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Hyperelasticity

Assumption: 1st Piola-Kirchhoff stress tensor T has a potential:

Tij :=
∂W (∇y)

∂Fij

W : IR3×3 → IR ∪ {+∞} stored energy density

J(y) :=

∫
Ω
W (∇y(x))dx .

Minimizers of J (formally) satisfy equilibrium equations of
elasticity.



Properties of W

(i) W : IR3×3
+ → IR is continuous

(ii) W (F ) = W (RF ) for all R ∈ SO(3) and all F ∈ IR3×3

(iii) W (F )→ +∞ if detF → 0+

(iv) W (F ) = +∞ if detF ≤ 0



Polyconvexity

J.M. Ball’s notion of polyconvexity (1977)

W (F ) = h(F , cof F , detF ) if detF > 0

cof F := (detF )F−>

h : IR19 → IR is convex

Existence of (injective) solutions (Ball 1977, Ciarlet & Nečas
1987,...)
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How about if W is not polyconvex?

If
c(−1 + |F |p) ≤W (F ) ≤ C (1 + |F |p)

and

W (F )|Ω| ≤
∫

Ω
W (∇ϕ(x)) dx

for all ϕ ∈W 1,∞(Ω; IR3), ϕ(x) = Fx on ∂Ω then J is wlsc on
W 1,p, (p > 1)

But the upper bound is not suitable for elasticity !!
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Reconsidering elasticity

I Stable states in elasticity are found through

Minimize
∫

Ω W (∇y)dx
subject to y ∈ A = set of deformations.

}
(1)

The energy density W and the set of deformations A form
together the model of the elastic behavior.
What we want to do is the following:

I Characterize precisely the set of energies for which stable
states exist

I This is motivated by providing a “safe set” in constitutive
modeling



The set of deformations

I Let us concentrate on what the set of deformations should
contain:
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preserving.
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The set of deformations

I Let us concentrate on what the set of deformations should
contain:

A deformation is a mapping that is smooth enough, injective
except perhaps on the boundary and orientation preserving.

[Ciarlet; 1988]

I this corresponds to non-interpenetration of matter



The set of deformations

I Let us concentrate on what the set of deformations should
contain:

A deformation is a mapping that is smooth enough, injective
except perhaps on the boundary and orientation preserving.

[Ciarlet; 1988]

I to exclude “going through itself/reflection”



The set of deformations

I Let us concentrate on what the set of deformations should
contain:

A deformation is a mapping that is smooth enough, injective
except perhaps on the boundary and orientation preserving.

[Ciarlet; 1988]

 these conditions are sometimes written as

“det∇y > 0”



Open problems in elasticity

Providing (at least) that the deformations satisfy det∇y > 0 we
ask

I Characterize precisely the set of energies for which stable
states exist.



Open problems in elasticity

Providing (at least) that the deformations satisfy det∇y > 0 we
ask

I Characterize precisely the set of energies for which stable
states exist.

I this is actually a long-standing problem in mathematical
elasticity and has been formulated in a related way by J.M.
Ball

Prove the existence of energy minimizers for elastostat-
ics for quasiconvex stored-energy functions satisfying

W (A)→ +∞ whenever detA→ 0+

[Ball; 2002]



Open problems in elasticity

Providing (at least) that the deformations satisfy det∇y > 0 we
ask

I Characterize precisely the set of energies for which stable
states exist.

Why is this a hard problem?

I the injectivity condition on the deformation is strongly
non-linear and non-convex (even in the weakened
“determinant condition”)

I standard methods relying on convex averaging in Sobolev
spaces (such as smoothing by mollifier kernels) do not work
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Elastic deformations

Elasticity means that the specimen returns to its original state
when releasing all loads. No energy loss!

No defects in the specimen

I How smooth is smooth enough?

1. Since the deformation gradient is the crucial quantity it is
natural to work with Sobolev spaces W 1,p(Ω;Rn)

2. y is continuous
3. In our modelling, we shall require that the inverse of the

deformation y−1 is in the same class as the deformation itself



Elastic deformations

Elasticity means that the specimen returns to its original state
when releasing all loads. No energy loss!

No defects in the specimen

A deformation is a vectorial mapping that is smooth enough,
injective except perhaps on the boundary and orientation
preserving.

[Ciarlet; 1988]

I How smooth is smooth enough?

1. Since the deformation gradient is the crucial quantity it is
natural to work with Sobolev spaces W 1,p(Ω;Rn)

2. y is continuous
3. In our modelling, we shall require that the inverse of the

deformation y−1 is in the same class as the deformation itself



All reference configurations are equal

In our modelling, we shall require that the inverse of the
deformation y−1 is in the same class as the deformation itself



All reference configurations are equal

In our modelling, we shall require that the inverse of the
deformation y−1 is in the same class as the deformation itself

Motivation: The body is deformed from Ω to y(Ω). Then we change

the reference configuration to y(Ω) and want that the mapping that

moves each material point to its original position is an admissible

deformation, too.

 In a way, we may relate it to reversibility of elastic processes (by
the same path).

[Giaquinta, Modica, Souček; 1998], [Fonseca, Gangbo; 1995], [Ball; 1981], [Ciarlet, Nečas; 1985], [Šverák; 1988],

[Ball, 2002], [Iwaniec, Kovalev, Onninen; 2011]



Deformations in elasticity-Summary

Taking also the preserving of the orientation into account, we take
the set of the deformations as the bi-Sobolev maps

W 1,p,−p(Ω;R3) = {y ;y homeomorphism, y ∈W 1,p(Ω;R3),

y−1 ∈W 1,p(y(Ω); Ω) and det∇y > 0 a.e. on Ω }

I Let us note that the constraint det∇y ≥ 0 is “included”
when demanding a deformation to be a Sobolev
homeomorphism since such cannot change the sign of the
determinant in dimension 2,3

[Hencl, Malý; 2010]



Group structure of the set of deformations

The set of the deformations may have a group structure. This
models that

I A composition of two deformations is again a deformation.

I Take two deformations y : Ω 7→ R3 and z : y(Ω) 7→ R3. Then
the composition of these two deformations is

z(y(x)), x ∈ Ω

I But the relevant variable is actually the deformation gradient

∇z(y(x))∇y(x)

 “multiplication should be allowed”



Group structure of the set of deformations

The set of the deformations may have a group structure. This
models that

I A composition of two deformations is again a deformation.

I Take two deformations y : Ω 7→ R3 and z : y(Ω) 7→ R3. Then
the composition of these two deformations is

z(y(x)), x ∈ Ω

I But the relevant variable is actually the deformation gradient

∇z(y(x))∇y(x)

 “multiplication should be allowed”



Group structure of the set of deformations

The set of the deformations may have a group structure. This
models that

I A composition of two deformations is again a deformation.

I Take two deformations y : Ω 7→ R3 and z : y(Ω) 7→ R3. Then
the composition of these two deformations is

z(y(x)), x ∈ Ω

I But the relevant variable is actually the deformation gradient

∇z(y(x))∇y(x)

 “multiplication should be allowed”



Group structure of the set of deformations

The set of the deformations may have a group structure. This
models that

I A composition of two deformations is again a deformation.

I Take two deformations y : Ω 7→ R3 and z : y(Ω) 7→ R3. Then
the composition of these two deformations is

z(y(x)), x ∈ Ω

I But the relevant variable is actually the deformation gradient

∇z(y(x))∇y(x)

 “multiplication should be allowed”



Group structure of the set of deformations

The set of the deformations may have a group structure. This
models that

I A composition of two deformations is again a deformation.

I Take two deformations y : Ω 7→ R3 and z : y(Ω) 7→ R3. Then
the composition of these two deformations is

z(y(x)), x ∈ Ω

I But the relevant variable is actually the deformation gradient

∇z(y(x))∇y(x)

 “multiplication should be allowed”

 this is possible only on particular bi-Sobolev classes as e.g.
bi-Lipschitz maps



The stored energy

On the stored energy we have only two key requirements:

1. W is continuous on its effective domain

2. W has growth that prevents shrinking of volume of positive
measure to zero

W (A)→ +∞ whenever detA→ 0+ (2)

 in some situations, we may prescribe some growth etc.



Posing the problem

Minimize
∫

Ω W (∇y)dx
subject to y ∈ A.

}
with

A = W 1,p,−p(Ω;R3)

an W satisfying

W (A)→ +∞ whenever detA→ 0+

Under which (minimal) additional conditions on the stored energy
W there is a solution?



Posing the problem

We shall concentrate only on the case when p =∞, i.e.

A = W 1,∞,−∞(Ω;R3) = {y ;y homeomorphism, y ∈W 1,∞(Ω;R3),

y−1 ∈W 1,∞(y(Ω); Ω) and det∇y > 0 a.e. on Ω }



Posing the problem

We shall concentrate only on the case when p =∞, i.e.

A = W 1,∞,−∞(Ω;R3) = {y ;y homeomorphism, y ∈W 1,∞(Ω;R3),

y−1 ∈W 1,∞(y(Ω); Ω) and det∇y > 0 a.e. on Ω }

Notice that

I In this case the set of deformations has a group structure

I There actually ex. γ > 0 s.t. det∇y ≥ γ a.e. on Ω  this
implies that condition (2) does not pose any restriction.



Posing the problem

Minimize
∫

Ω W (∇y)dx
subject to y ∈ A.

}
(1)

with
A = W 1,∞,−∞(Ω;R3)

Under which (minimal) conditions on the stored energy W does
(1) admit a solution?



Refining the problem

I A usual approach is to employ the direct method
I Crucial ingredients:

1. closedness of A under appropriate weak convergence ( this is
OK in our case under the convergence below)

2. coercivity of W that enforces this weak convergence of the
minimization sequence

3. A corresponding lower semicontinuity of
∫

Ω
W



Refining the problem

I A usual approach is to employ the direct method
I Crucial ingredients:

1. closedness of A under appropriate weak convergence ( this is
OK in our case under the convergence below)

2. coercivity of W that enforces this weak convergence of the
minimization sequence

3. A corresponding lower semicontinuity of
∫

Ω
W



Refining the problem

I A usual approach is to employ the direct method
I Crucial ingredients:

1. closedness of A under appropriate weak convergence ( this is
OK in our case under the convergence below)

2. coercivity of W that enforces this weak convergence of the
minimization sequence

3. A corresponding lower semicontinuity of
∫

Ω
W

If {yk}k>0 is a bounded sequence of bi-Lipschitz, orientation
preserving homeomorphisms such that

yk
∗
⇀ y

under which minimal conditions on W does it hold that∫
Ω
W (∇y)dx ≤ lim inf

k→∞

∫
Ω
W (∇yk)dx?



Sufficient conditions

I Since A ⊂W 1,∞(Ω;R3), W defines a weakly lower
semicontinuous functional if it is quasiconvex

I Yet, the condition

W (Y ) ≤ 1

|Ω|

∫
Ω
W (∇ϕ)dx .

for all Y ∈ R3×3 and all ϕ ∈W 1,∞(Ω,R3);ϕ = Yx on ∂Ω. is
not natural.

I Why should we test also with non-deformations ?
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Necessary and sufficient conditions
I Remeber, the condition

W (Y ) ≤ inf
ϕ∈W 1,∞(Ω,Rd );ϕ=Yx on ∂Ω

1

|Ω|

∫
Ω
W (∇ϕ) dx.

is not natural.
I Why should we test also with non-deformations  particularly when looking at the principle of virtual

displacements?

Conjecture

If {yk}k>0 is a sequence of bi-Lipschitz, orientation preserving

homeomorphisms such that yk
∗
⇀ y then∫

Ω
W (∇y)dx ≤ lim inf

k→∞

∫
Ω
W (∇yk)dx

if and only if it is bi-quasiconvex, i.e.

W (Y ) ≤ 1

|Ω|

∫
Ω
W (∇ϕ)dx .

for all Y ∈ R3×3 with detY > 0 and all ϕ ∈ A;ϕ = Yx on ∂Ω.



Necessary and sufficient conditions

I this is still an open problem . . . but . . .



Necessary and sufficient conditions

Proposition [B.B& M.Kr., 2013]

If {yk}k>0 is a bounded sequence of bi-Lipschitz, orientation
preserving homeomorphisms in the plane (i.e.

Ω ⊂ R2, yk : Ω 7→ R2) such that yk
∗
⇀ y then∫

Ω
W (∇y)dx ≤ lim inf

k→∞

∫
Ω
W (∇yk)dx

if and only if

W (Y ) ≤ 1

|Ω|

∫
Ω
W (∇ϕ)dx .

for all Y ∈ R2×2 with detY > 0 and all ϕ ∈ A;ϕ = Yx



Notions of quasiconvexity

The idea that one should verify the Jensen inequality only for
functions that are “deformations” appears also in:

I W 1,p-quasiconvexity

I Orientation-preserving quasiconvexity

[Ball, Murat; 1988], [Koumatos, Rindler, Wiedemann; 2014]



Constructing a cut-off as key ingredient

I The key ingredient in the proof of this proposition is the
construction of some kind of cut-off

I Indeed, take {yk}k>0 is a sequence of bi-Lipschitz, orientation

preserving homeomorphisms s.t. yk
∗
⇀ Yx (for simplicity)

I If ∀k we had yk = Yx on ∂Ω, then (from def.)

W (Y ) ≤ lim inf
k→∞

1

|Ω|

∫
Ω
W (∇yk) dx .

⇒ weak* lower semicontinuity
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Constructing a cut-off as key ingredient

Reformulating once again

Suppose {yk}k>0 is a sequence of bi-Lipschitz, orientation

preserving homeomorphisms s.t. yk
∗
⇀ Yx . Then find another

sequence {wk}k>0 of bi-Lipschitz, orientation preserving
homeomorphisms such that

I wk = Yx on ∂Ω,

I
∣∣{wk 6= yk}

∣∣→ 0.



Constructing a cut-off as key ingredient

Reformulating once again

Suppose {yk}k>0 is a sequence of bi-Lipschitz, orientation

preserving homeomorphisms s.t. yk
∗
⇀ Yx . Then find another

sequence {wk}k>0 of bi-Lipschitz, orientation preserving
homeomorphisms such that

I wk = Yx on ∂Ω,

I
∣∣{wk 6= yk}

∣∣→ 0.

I this is a consequence of using Young measures  a useful
tool in such situations

I Notice: detY > 0

[Kinderlehrer, Pedregal; 1991, 1992, 1994]



Constructing a cut-off as key ingredient

Reformulating once again

Suppose {yk}k>0 is a sequence of bi-Lipschitz, orientation

preserving homeomorphisms s.t. yk
∗
⇀ Yx . Then find another

sequence {wk}k>0 of bi-Lipschitz, orientation preserving
homeomorphisms such that

I wk = Yx on ∂Ω,

I
∣∣{wk 6= yk}

∣∣→ 0.

We can imagine a cut-off by the following picture (Y = Id here):



Cut-off and surjectivity of the trace operator

Notice: the cut-off technique is very much related to characterizing
the trace operator.

I What we need to do is to find some wk ∈W 1,p,−p(Ω) on Ωδ

with prescribed boundary data, such that the norm of wk is
controlled by a ”suitable” norm at the boundary

I This is is equivalent to constructing an extension operator; in
other words
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Tr : W 1,p,−p(Ω;R2)
onto−→ X p



Cut-off and surjectivity of the trace operator

Notice: the cut-off technique is very much related to characterizing
the trace operator.

I What we need to do is to find some wk ∈W 1,p,−p(Ω) on Ωδ

with prescribed boundary data, such that the norm of wk is
controlled by a ”suitable” norm at the boundary

I This is is equivalent to constructing an extension operator; in
other words

We seek a characterization of the set X p such that

Tr : W 1,p,−p(Ω;R2)
onto−→ X p

 this is completely open unless p =∞ and n = 2.



Sidenote: Characterizing the trace operator is of
independent interest

For which g : ∂Ω→ IRn there is y ∈W 1,p(Ω; IRn) such that
det∇y > 0 and y = g on ∂Ω?



Constructing a cut-off - difficulties

I How is the cut-off constructed usually?

I Take η` smooth cut-off function and take the convex
combination

η`yk + (1− η`)Yx

I But our constrains det > 0 as well as the invertibility are not
convex
 we may easily “fall out” from the set of deformations

.... but ....
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Cut-off in the plane

[Benešová & M.K.; 2013]

Suppose that Ω ⊂ IR2 is a bounded Lipschitz domain. Let {yk}k>0

be a bounded sequence of bi-Lipschitz, orientation preserving
homeomorphisms s.t. yk

∗
⇀ y . Then there exists its (not relabeled)

subsequence and another bounded sequence {wk}k>0 of
bi-Lipschitz, orientation preserving homeomorphisms such that

I wk = y on ∂Ω,

I
∣∣{wk 6= yk}

∣∣→ 0,

I lim inf
∫

Ω W (∇yk)dx = lim inf
∫

Ω W (∇wk)dx .



Working in the plane

I Also working in the plane makes the situation simpler
I Here, we rely on two crucial things:

1. The boundary of domains in the plane is one-dimensional (e.g.
the boundary of the some square)

2. In the plane, we have bi-Lipschitz extension theorems at our
disposal



Bi-Lipschitz extension in the plane

[Daneri, Pratelli; 2011]

There exists a geometric constant C such that every L bi-Lipschitz
map u defined on the boundary of the unit square admits a CL4

bi-Lipschitz extension into the square that coincides with u on the
boundary.

[Tukia; 1980], [Huuskonen,Partanen,Väisälä; 1995], [Tukia,Väisälä;1981,1984]
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Bi-Lipschitz extension in the plane

Why is this useful in our case?

I Remember, we wanted to solve a boundary value problem
 now we can, but on the boundary of the square....

I So we introduce squares in the grey area



Bi-Lipschitz extension in the plane

Why is this useful in our case?
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I So we introduce squares in the grey area



Proof-Summary

I We reduced the problem of constructing a cut-off to
constructing it just on the crosses

I  thus, we can define a “matching function” that is still
bi-Lipschitz on the grid of the squares

I The bi-Lipschitz extension theorem then allows to get a
homeomorphism inside

I Recall: this allows us to have the quasiconvexity condition
(principle of virtual displacements) tested just by deformations
(in order to anyway obtain weak* lower semicontinuity)



Summary

I It is relevant in elasticity to solve minimization problems on
subsets of Sobolev functions, where non-linear, non-convex
restrictions are posed

I Although sufficiency conditions for existence of minima are
generally known, if and only if conditions are still a challenge

I Here we extended the quasiconvexity condition also to the
case when minimizing over bi-Lipschitz, orientation preserving
functions

I A larger class of stored energy functions can be now admitted



Thank you for your attention!

B. Benešová, M.K.: Characterization of gradient Young measures
generated by homeomorphisms in the plane. ESAIM COCV

http://dx.doi.org/10.1051/cocv/2015003
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