, x_{N-1}) = g_i^{\pm}(T, p) + RT \ln x_i^{\pm}$$
$$\mu_i^{\Sigma}(T, p, x_1^{\Sigma}, \dots, x_{N-1}^{\Sigma}) = g_i^{\Sigma}(T, p^{\Sigma}) + RT \ln x_i^{\Sigma}$$

Resulting (ad-)sorption kinetics:

$$s_i^{\mathrm{de},\pm} = k_i^{\mathrm{de},\pm} x_i^{\Sigma}, \qquad s_i^{\mathrm{ad},\pm} = k_i^{\mathrm{de},\pm} \exp\left(\frac{g_i^{\pm} - g_i^{\Sigma}}{RT}\right) x_i^{\pm} =: k_i^{\mathrm{ad},\pm} x_i^{\pm}$$

approximation: $[\![\dot{m}_i]\!] = 0 \quad \Leftrightarrow \quad \dot{m}_i^{+,\Sigma} + \dot{m}_i^{-,\Sigma} = 0$

Resulting mass transfer rates:

$$\dot{m}_{i} = \underbrace{\frac{k_{i}^{\mathrm{de},+}k_{i}^{\mathrm{de},+}}{k_{i}^{\mathrm{de},+}+k_{i}^{\mathrm{de},-}}}_{\mathbf{k}_{i}^{\mathrm{de},+}+k_{i}^{\mathrm{de},-}} \exp\left(-\frac{g_{i}^{\Sigma}}{RT}\right) \left(\exp\left(\frac{g_{i}^{+}}{RT}\right)x_{i}^{+} - \exp\left(\frac{g_{i}^{-}}{RT}\right)x_{i}^{-}\right)$$

$$\mathbf{k}_{\mathrm{trans}} \qquad \text{influence of surface tension}$$

combination of several* interface free energy models

$$\mu_{k}^{\Sigma, \text{mol}} = a_{k}(T) + \alpha_{k}RT \ln\left(1 + \frac{\pi^{\Sigma}}{K^{\Sigma}}\right) + \beta_{k}\pi^{\Sigma} + \sum_{i=1}^{N} f_{i}(c_{i}^{\Sigma})c_{i}^{\Sigma} + RT \ln\chi_{k}^{\Sigma}$$

$$\chi_{k}^{\Sigma} \text{ is one of } c_{k}^{\Sigma}/c_{S}^{\Sigma}, c_{k}^{\Sigma}/c_{k}^{\Sigma,\infty} \text{ or } x_{k}^{\Sigma} = c_{k}^{\Sigma}/c^{\Sigma}$$
final result:

$$\dot{m}_{i}^{\text{contam}} = \alpha(\sigma) \dot{m}_{i}^{\text{clean}} \qquad \text{matches experimental findings by A. Tomiyama}$$

up to non-linear corrections for non-ideal interface mixtures

* lattice-based, area-based, gas-type, explicit solvent contribution, excluded area

fi

combination of several* interface free energy models

$$\mu_{k}^{\Sigma, \text{mol}} = a_{k}(T) + \alpha_{k}RT \ln\left(1 + \frac{\pi^{\Sigma}}{K^{\Sigma}}\right) + \beta_{k}\pi^{\Sigma} + \sum_{i=1}^{N} f_{i}(c_{j}^{\Sigma})c_{i}^{\Sigma} + RT \ln\chi_{k}^{\Sigma}$$

main effect of
surface pressure = - σ
nal result:
Langmuir
energy
barrier
$$\alpha(\sigma) = \exp\left(-\frac{\sigma_{0} - \sigma}{c_{\Sigma}^{\infty}RT}\right)$$

Boltzmann
factor

Since $\mu_i^{\Sigma} = \mu_i^{\Sigma}(T^{\Sigma}, \sigma, x_k^{\Sigma})$ depends on surface tension: surfactant $k \rightarrow$ changes $\sigma \rightarrow$ changes all $\mu_i^{\Sigma} \rightarrow$ changes \dot{m}_i^{\pm}

One-sided Mass Transfer Processes in Series

mass transfer as a sequence of "ad- and desorption" processes

transfer species pass through the force field of the other (adsorbed) constituents

Thank You for Your kind attention !