Minimization problems on orientation-preserving bi-Lipschitz maps

Martin Kružík in collaboration with Barbora Benešová (Würzburg)

Institute of Information Theory and Automation, Czech Academy of Sciences

Praha, April 29, 2015

Hyperelasticity

Assumption: 1st Piola-Kirchhoff stress tensor T has a potential:

$$T_{ij} := \frac{\partial W(\nabla y)}{\partial F_{ij}}$$

 $W: {\rm I\!R}^{3 imes 3}
ightarrow {\rm I\!R} \cup \{+\infty\}$ stored energy density

$$J(y) := \int_{\Omega} W(\nabla y(x)) \,\mathrm{d}x \;.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Minimizers of J (formally) satisfy equilibrium equations of elasticity.

Properties of W

(i)
$$W : \mathbb{R}^{3 \times 3}_+ \to \mathbb{R}$$
 is continuous
(ii) $W(F) = W(RF)$ for all $R \in SO(3)$ and all $F \in \mathbb{R}^{3 \times 3}$
(iii) $W(F) \to +\infty$ if det $F \to 0_+$
(iv) $W(F) = +\infty$ if det $F \le 0$

Polyconvexity

J.M. Ball's notion of polyconvexity (1977)

$$W(F) = h(F, \operatorname{cof} F, \det F)$$
 if det $F > 0$

 $\operatorname{cof} F := (\det F)F^{-\top}$

$h: {\rm I\!R}^{19} \to {\rm I\!R}$ is convex

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Existence of (injective) solutions (Ball 1977, Ciarlet & Nečas 1987,...)

Polyconvexity

J.M. Ball's notion of polyconvexity (1977)

$$W(F) = h(F, \operatorname{cof} F, \det F)$$
 if det $F > 0$

 $\operatorname{cof} F := (\det F) F^{-\top}$

$$h: \mathbb{R}^{19} \to \mathbb{R}$$
 is convex

Existence of (injective) solutions (Ball 1977, Ciarlet & Nečas 1987,...)

How about if W is not polyconvex?

lf

$$c(-1+|F|^{\rho}) \leq W(F) \leq C(1+|F|^{\rho})$$

and

$$W(F)|\Omega| \leq \int_{\Omega} W(\nabla \varphi(x)) \, dx$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for all $\varphi \in W^{1,\infty}(\Omega; \mathbb{R}^3)$, $\varphi(x) = Fx$ on $\partial\Omega$ then J is wlsc on $W^{1,p}$, (p > 1)

But the upper bound is not suitable for elasticity !!

How about if W is not polyconvex?

lf

$$c(-1+|F|^{\rho}) \leq W(F) \leq C(1+|F|^{\rho})$$

and

$$|W(F)|\Omega| \leq \int_{\Omega} W(\nabla \varphi(x)) \, dx$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

for all $\varphi \in W^{1,\infty}(\Omega; \mathbb{R}^3)$, $\varphi(x) = Fx$ on $\partial\Omega$ then J is wlsc on $W^{1,p}$, (p > 1)

But the upper bound is not suitable for elasticity !!

Reconsidering elasticity

Stable states in elasticity are found through

 $\begin{array}{ll} \text{Minimize} & \int_{\Omega} W(\nabla y) \mathrm{d}x \\ \text{subject to} & y \in \mathcal{A} = \text{set of deformations.} \end{array} \right\}$ (1)

The energy density W and the set of deformations A form together the model of the elastic behavior. What we want to do is the following:

- Characterize precisely the set of energies for which stable states exist
- This is motivated by providing a "safe set" in constitutive modeling

Let us concentrate on what the set of deformations should contain:

Let us concentrate on what the set of deformations should contain:

A deformation is a mapping $\bar{\Omega} \mapsto \mathbb{R}^3$ that is smooth enough, injective except perhaps on the boundary, and orientation preserving.

[Ciarlet; 1988]

Let us concentrate on what the set of deformations should contain:

A deformation is a mapping that is smooth enough, injective except perhaps on the boundary and orientation preserving.

[Ciarlet; 1988]

this corresponds to non-interpenetration of matter

Let us concentrate on what the set of deformations should contain:

A deformation is a mapping that is smooth enough, injective except perhaps on the boundary and orientation preserving.

[Ciarlet; 1988]

to exclude "going through itself/reflection"

Let us concentrate on what the set of deformations should contain:

A deformation is a mapping that is smooth enough, injective except perhaps on the boundary and orientation preserving.

[Ciarlet; 1988]

 \rightsquigarrow these conditions are sometimes written as

" $\det \nabla y > 0$ "

Providing (at least) that the deformations satisfy ${\rm det} \nabla y>0$ we ask

 Characterize precisely the set of energies for which stable states exist.

Providing (at least) that the deformations satisfy ${\rm det} \nabla y>0$ we ask

- Characterize precisely the set of energies for which stable states exist.
- this is actually a long-standing problem in mathematical elasticity and has been formulated in a related way by J.M. Ball

Prove the existence of energy minimizers for elastostatics for quasiconvex stored-energy functions satisfying

 $W(A) \to +\infty$ whenever $\det A \to 0_+$

[Ball; 2002]

Providing (at least) that the deformations satisfy ${\rm det} \nabla y > 0$ we ask

 Characterize precisely the set of energies for which stable states exist.

Why is this a hard problem?

- the injectivity condition on the deformation is strongly non-linear and non-convex (even in the weakened "determinant condition")
- standard methods relying on convex averaging in Sobolev spaces (such as smoothing by mollifier kernels) do not work

Providing (at least) that the deformations satisfy ${\rm det} \nabla y > 0$ we ask

 Characterize precisely the set of energies for which stable states exist.

Why is this a hard problem?

- the injectivity condition on the deformation is strongly non-linear and non-convex (even in the weakened "determinant condition")
- standard methods relying on convex averaging in Sobolev spaces (such as smoothing by mollifier kernels) do not work

Providing (at least) that the deformations satisfy ${\rm det} \nabla y > 0$ we ask

 Characterize precisely the set of energies for which stable states exist.

Why is this a hard problem?

- the injectivity condition on the deformation is strongly non-linear and non-convex (even in the weakened "determinant condition")
- standard methods relying on convex averaging in Sobolev spaces (such as smoothing by mollifier kernels) do not work

Elastic deformations

Elasticity means that the specimen returns to its original state when releasing all loads. No energy loss!

No defects in the specimen

- How smooth is smooth enough?
 - Since the *deformation gradient* is the crucial quantity it is natural to work with Sobolev spaces W^{1,p}(Ω; ℝⁿ)
 - y is continuous
 - 3. In our modelling, we shall require that the inverse of the deformation y^{-1} is in the same class as the deformation itself

Elastic deformations

Elasticity means that the specimen returns to its original state when releasing all loads. No energy loss!

No defects in the specimen

A deformation is a vectorial mapping that is smooth enough, injective except perhaps on the boundary and orientation preserving.

[Ciarlet; 1988]

- How smooth is smooth enough?
 - Since the *deformation gradient* is the crucial quantity it is natural to work with Sobolev spaces W^{1,p}(Ω; ℝⁿ)
 - 2. y is continuous
 - In our modelling, we shall require that the inverse of the deformation y⁻¹ is in the same class as the deformation itself

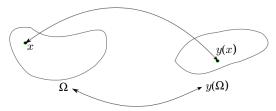
All reference configurations are equal

In our modelling, we shall require that the inverse of the deformation y^{-1} is in the same class as the deformation itself

All reference configurations are equal

In our modelling, we shall require that the inverse of the deformation y^{-1} is in the same class as the deformation itself

Motivation: The body is deformed from Ω to $y(\Omega)$. Then we change the reference configuration to $y(\Omega)$ and want that the mapping that moves each material point to its original position is an admissible deformation, too.



 \rightsquigarrow In a way, we may relate it to *reversibility* of elastic processes (by the same path).

[Giaquinta, Modica, Souček; 1998], [Fonseca, Gangbo; 1995], [Ball; 1981], [Ciarlet, Nečas; 1985], [Šverák; 1988],

[Ball, 2002], [Iwaniec, Kovalev, Onninen; 2011] 🕐 🤇 🔿

Deformations in elasticity-Summary

Taking also the preserving of the orientation into account, we take the set of the deformations as the bi-Sobolev maps

$$\begin{split} \mathcal{W}^{1,\rho,-\rho}(\Omega;\mathbb{R}^3) &= \{y; y \text{ homeomorphism, } y \in \mathcal{W}^{1,\rho}(\Omega;\mathbb{R}^3), \\ y^{-1} \in \mathcal{W}^{1,\rho}(y(\Omega);\Omega) \text{ and } \det \nabla y > 0 \text{ a.e. on } \Omega \end{split}$$

Let us note that the constraint det ∇y ≥ 0 is "included" when demanding a deformation to be a Sobolev homeomorphism since such cannot change the sign of the determinant in dimension 2,3

[Hencl, Malý; 2010]

The set of the deformations may have a group structure. This models that

- ► A composition of two deformations is again a deformation.
- Take two deformations $y : \Omega \mapsto \mathbb{R}^3$ and $z : y(\Omega) \mapsto \mathbb{R}^3$. Then the composition of these two deformations is

$$z(y(x)), \quad x \in \Omega$$

But the relevant variable is actually the deformation gradient

$$\nabla z(y(x))\nabla y(x)$$

The set of the deformations may have a group structure. This models that

- ► A composition of two deformations is again a deformation.
- Take two deformations $y : \Omega \mapsto \mathbb{R}^3$ and $z : y(\Omega) \mapsto \mathbb{R}^3$. Then the composition of these two deformations is

$$z(y(x)), \quad x \in \Omega$$

But the relevant variable is actually the deformation gradient

$$\nabla z(y(x))\nabla y(x)$$

The set of the deformations may have a group structure. This models that

- ► A composition of two deformations is again a deformation.
- Take two deformations $y : \Omega \mapsto \mathbb{R}^3$ and $z : y(\Omega) \mapsto \mathbb{R}^3$. Then the composition of these two deformations is

$$z(y(x)), \quad x \in \Omega$$

But the relevant variable is actually the deformation gradient

$$\nabla z(y(x))\nabla y(x)$$

The set of the deformations may have a group structure. This models that

- ► A composition of two deformations is again a deformation.
- Take two deformations $y : \Omega \mapsto \mathbb{R}^3$ and $z : y(\Omega) \mapsto \mathbb{R}^3$. Then the composition of these two deformations is

$$z(y(x)), \quad x \in \Omega$$

But the relevant variable is actually the deformation gradient

$$\nabla z(y(x))\nabla y(x)$$

The set of the deformations may have a group structure. This models that

- A composition of two deformations is again a deformation.
- Take two deformations y : Ω → ℝ³ and z : y(Ω) → ℝ³. Then the composition of these two deformations is

$$z(y(x)), \qquad x \in \Omega$$

But the relevant variable is actually the deformation gradient

$$\nabla z(y(x))\nabla y(x)$$

→ "multiplication should be allowed"
 → this is possible only on particular bi-Sobolev classes as e.g.
 bi-Lipschitz maps

The stored energy

On the stored energy we have only two key requirements:

- 1. W is continuous on its effective domain
- 2. W has growth that prevents shrinking of volume of positive measure to zero

$$W(A) \to +\infty$$
 whenever det $A \to 0_+$ (2)

 \rightsquigarrow in some situations, we may prescribe some growth etc.

Posing the problem

$$\begin{array}{ll} \text{Minimize} & \int_{\Omega} W(\nabla y) \mathrm{d}x \\ \text{subject to} & y \in \mathcal{A}. \end{array}$$

with

$$\mathcal{A} = W^{1,p,-p}(\Omega;\mathbb{R}^3)$$

an \boldsymbol{W} satisfying

$$W(A) \rightarrow +\infty$$
 whenever $\det A \rightarrow 0_+$

Under which (minimal) additional conditions on the stored energy W there is a solution?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We shall concentrate only on the case when $p = \infty$, i.e.

$$\mathcal{A} = W^{1,\infty,-\infty}(\Omega; \mathbb{R}^3) = \{y; y \text{ homeomorphism, } y \in W^{1,\infty}(\Omega; \mathbb{R}^3),$$

 $y^{-1} \in W^{1,\infty}(y(\Omega); \Omega) \text{ and } \det \nabla y > 0 \text{ a.e. on } \Omega \}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Posing the problem

We shall concentrate only on the case when $p = \infty$, i.e.

$$\begin{split} \mathcal{A} &= \mathcal{W}^{1,\infty,-\infty}(\Omega;\mathbb{R}^3) = \{y; y \text{ homeomorphism, } y \in \mathcal{W}^{1,\infty}(\Omega;\mathbb{R}^3), \\ y^{-1} \in \mathcal{W}^{1,\infty}(y(\Omega);\Omega) \text{ and } \det \nabla y > 0 \text{ a.e. on } \Omega \end{split}$$

Notice that

- In this case the set of deformations has a group structure
- There actually ex. γ > 0 s.t. det ∇y ≥ γ a.e. on Ω → this implies that condition (2) does not pose any restriction.

Posing the problem

$$\begin{array}{l} \text{Minimize} \quad \int_{\Omega} W(\nabla y) \mathrm{d}x \\ \text{subject to} \quad y \in \mathcal{A}. \end{array} \right\}$$
 (1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

with

$$\mathcal{A} = W^{1,\infty,-\infty}(\Omega;\mathbb{R}^3)$$

Under which (minimal) conditions on the stored energy W does (1) admit a solution?

Refining the problem

A usual approach is to employ the *direct method*

Crucial ingredients:

 closedness of A under appropriate weak convergence (→ this is OK in our case under the convergence below)

- 2. coercivity of W that enforces this weak convergence of the minimization sequence
- 3. A corresponding lower semicontinuity of $\int_{\Omega} W$

Refining the problem

- A usual approach is to employ the *direct method*
- Crucial ingredients:
 - closedness of A under appropriate weak convergence (→ this is OK in our case under the convergence below)

- 2. coercivity of W that enforces this weak convergence of the minimization sequence
- 3. A corresponding lower semicontinuity of $\int_{\Omega} W$

Refining the problem

- A usual approach is to employ the *direct method*
- Crucial ingredients:
 - 1. closedness of \mathcal{A} under appropriate weak convergence (\rightsquigarrow this is OK in our case under the convergence below)
 - 2. coercivity of W that enforces this weak convergence of the minimization sequence
 - 3. A corresponding lower semicontinuity of $\int_{\Omega} W$

If $\{y_k\}_{k>0}$ is a bounded sequence of bi-Lipschitz, orientation preserving homeomorphisms such that

$$y_k \stackrel{*}{\rightharpoonup} y$$

under which minimal conditions on W does it hold that

$$\int_{\Omega} W(\nabla y) \mathrm{d}x \leq \liminf_{k \to \infty} \int_{\Omega} W(\nabla y_k) \mathrm{d}x?$$

Sufficient conditions

- Since A ⊂ W^{1,∞}(Ω; ℝ³), W defines a weakly lower semicontinuous functional if it is quasiconvex
- Yet, the condition

$$W(Y) \leq \frac{1}{|\Omega|} \int_{\Omega} W(\nabla \varphi) \,\mathrm{d} x.$$

for all $Y \in \mathbb{R}^{3\times 3}$ and all $\varphi \in W^{1,\infty}(\Omega, \mathbb{R}^3)$; $\varphi = Y_X$ on $\partial\Omega$. is not natural.

▶ Why should we test also with non-deformations ?

Sufficient conditions

- Since A ⊂ W^{1,∞}(Ω; ℝ³), W defines a weakly lower semicontinuous functional if it is quasiconvex
- Yet, the condition

$$W(Y) \leq rac{1}{|\Omega|} \int_{\Omega} W(
abla arphi) \, \mathrm{d} x.$$

for all $Y \in \mathbb{R}^{3 \times 3}$ and all $\varphi \in W^{1,\infty}(\Omega, \mathbb{R}^3)$; $\varphi = Y_X$ on $\partial \Omega$. is not natural.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Why should we test also with non-deformations ?

Sufficient conditions

- Since A ⊂ W^{1,∞}(Ω; ℝ³), W defines a weakly lower semicontinuous functional if it is quasiconvex
- Yet, the condition

$$W(Y) \leq rac{1}{|\Omega|} \int_{\Omega} W(
abla arphi) \, \mathrm{d} x.$$

for all $Y \in \mathbb{R}^{3 \times 3}$ and all $\varphi \in W^{1,\infty}(\Omega, \mathbb{R}^3)$; $\varphi = Y_X$ on $\partial \Omega$. is not natural.

• Why should we test also with non-deformations ?

Necessary and sufficient conditions

Remeber, the condition

$$W(Y) \leq \inf_{\varphi \in W^{1,\infty}(\Omega, \mathbb{R}^d); \varphi = Y_X \text{ on } \partial\Omega} \frac{1}{|\Omega|} \int_{\Omega} W(\nabla \varphi) \, \mathrm{d}x$$

is not natural.

Why should we test also with non-deformations ~> particularly when looking at the principle of virtual displacements?

Conjecture

If $\{y_k\}_{k>0}$ is a sequence of bi-Lipschitz, orientation preserving homeomorphisms such that $y_k \stackrel{*}{\rightharpoonup} y$ then

$$\int_{\Omega} W(\nabla y) \mathrm{d}x \leq \liminf_{k \to \infty} \int_{\Omega} W(\nabla y_k) \mathrm{d}x$$

if and only if it is bi-quasiconvex, i.e.

$$W(Y) \leq rac{1}{|\Omega|} \int_{\Omega} W(\nabla \varphi) \, \mathrm{d}x.$$

for all $Y \in \mathbb{R}^{3 \times 3}$ with det Y > 0 and all $\varphi \in \mathcal{A}$; $\varphi = Yx$ on $\partial \Omega$.

Necessary and sufficient conditions

this is still an open problem ... but ...

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Necessary and sufficient conditions

Proposition [B.B& M.Kr., 2013]

If $\{y_k\}_{k>0}$ is a bounded sequence of bi-Lipschitz, orientation preserving homeomorphisms in the plane (i.e. $\Omega \subset \mathbb{R}^2, y_k : \Omega \mapsto \mathbb{R}^2$) such that $y_k \stackrel{*}{\rightharpoonup} y$ then

$$\int_{\Omega} W(\nabla y) \mathrm{d}x \leq \liminf_{k \to \infty} \int_{\Omega} W(\nabla y_k) \mathrm{d}x$$

if and only if

$$W(Y) \leq rac{1}{|\Omega|} \int_{\Omega} W(\nabla \varphi) \, \mathrm{d}x.$$

for all $Y \in \mathbb{R}^{2 \times 2}$ with det Y > 0 and all $\varphi \in \mathcal{A}$; $\varphi = Yx$

Notions of quasiconvexity

The idea that one should verify the Jensen inequality only for functions that are "deformations" appears also in:

- ► W^{1,p}-quasiconvexity
- Orientation-preserving quasiconvexity

[Ball, Murat; 1988], [Koumatos, Rindler, Wiedemann; 2014]

The key ingredient in the proof of this proposition is the construction of some kind of cut-off

Indeed, take {y_k}_{k>0} is a sequence of bi-Lipschitz, orientation preserving homeomorphisms s.t. y_k ^{*}→ Yx (for simplicity)

▶ If $\forall k$ we had $y_k = Yx$ on $\partial \Omega$, then (from def.)

$$W(Y) \leq \liminf_{k \to \infty} \frac{1}{|\Omega|} \int_{\Omega} W(\nabla y_k) \, \mathrm{d} x.$$

 \Rightarrow weak* lower semicontinuity

- The key ingredient in the proof of this proposition is the construction of some kind of cut-off
- Indeed, take {y_k}_{k>0} is a sequence of bi-Lipschitz, orientation preserving homeomorphisms s.t. y_k ^{*}→ Yx (for simplicity)
- If $\forall k$ we had $y_k = Yx$ on $\partial \Omega$, then (from def.)

$$W(Y) \leq \liminf_{k \to \infty} \frac{1}{|\Omega|} \int_{\Omega} W(\nabla y_k) \, \mathrm{d}x.$$

(日) (同) (三) (三) (三) (○) (○)

 \Rightarrow weak* lower semicontinuity

Reformulating once again

Suppose $\{y_k\}_{k>0}$ is a sequence of bi-Lipschitz, orientation preserving homeomorphisms s.t. $y_k \stackrel{*}{\rightharpoonup} Yx$. Then find another sequence $\{w_k\}_{k>0}$ of bi-Lipschitz, orientation preserving homeomorphisms such that

•
$$w_k = Yx$$
 on $\partial \Omega$,

$$\blacktriangleright |\{w_k \neq y_k\}| \to 0.$$

Reformulating once again

Suppose $\{y_k\}_{k>0}$ is a sequence of bi-Lipschitz, orientation preserving homeomorphisms s.t. $y_k \stackrel{*}{\rightharpoonup} Yx$. Then find another sequence $\{w_k\}_{k>0}$ of bi-Lipschitz, orientation preserving homeomorphisms such that

•
$$w_k = Yx$$
 on $\partial \Omega$,

$$\blacktriangleright |\{w_k \neq y_k\}| \rightarrow 0.$$

- ► this is a consequence of using Young measures ~→ a useful tool in such situations
- Notice: det Y > 0

[Kinderlehrer, Pedregal; 1991, 1992, 1994]

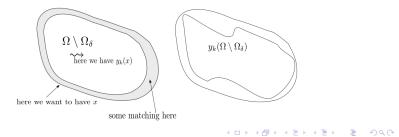
Reformulating once again

Suppose $\{y_k\}_{k>0}$ is a sequence of bi-Lipschitz, orientation preserving homeomorphisms s.t. $y_k \stackrel{*}{\rightharpoonup} Yx$. Then find another sequence $\{w_k\}_{k>0}$ of bi-Lipschitz, orientation preserving homeomorphisms such that

•
$$w_k = Yx$$
 on $\partial \Omega$,

$$\blacktriangleright |\{w_k \neq y_k\}| \to 0.$$

We can imagine a cut-off by the following picture (Y = Id here):



Notice: the cut-off technique is very much related to characterizing the trace operator.

- What we need to do is to find some w_k ∈ W^{1,p,-p}(Ω) on Ω_δ with prescribed boundary data, such that the norm of w_k is controlled by a "suitable" norm at the boundary
- This is equivalent to constructing an extension operator; in other words

Notice: the cut-off technique is very much related to characterizing the trace operator.

- What we need to do is to find some w_k ∈ W^{1,p,-p}(Ω) on Ω_δ with prescribed boundary data, such that the norm of w_k is controlled by a "suitable" norm at the boundary
- This is equivalent to constructing an extension operator; in other words

Notice: the cut-off technique is very much related to characterizing the trace operator.

- What we need to do is to find some w_k ∈ W^{1,p,-p}(Ω) on Ω_δ with *prescribed* boundary data, such that the norm of w_k is controlled by a "suitable" norm at the boundary
- This is equivalent to constructing an extension operator; in other words

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Notice: the cut-off technique is very much related to characterizing the trace operator.

- What we need to do is to find some w_k ∈ W^{1,p,-p}(Ω) on Ω_δ with prescribed boundary data, such that the norm of w_k is controlled by a "suitable" norm at the boundary
- This is equivalent to constructing an extension operator; in other words

We seek a characterization of the set \mathcal{X}^p such that

 $\mathrm{Tr}: W^{1,p,-p}(\Omega;\mathbb{R}^2) \stackrel{onto}{\longrightarrow} \mathcal{X}^p$

Notice: the cut-off technique is very much related to characterizing the trace operator.

- What we need to do is to find some w_k ∈ W^{1,p,-p}(Ω) on Ω_δ with prescribed boundary data, such that the norm of w_k is controlled by a "suitable" norm at the boundary
- This is equivalent to constructing an extension operator; in other words

We seek a characterization of the set \mathcal{X}^p such that

$$\mathrm{Tr}: W^{1,p,-p}(\Omega;\mathbb{R}^2) \stackrel{onto}{\longrightarrow} \mathcal{X}^p$$

 \rightsquigarrow this is completely open unless $p = \infty$ and n = 2.

Sidenote: Characterizing the trace operator is of independent interest

For which $g : \partial \Omega \to \mathbb{R}^n$ there is $y \in W^{1,p}(\Omega; \mathbb{R}^n)$ such that $\det \nabla y > 0$ and y = g on $\partial \Omega$?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Constructing a cut-off - difficulties

How is the cut-off constructed usually?

• Take η_{ℓ} smooth cut-off function and take the convex combination

 $\eta_\ell y_k + (1 - \eta_\ell) Y_X$

But our constrains det > 0 as well as the invertibility are not convex

 \rightsquigarrow we may easily "fall out" from the set of deformations ... but

Constructing a cut-off - difficulties

- How is the cut-off constructed usually?
- ► Take η_{ℓ} smooth cut-off function and take the convex combination

 $\eta_\ell y_k + (1 - \eta_\ell) Y_X$

But our constraints det > 0 as well as the invertibility are not convex

 \rightsquigarrow we may easily "fall out" from the set of deformations but

Constructing a cut-off - difficulties

- How is the cut-off constructed usually?
- Take η_{ℓ} smooth cut-off function and take the convex combination

$$\eta_\ell y_k + (1 - \eta_\ell) Y_X$$

But our constrains det > 0 as well as the invertibility are not convex

 \rightsquigarrow we may easily "fall out" from the set of deformations but

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Cut-off in the plane

[Benešová & M.K.; 2013]

Suppose that $\Omega \subset \mathbb{R}^2$ is a bounded Lipschitz domain. Let $\{y_k\}_{k>0}$ be a bounded sequence of bi-Lipschitz, orientation preserving homeomorphisms s.t. $y_k \stackrel{*}{\rightharpoonup} y$. Then there exists its (not relabeled) subsequence and another bounded sequence $\{w_k\}_{k>0}$ of bi-Lipschitz, orientation preserving homeomorphisms such that

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

•
$$w_k = y$$
 on $\partial \Omega$,

$$\blacktriangleright |\{w_k \neq y_k\}| \rightarrow 0,$$

• $\liminf \int_{\Omega} W(\nabla y_k) dx = \liminf \int_{\Omega} W(\nabla w_k) dx.$

Working in the plane

- Also working in the plane makes the situation simpler
- Here, we rely on two crucial things:
 - 1. The boundary of domains in the plane is *one-dimensional* (e.g. the boundary of the some square)
 - 2. In the plane, we have bi-Lipschitz *extension* theorems at our disposal

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

[Daneri, Pratelli; 2011]

There exists a geometric constant C such that every L bi-Lipschitz map u defined on the boundary of the unit square admits a CL^4 bi-Lipschitz extension into the square that coincides with u on the boundary.

[Tukia; 1980], [Huuskonen, Partanen, Väisälä; 1995], [Tukia, Väisälä; 1981, 1984]

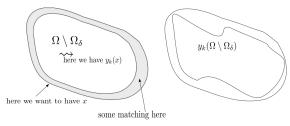
[Daneri, Pratelli; 2011]

There exists a geometric constant C such that every L bi-Lipschitz map u defined on the boundary of the unit square admits a CL^4 bi-Lipschitz extension into the square that coincides with u on the boundary.

[Tukia; 1980], [Huuskonen, Partanen, Väisälä; 1995], [Tukia, Väisälä; 1981, 1984]

Why is this useful in our case?

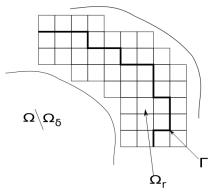
- Remember, we wanted to solve a boundary value problem ~> now we can, but on the boundary of the square....
- So we introduce squares in the grey area



▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Why is this useful in our case?

- Remember, we wanted to solve a boundary value problem ~> now we can, but on the boundary of the square....
- So we introduce squares in the grey area



Proof-Summary

- We reduced the problem of constructing a cut-off to constructing it just on the crosses
- ➤ → thus, we can define a "matching function" that is still bi-Lipschitz on the grid of the squares
- The bi-Lipschitz extension theorem then allows to get a homeomorphism inside
- Recall: this allows us to have the quasiconvexity condition (*principle of virtual displacements*) tested just by deformations (in order to anyway obtain weak* lower semicontinuity)

Summary

- It is relevant in elasticity to solve minimization problems on subsets of Sobolev functions, where *non-linear*, *non-convex* restrictions are posed
- Although sufficiency conditions for existence of minima are generally known, if and only if conditions are still a challenge
- Here we extended the quasiconvexity condition also to the case when minimizing over bi-Lipschitz, orientation preserving functions
- A larger class of stored energy functions can be now admitted

Thank you for your attention!

B. Benešová, M.K.: Characterization of gradient Young measures generated by homeomorphisms in the plane. ESAIM COCV http://dx.doi.org/10.1051/cocv/2015003