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Multicomponent flows: motivating example

How to model chemical flow in liquid battery electrolytes?

▶ Multiple chemical species (e.g. EMC, EC, Li+, PF−6 ).

▶ Each species has its own concentration and velocity field.

▶ Need to capture convection, diffusion and electrical effects.

Image from A continuum of physics-based lithium-ion battery models reviewed, Brosa-Planella et al., 2022
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Multicomponent flows: motivating example

Appreciable electrical potential,
induced by a difference in the
electrochemical potential of
dissolved lithium cations, arises
across a junction between two
reservoirs of the same salt particle
fraction but different EMC:EC
ratios.

(...)

The portion of these overpotentials
due to the solvent distribution is
neglected by almost all state-of-the
art P2D models.

Overpotential from cosolvent imbalance in battery electrolytes: LiPF6 in EMC:EC, Jung et al., 2023.
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Multicomponent flows

▶ Multicomponent flows—specifically the OSM model we will
consider here—are applicable in:
▶ Electrochemistry.
▶ Combustion.
▶ Separation processes.
▶ Physiology.

▶ Most numerical schemes in the literature rely on limiting
assumptions:
▶ That the mixtures are ideal (analogous to the ideal gas law).
▶ That diffusion can be modelled using Fick’s law.
▶ That diffusion and convection can be decoupled.

We devise finite element schemes that do not rely on these
assumptions. Of particular interest: lithium-ion battery elec-
trolyte modelling.
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Example: mixing of benzene and cyclohexane

▶ Governing PDEs are discretized using order 5 finite elements.

▶ Discretized problem has 6 million unknowns – the need for
efficient numerical methods quickly arises, especially in 3D.
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Example: mixing of benzene and cyclohexane (cont’d)

Mole fraction x1 of benzene and streamlines of its velocity v1.
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The numerical schemes

We derive, for the first time, FEM schemes for this model that are:

▶ High-order in space.

▶ Applicable on complicated three-dimensional spatial domains.

▶ Are provably convergent for a linearized version of the
governing PDEs.
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Modelling multicomponent diffusion

Suppose we have n chemical species labelled by i ∈ {1, . . . , n}.

The Onsager–Stefan–Maxwell (OSM) equations express the
diffusional driving force di acting on species i in two ways:

−ci∇µi︸ ︷︷ ︸
thermodynamic

“forcing”

= di = RT
n∑

j=1

cicj
cTDij

(vi − vj)︸ ︷︷ ︸
drag forces

due to relative motion

.

▶ ci is the molar concentration of species i .

▶ cT =
∑n

i=1 ci is the total concentration.

▶ µi is the (electro)chemical potential of species i .

▶ Dij are diffusion coefficients.

▶ R the ideal gas constant and T the temperature.

▶ vi is the velocity of species i .
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Why OSM equations?

−ci∇µi = RT
n∑

j=1

cicj
cTDij

(vi − vj) (OSM)

civi = −ziuiFci∇Φ︸ ︷︷ ︸
migration

− Di∇ci︸ ︷︷ ︸
Fickian
diffusion

+ civref︸ ︷︷ ︸
convection

(Nernst–Planck)

Reasons for using the OSM equations over e.g. Fick’s law include:

▶ Diffusion is driven by −∇µi as opposed to −∇ci .

▶ All components exert diffusional forces on each other.

▶ Thermodynamically consistent and entropy production is
non-negative.

▶ The parameters in the model are independent of the choice of
reference velocity vref.

▶ Can be generalised to account for non-isobaric and
non-isothermal effects.
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The mere notion of Φ is on shaky ground. We use µi instead!

The electric potential difference between two points in different media
can never be measured and has not yet been defined in terms of physical
realities. It is therefore a conception which has no physical significance.
(Guggenheim, 1929)

The consideration of the electrical potential in the electrolyte, and
especially the consideration of the difference of potential in electrolyte
and electrode, involve the consideration of quantities of which we have
no apparent means of physical measurement. (Gibbs, 1899)
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Modelling multicomponent convection

Convective flow of the chemical mixture is modelled using the
so-called mass-average velocity v :

v :=
n∑

j=1

ωjvj “mass-average constraint”

(ωj = ρj/ρ is the mass fraction of species j).

We assume that v satisfies the Cauchy momentum equation:

− div τ +∇p +������:≈ 0
div(ρv ⊗ v) = ρf ,

where τ is the viscous stress tensor. We use the usual Newtonian
constitutive law to relate τ and the symmetric gradient of v .
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The Stokes–Onsager–Stefan–Maxwell (SOSM) equations

Putting all of this together we get the (steady) SOSM equations:

−ci∇µi + ωi∇p =
∑

jMij(vj − vi ), (1a)

− div τ +∇p = ρf , (1b)

div(civi ) = ri , (1c)

v =
∑

j ωjvj . (1d)

▶ An additional “thermodynamic constitutive law” must be
supplied that algebraically relates the chemical potentials to
temperature, pressure and composition.

▶ The thermodynamic framework of Van-Brunt et al. allows for
the model to incorporate charged species and electroneutrality.

Structural electroneutrality in Onsager–Stefan–Maxwell transport with charged species, Van-Brunt et al.,
2023.

12 / 16



What makes things difficult

−ci∇µi + ωi∇p =
∑

jMij(vj − vi ),

− div τ +∇p = ρf ,

div(civi ) = ri ,

v =
∑

j ωjvj .

▶ Everything that you see in these equations is an unknown field
(except for f and ri , which are assumed to be known).

▶ The equations are very nonlinear:

▶ Mij depends rationally on all of the concentrations {ck}nk=1.
▶ ci ∝ exp(µi ) for ideal gases, even more complicated otherwise.

▶ Literature on FEM for the equations is sparse.

▶ Aznaran et al. is the only paper that considers these equations
in the non-ideal case, but requires discrete H(div;S) spaces.

▶ Since there are so many unknowns, numerics will be expensive.

Finite element methods for multicomponent convection-diffusion, Aznaran et al., 2024.
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A novel class of high-order discretizations
We have derived a large class of finite element schemes for the
SOSM equations, through the following ideas:

1. Suitably rewrite the equations in terms of the (2n + 2)
unknown fields (v , p, {Ji}ni=1, {µi}ni=1) where Ji := Micivi is
the mass-flux of species i . Discretize these using high-order
FEM spaces that satisfy certain stability conditions.

2. The mass-average constraint is incorporated using the
augmentation strategy of Aznaran et al., 2024.

3. The equations need to be coupled to integral constraints on
the concentration fields (this was not obvious).

4. We find that “density consistency” terms (somewhat
analogous to IPDG consistency terms) are necessary for
convergence.

When applied to a Picard linearization of the SOSM problem, our
schemes are provably convergent and quasi-optimal. The schemes
are high-order, applicable in two and three spatial dimensions, and
straightforward to implement.
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Time-stepping

For the transient problem we seem to need δt ≥ C · h for stability,
but only when coupling to Stokes!
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Conclusions

See the manuscript on arXiv: High-order finite element methods
for three-dimensional multicomponent convection-diffusion.
Next step is to simulate liquid battery electrolytes.
▶ Capturing the complex geometry may be a challenge.
▶ The number of parameters is O(n2). E.g. for n = 4 there are

12 parameters. Can use experimental measurements, or solve
inverse problems.
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