
Existence of nonlinear waves of small amplitude To check that we can apply the Crandall-Rabinowitz
theorem in the present setting, we let

T = {(q, p) : q ∈ [−π, π], p = 0}, B = {(q, p) : q ∈ [−π, π], p = p0},

be the top, respectively the bottom of the closed rectangle R, and we define the Banach spaces

X = {w ∈ C3,α
per (R) : w = 0 on B}, Y = C1,α

per (R) × C2,α
per (T ),

where the subscript “per” means 2π-periodicity and evenness in the q-variable. If H(p, ∏) are laminar flows, set

h(q, p) = H(p, ∏) + w(q, p) with w ∈ X

and write for ∏ > 2Γmax the system (bp) in operator form

F(w, ∏) = 0 with w ∈ X ,

where F : X × (2Γmax , 1) → Y is given by F = (F1, F2) with

F1(w, ∏) = (1 + w2
q )(Hpp + wpp) − 2wq(Hp + wp)wpq + (Hp + wp)2wqq − ∞(−p) (Hp + wp)3, (F1)

F2(w, ∏) =
“

1 + w2
q + [2g(H + w) − Q](Hp + wp)2

”

˛

˛

˛

T
. (F2)

By the equation satisfied by H we have

F(0, ∏) = 0 for all ∏ > 2Γmax .

The linearized operator Fw = (F1w , F2w ) at w = 0 is given by

F1w (0, ∏) = @2
p + H2

p @2
q − 3∞(−p) H2

p @p in R, F2w (0, ∏) = 2(∏−1g − ∏1/2@p)
˛

˛

˛

T
. (Fl)

The linear eigenvalue problem (lp) expresses the fact that m belongs to the nullspace of Fw (0, ∏).



The null space Assuming (lbc), we know that there is a unique ∏∗ > 2Γmax with µ(∏∗) = −1 so that the null

space ker {Fw (0, ∏∗)} contains at least one element w(q, p) = M(p) cos(q), where M ∈ C3,α[p0, 0] is the
unique eigenfunction of (slps) corresponding to the eigenvalue µ(∏∗) = −1. The null space is one-dimensional.

Indeed, if m ∈ C3,α
per (R) belongs to the null space, then we proved before that its Fourier coefficients mk satisfy

(slp) so that m1(p) is a constant multiple of M(p) while if mk 6≡ 0 for some k ≥ 2, we would have

−g m2
k (0) +

Z 0

p0

a3 (@pmk )2 dp

Z 0

p0

a m2
k dp

= −k2 < −1 ,

contradicting the minimizing property of µ(∏∗) = −1. As for m0, from the differential equation and from the
boundary condition at p = p0 in (slp) with k = 0 we get

m0(p) = A0

Z p

p0

a−3(s, ∏∗) ds, p ∈ [p0, 0],

for some A0 ∈ R, and the boundary condition at p = 0 yields A0 = 0 unless
1

g
=

Z 0

p0

a−3(p, ∏∗) dp, which is

impossible. Indeed, the last relation is the defining property of ∏0 as the point where, in the context of laminar
flows, the strictly convex function ∏ 7→ Q(∏) attains its minimum. However,

∏∗ < ∏0 (∏∏),

by the monotonicity property of µ(∏) and the fact that µ(∏∗) = −1 while µ(∏0) = 0. To see that µ(∏0) = 0,

note that F
“

Z p

p0

a−3(s, ∏0) ds, ∏0

”

= 0 yields µ(∏0) ≤ 0. On the other hand, µ(∏0) ≥ 0 since F(ϕ, ∏0) ≥ 0

for any ϕ ∈ H1(p0, 0) such that ϕ(p0) = 0, as

g ϕ2(0) = g
“

Z 0

p0

ϕp(p) dp
”2

=
“

Z 0

p0

a3/2(p, ∏0) ϕp(p) a−3/2(p, ∏0) dp
”2

≤ g
“

Z 0

p0

a3(p, ∏0) ϕ2
p(p) dp

” “

Z 0

p0

a−3(p, ∏0) dp
”

=

Z 0

p0

a3(p, ∏0) ϕ2
p(p) dp .



The range The fact that the operator Fw (0, ∏∗) : X → Y has a closed range of codimension one is ensured if
we prove that the pair (A, B) ∈ Y belongs to the range if and only if it satisfies the orthogonality condition

ZZ

R
A(q, p) a3(p, ∏∗) ϕ∗(q, p) dqdp +

1

2

Z

T
B(q) a2(0, ∏∗) ϕ∗(q, 0) dq = 0, (oc)

where
ϕ∗(q, p) = M(p) cos(q) ∈ X

generates the null space ker {Fw (0, ∏∗)}. Indeed, assuming the validity of the characterization (oc), the range
R(Fw (0, ∏∗)) is clearly closed in Y . Notice that ∏∗ > 0 as ∏∗ > 2Γmax and Γ(0) = 0 ensures 2Γmax ≥ 0. On

the other hand, a(p, ∏∗) > 0 for p ∈ [p0, 0] and F(M, ∏∗) = −1 ensure M(0) 6= 0. Since a2(0, ∏∗) = ∏∗, we
deduce from (oc) that

(0, cos(q)) 6∈ R(Fw (0, ∏∗)).

Notice that if (A1, B1), (A2, B2) ∈ Y \ R(Fw (0, ∏∗)) then

(A1, B1) − c (A2, B2) ∈ R(Fw (0, ∏∗))

for

c =

ZZ

R
A1a3ϕ∗ dqdp +

1

2

Z

T
B1 a2 ϕ∗ dq

ZZ

R
A2a3ϕ∗ dqdp +

1

2

Z

T
B2 a2 ϕ∗ dq

,

the denominator of which being nonzero as (A2, B2) 6∈ R(Fw (0, ∏∗)). This proves that the Banach space
Y /R(Fw (0, ∏∗)) is one-dimensional, that is, R(Fw (0, ∏∗)) has codimension one.

As for the necessity of (oc), if Fw (0, ∏∗)ϕ = (A, B), then multiplying the partial differential equation

A = F1w (0, ∏∗)ϕ = ϕpp + H2
p ϕqq − 3∞(−p) H2

p ϕp

by a3ϕ∗, integrating by parts, and using the fact that

B = F2w (0, ∏∗)ϕ = 2
“ g

∏∗ ϕ − ϕp
√

∏∗
”

˛

˛

˛

T

in combination with F(H, ∏) = 0, Fw (0, ∏)ϕ∗ = 0 and Hp = a−1, one obtains (oc).



The proof of the sufficiency of (oc) is technically more intricate. Let us introduce the closed subspaces

X0 = {φ ∈ X :

Z π

−π
φ(q, p) dq = 0 for all p ∈ [p0, 0]} ⊂ X ,

Y0 = {(A, B) ∈ Y :

Z π

−π
A(q, p) dqdp = 0 for all p ∈ [p0, 0],

Z

T
B dq = 0} ⊂ Y .

Given (A, B) ∈ Y such that (oc) holds, since

Hp = a−1, ap = −∞(−p) a−1, a(0) =
√

∏∗,

using (Fl), we see that Fw (0, ∏∗)φ = (A, B) for some φ ∈ X if and only if

8

>

>

>

<

>

>

>

:

“

a3 @p φ0

”

p
= a3 A0 in (p0, 0),

gφ0 − a3 @pφ0 =
1

2
a2 B0 at p = 0,

φ0 = 0 at p = p0,

(oc1)

and
8

>

>

>

<

>

>

>

:

(a3 ϕp)p + a ϕqq = a3 (A − A0) in R,

gϕ − a3 ϕp =
1

2
a2 (B − B0) on T ,

ϕ0 = 0 on B,

(oc2)

for
ϕ = φ − φ0 ∈ X0, (A − A0, B − B0) ∈ Y0,

where B ∈ R, φ0 ∈ C3,α[p0, 0], A0 ∈ C1,α[p0, 0] are given by

B0 =
1

2π

Z

T
B dq, φ0(p) =

1

2π

Z π

−π
φ(q, p) dqdp, A0(p) =

1

2π

Z π

−π
A(q, p) dqdp, p ∈ [p0, 0].

Claim 1 For any (A0, B0) ∈ C1,α[p0, 0] × R the problem (oc1) has a unique solution φ0 ∈ C3,α[p0, 0].



Indeed, from the differential equation in (oc1) we infer that

φ0
0(p) = C +

Z p

p0

a3(s, ∏∗) A0(s) ds, p ∈ [p0, 0],

for some constant C ∈ R, so that the boundary condition at p = p0 yields

φ0(p) = C

Z p

p0

a−3(s, ∏∗) ds +

Z p

p0

a−3(s, ∏∗)
“

Z s

p0

a3(τ, ∏∗) A0(τ) dτ
”

ds, p ∈ [p0, 0].

The boundary condition at p = 0 becomes

C
n

1 − g

Z 0

p0

a−3(p, ∏∗) dp
o

= g

Z 0

p0

a−3(s, ∏∗)
“

Z s

p0

a3(τ, ∏∗) A0(τ) dτ
”

ds

−
Z 0

p0

a3(τ, ∏∗) A0(τ) dτ −
1

2
a2(0, ∏∗) B0.

We already proved (in the analysis of the null space) that

1

g
=

Z 0

p0

a−3(p, ∏0) dp <

Z 0

p0

a−3(p, ∏∗) dp.

Consequently the constant C is always uniquely determined and the proof of Claim 1 is proved.

The above considerations reduce the proof of the sufficiency of (oc) to showing that if (oc) holds, then (oc2) has a
solution ϕ ∈ X0. Notice that both integrals in (oc) vanish if they are evaluated on A0, respectively B0.
Consequently we have to prove that if (A, B) ∈ Y0 are satisfying (oc), then (oc2) has a solution ϕ ∈ X0.



Claim 2 With a = a(p, ∏∗) and (A, B) ∈ Y0, we claim that for every ε ∈ (0, 1) the approximate problem

8

>

>

>

<

>

>

>

:

−ε a3 v (ε) + (1 + ε)
“

a3 v
(ε)
p

”

p
+ (1 + ε) a v

(ε)
qq = a3 A in R,

g v (ε) − (1 + ε) a3 v
(ε)
p = 1

2 a2 B on T ,

v (ε) = 0 on B,

(aep)

has a unique solution v (ε) ∈ X0.

To prove the claim we introduce the space

H = {ϕ ∈ H1
per (R) : ϕ even in q,

Z π

−π
ϕ(q, p) dq = 0 a.e. in [p0, 0], ϕ = 0 a.e. on B}.

Notice that ϕ 7→
Z π

−π
ϕ(q, p) dq is by Fubini’s theorem a bounded linear map from H1

per (R) ⊂ L1(R) to

L1[p0, 0], and the trace operator is also bounded from H1
per (R) to L2(B) cf. [Evans] so that H is a Hilbert space,

being a closed subspace of the Hilbert space H1
per (R). A function ϕ ∈ H is a weak solution to (aep) if

(1 + ε)

ZZ

R
a3ϕpφp dqdp + (1 + ε)

ZZ

R
aϕqφq dqdp + ε

ZZ

R
a3 ϕφ dqdp − g

Z

T
ϕφ dq

= −
1

2

Z

T
B a2 φ dq −

ZZ

R
A a3φ dqdp

(ws)

for all φ ∈ H. For ϕ ∈ H ∩ C3
per (R) we have

ϕ(q, p) =
1
X

k=1

ϕk (p) cos(kq) in C2
per (R),

with ϕk ∈ C3[p0, 0] given by

ϕk (p) =
1

π

Z π

−π
ϕ(q, p) cos(kq) dq, p ∈ [p0, 0], k ≥ 1.



Clearly ϕk (p0) = 0 for any k ≥ 1, and

ZZ

R
a3ϕ2

p dqdp = π
1
X

k=1

Z 0

p0

a3 (@pϕk )2 dp,

ZZ

R
aϕ2

q dqdp = π
1
X

k=1

k2
Z 0

p0

a ϕ2
k dp,

Z

T
ϕ2 dq = π

1
X

k=1

ϕ2
k (0).

Taking into account the mimimization problem (µ), we deduce that

ZZ

R
a3ϕ2

p dqdp +

ZZ

R
aϕ2

q dqdp ≥ π
1
X

k=1

Z 0

p0

n

a3 (@pϕk )2 + a ϕ2
k

o

dp ≥ π g
1
X

k=1

ϕ2
k (0) = g

Z

T
ϕ2 dq.

Consequently
ZZ

R
a3ϕ2

p dqdp +

ZZ

R
aϕ2

q dqdp ≥ g

Z

T
ϕ2 dq (coe).

Moreover, the space H ∩ C3
per (R) being is dense in H cf. [Evans & Gariepy], (coe) holds for all ϕ ∈ H.

Since infp∈[p0,0] {a(p, ∏∗)} > 0, using (coe) we see that the left-hand side of (ws) defines a bounded and

coercive bilinear form in H, while the right-hand side defines a bounded linear functional on H. An application of

the Lax-Milgram theorem (see e.g. [Evans]) yields the existence and uniqueness of a weak solution v (ε) ∈ H to

(aep). Standard elliptic regularity theory — see [Brézis] — yields v (ε) ∈ X0. Moreover, cf. [Gilbarg & Trudinger,
Chapter 8], we have the Schauder estimates

kv (ε)k
C

1,α
per (R)

≤ C
“

kak
C

1,α
per (R)

+ kAk
C

1,α
per (R)

+ kBk
C

1,α
per (T )

+ kv (ε)kL1(R)

”

(Sc)

with the constant C depending only on kak
C

1,α
per (R)

.



Claim 3 We now claim that if (A, B) ∈ Y0 satisfy (oc), then for any sequence εk ↓ 0 the sequence {v (εk )}k≥1

is bounded in C1,α
per (R).

Indeed, the existence of some εk ↓ 0 with kv (εk )k
C

1,α
per (R)

→ 1 implies by (Sc) that kv (εk )kL1(R) → 1.

But then (Sc) ensures that the normalized functions vk =
v (εk )

kv (εk )kL1(R)

are bounded in C1,α
per (R). The compact

embedding C1,α
per (R) ⊂ C1

per (R) enables us to extract a subsequence {vnk
} that converges in C1

per (R) to some v

with kvkL1(R) = 1. Consider now (ws) with ε = εnk
and ϕ = v

(εnk
)
, divide by kv

(εnk
)kL1(R), and pass to

the limit nk → 1 to obtain

ZZ

R
a3vpφp dqdp +

ZZ

R
avqφq dqdp = g

Z

T
vφ dq, φ ∈ H.

Thus v ∈ C1
per (R) is a weak solution (in H) of the problem

8

>

>

<

>

>

:

(a3 vp)p + a vqq = 0 in R,

g v − a3 vp = 0 on T ,

v = 0 on B.

(wl)

By elliptic regularity v ∈ X0. Notice that (wl) is precisely (lp) so that v ∈ ker {Fw (0, ∏∗)}. Since

ker {Fw (0, ∏∗)} is one-dimensional, v is a multiple of ϕ∗(q, p) = M(p) cos(q), where M ∈ C3,α[p0, 0] is the
eigenfunction of (slps) corresponding to µ(∏) = −1, that is,

v = δϕ∗ (vp)

for some δ ∈ R. If (A, B) ∈ Y0 satisfy (oc), we can infer more about this limit v .



Indeed, performing in (ws) with ε = εnk
, ϕ = v

(εnk
)
, φ = ϕ∗, an integration by parts and using the fast that

ϕ∗ solves (wl) and (oc) holds true, we get

ZZ

R
a3 ϕ∗ v

(εnk
)

dqdp + g

Z

T
aϕ∗ v

(εnk
)

dq = 0.

Dividing by kv
(εnk

)kL1(R) and passing to the limit nk → 1, the previous relation yields

ZZ

R
a3 ϕ∗ v dqdp + g

Z

T
aϕ∗ v dq = 0.

But then (vp) forces v ≡ 0, and we had kvkL1(R) = 1. The obtained contradiction proves Claim 2.

Claim 3 and the compactness of C1,α
per (R) ⊂ C1

per (R) yields the existence of a subsequence {v
(εnk

)} converging

to some limit w in C1
per (R). Passing to the limit nk → 1 in (ws) with ε = εnk

, ϕ = v
(εnk

)
, we obtain that w is

a weak solution (in H), and by elliptic regularity a classical solution w ∈ X0, of

8

>

>

<

>

>

:

(a3 wp)p + a wqq = a3 A in R,

g w − a3 wp = 1
2 a2 B on T ,

w = 0 on B,

(w)

which is precisely (oc2). This completes the proof of the sufficieny of (oc).



Let us emphasize a delicate technical point. It was essential to split X into X0 and its topological complement
corresponding to zero Fourier mode. Indeed, if try to solve (aep) directly in X for (A, B) ∈ Y , then the function

ϕ0(p) =

Z p

p0

a−3(s, ∏0) ds, p ∈ [p0, 0],

would be in corresponding Hilbert space H, in the definition of which we dispense of the condition that the means
over [−π, π] should vanish for a.e. p ∈ [p0, 0]. Evaluated on (ϕ0, ϕ0) the bilinear form in (ws) becomes

2π(1 + ε)

Z 0

p0

a3(p, ∏∗) a−6(p, ∏0) dp + 2πε

Z 0

p0

a3(p, ∏∗) ϕ2
0(p) dp − 2π g ϕ2

0(0).

But ϕ0(0) =
1

g
by the defining property of ∏0, and (∏∏) yields a(p, ∏∗) < a(p, ∏0) on [p0, 0] so that

Z 0

p0

a3(p, ∏∗) a−6(p, ∏0) dp <

Z 0

p0

a−3(p, ∏0) dp = ϕ0(0) =
1

g
.

We see that for ε > 0 small enough coerciveness is lost!



The transversality condition To ensure the applicability of the Crandall-Rabinowitz theorem it suffices to
check the transversality condition [F∏w (0, ∏∗)] (1, ϕ∗) 6∈ R(Fw (0, ∏∗)). Since ap = − ∞(−p) a−1, where
a = a(·, ∏∗), from (Fl) we compute

F∏w (0, ∏∗) = −
“

a−4 @2
q + ap a−3 @p ,

n

2g
“ 1

∏∗

”2
+

1
√

∏∗
@p

o

˛

˛

˛

T

”

.

By the previous characterization of the range R(Fw (0, ∏∗)), it suffices to check that

ZZ

R
a3ϕ∗

n

a−4 ϕ∗
qq + 3ap a−3 ϕ∗

p

o

dqdp +

Z

T

n g

∏∗ (ϕ∗)2 +
1

2

√
∏∗ ϕ∗ϕ∗

p

o

dq 6= 0 . (neq)

Since ϕ∗(q, p) = M(p) cos(q) with M 6≡ 0 solving (slps) with µ = −1, and a(0) =
√

∏∗, we have that

8

>

>

<

>

>

:

a3 ϕ∗
pp + 3a2ap ϕ∗

p − a ϕ∗ = 0 in (p0, 0),

(∏∗)3/2ϕ∗
p = g ϕ∗ at p = 0,

ϕ∗ = 0 at p = p0.

(ϕ∗)

Thus

ZZ

R
ap ϕ∗ ϕ∗

p dqdp =

Z

T
a ϕ∗ ϕ∗

p dq −
ZZ

R
a ϕ∗ ϕ∗

pp dqdp −
ZZ

R
a (ϕ∗

p )2 dqdp

=

Z

T
a ϕ∗ ϕ∗

p dq +

ZZ

R
ϕ∗

“

3ap ϕ∗
p − a−1 ϕ∗

”

dqdp −
ZZ

R
a (ϕ∗

p )2 dqdp

so that

ZZ

R
ap ϕ∗ ϕ∗

p dqdp = −
1

2

Z

T
a ϕ∗ ϕ∗

p dq +
1

2

ZZ

R
a−1 (ϕ∗)2 dqdp +

1

2

ZZ

R
a (ϕ∗

p )2 dqdp.



Consequently we can express (neq) as

ZZ

R
a−1 ϕ∗ ϕ∗

qq dqdp +
3

2

ZZ

R
a−1 (ϕ∗)2 dqdp +

3

2

ZZ

R
a (ϕ∗

p )2 dqdp

+

Z

T

n g

∏∗ (ϕ∗)2 −
√

∏∗ ϕ∗ϕ∗
p

o

dq 6= 0 .

since a(0) =
√

∏∗. But the boundary condition at p = 0 in (ϕ∗) yields the vanishing of the boundary integral,
and since ϕ∗

qq = −ϕ∗ we deduce that (neq) equals

1

2

ZZ

R
a−1 (ϕ∗)2 dqdp +

3

2

ZZ

R
a (ϕ∗

p )2 dqdp > 0.

This completes the proof of the transversality condition.

Conclusion These considerations show that if we can find ∏∗ > 2Γmax for which µ(∏∗) = −1, then this
ensures the existence of nonlinear waves of small amplitude. The condition (lbc) is sufficient to ensure the
existence of ∏∗. While the hypotheses of the Crandall-Rabinowitz theorem are generally only sufficient but not
necessary for local bifurcation, in our case the condition µ(∏∗) = −1 is necessary and sufficient for local
bifurcation. Indeed, the proof of sufficiency is also contained in the previous considerations: the existence of a
bifurcating curve implies that the linearized problem (lp) has a nontrivial solution and we saw that this is possible
only if µ(∏∗) = −1 for some ∏∗ > 2Γmax .



The dispersion relation
Since for the laminar flows

H−1
p (0, ∏) = (c − u)

˛

˛

˛

at the flat surface
=

√
∏

we see that waves of small amplitude occur exactly when the velocity of the laminar flows reaches the critical speed√
∏∗ at the flat surface. In some special cases it is possible to compute ∏∗ explicitly.

Irrotational flow If ∞ ≡ 0, then a(p, ∏) ≡
√

∏ and the problem (slps) with µ = −1 becomes

8

>

>

<

>

>

:

Mpp = ∏−1 M on (p0, 0),

Mp = g ∏−3M at p = 0,

M = 0 at p = p0.

The general solution of the differential equation with the boundary condition at p = p0 is

M(p) = δ sinh
“ p − p0√

∏

”

, p ∈ [p0, 0],

with δ ∈ R. For δ 6= 0 the boundary condition at p = 0 is equivalent to the implicit equation

∏ − g tanh
“ |p0|

√
∏

”

= 0. (iei)

As a function of ∏ the left-hand side can be easily seen to be a strictly increasing function from (0, 1) onto R, so
that ∏∗ > 0 is its unique root. We can compute ∏∗ explicitely in terms of the depth d of the laminar water flow
at which bifurcation occurs. Indeed, by (tf) we have

H(p, ∏∗) =
p − p0√

∏∗
, p ∈ [p0, 0],

so H−2
p (p, ∏∗) ≡ ∏∗ and in the physical variables we get the uniform current u(x, y) − c ≡ −

√
∏∗.



But the definition

p0 =

Z 0

−d

“

u(x, y) − c
”

dy

of the relative mass flux yields d
√

∏∗ = |p0| so that (iei) becomes the dispersion relation for 2π-periodic
irrotational gravity water waves

(c − u)
˛

˛

˛

at the flat surface
=

q

g tanh(d) . (din)

To elucidate the meaning of “dispersion”, notice that in our analysis we assumed that the wave period is precisely
2π. We have to write the value of the bifurcation parameter for periodic traveling waves with wavelength √L. For
this, given the wavelength √L > 0, let

∑ =
2π

√L

be the associated wavenumber, representing the number of cycles of this periodic wave that appear in a spatial
window of length 2π in the direction of wave propagation. Consider a solution of period √L to the governing
equations for periodic traveling water waves

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(u − c)ux + vuy = −Px in − d < y < η(x − ct),

(u − c)vx + vvy = −Py − g in − d < y < η(x − ct),

ux + vy = 0, in − d < y < η(x − ct),

uy − vx = ω, in − d < y < η(x − ct),

v = (u − c)η0 on y = η(x − ct),

P = Patm on y = η(x − ct),

v = 0 on y = −d,

(√L)

and perform the change of variables (scaling)

η̃ = ∑η, c̃ = c, ũ = u, ṽ = v, P̃ = P, x̃ = ∑x, ỹ = ∑y, t̃ = ∑t, g̃ = ∑−1g, ω̃ = ∑−1ω. (sv)



The new variables (dependent and independent) satisfy a 2π-periodic system in the x̃ variable of a form almost
identical to (√L), the only difference being that g should be replaced by g̃ and ω by ω̃ (corresponding to replacing ∞

by ∞̃ = ∑−1∞). In view of (din), we obtain the dispersion relation for periodic irrotational gravity water waves

(c − u∗) =

r

g

∑
tanh(∑d) , (di)

where (c − u∗) = (c − u)
˛

˛

˛

at the flat surface
. Let us now analyze some aspects:

I The function on the right-hand side of (di) being strictly decreasing in ∑, we deduce that the speed

(c − u∗) exhibits a monotonically increasing dependence on the wavelength √L = 2π ∑−1. This is the
dispersive effect: within the linear framework (where the superposition principle applies) waves of different
lengths travel at different speeds. A group of waves of different wavelengths starting together would spread
out, so that after a while the larger waves are at the front.

I Shallow water waves are encountered in the limit δ → 0, where δ = d/√L is the “shallowness parameter”.
Writing (di) in the form

(c − u∗) =

s

gd
tanh(2πδ)

2πδ
,

since lim
δ→0

tanh(2πδ)

2πδ
= 1, for shallow water waves we have

(c − u∗) ≈
p

gd. (sww)

Numerically

s

tanh(s)

s
lies between 0.97 and 1 for s < 0.44 so that (sww) falls short of (di) by at most

3 % provided that δ < 0.07, which for practical purposes is the appropriate range for shallow water waves
cf. [Lighthill]. The importance of (sww) lies in that according to it, all waves, if sufficiently long compared
with the average water depth, travel at the same speed. This explains why a ride in a speed boat on a
relatively calm sea is smoother at higher speeds: if the boat has a speed inferior to the critical speed

√
gd ,

the waves created by the boat’s displacement will overtake it and consequently will create a disturbance in
front of the boat, hindering the displacement. To overcome this, the boat must be capable of a sudden
burst of power that carries it beyond the critical speed before the wave ahead of it has had the time to
form — this is similar to the difficulty in making an aircraft break the sound barrier, that is, travel faster
than waves in the air. It is easy to work out the critical speed as g = 9.8 m/s2. For example, if the depth
of the water is 6 m, then the critical speed is 7.8 m/s = 29 km/h.



I Another important regime for water waves is that of deep water waves, obtained in the limit δ → 1.
Writing (di) in the form

(c − u∗) =

s

gd
tanh(2πδ)

2πδ
,

since limδ→1 tanh(2πδ) = 1, for deep water waves we have

(c − u∗) ≈

s

g √L

2π
. (dww)

Numerically
p

tanh(s) lies between 0.97 and 1 for s > 1.75 so that (dww) falls short of (di) by at most
3 % provided that δ > 0.28, so d > 0.28 √L characterizes for practical purposes the deep water regime cf.
[Lighthill]. The most common cause for waves at sea is due to the wind blowing over the surface of the
sea, so that (dww) tells us that waves produced in a storm at sea will travel away from the storm region at
speeds proportional to the square root of their wavelengths. In the North Atlantic Ocean, where the average
water depth is 3.3 km, under normal conditions waves range from those having lengths of 50 m to those
having lengths of 100 m. Formula (dww) tells us that the shorter waves travel at 30 km/h and the longer
ones travel faster at 40 km/h to a rough approximation that is, however, not far from reality. In the South
Pacific, where the average depth is in excess of 4 km, wavelengths around 300 m can be encountered and
such waves travel at speeds around 70 km/h. Notice however that even in the deep sea we can encounter
shallow water waves: tsunami waves often have wavelengths in excess of hundreds of km and the deepest
point in the ocean is in the Marianas Trench in the Western Pacific Ocean at approximately 11021 m.

I The time period of the wave ~ (the ratio between wavelength and wave speed) is much easier to measure
than wavelength. For waves of small amplitude we obtain from (di) the approximate formula

~ =
2π

p

g∑ tanh(∑d)
,

so that, for a fixed undisturbed depth d , the function ∑ 7→ ~(∑) is decreasing. Since ∑ = 2π/√L we infer
that the time period of the wave is increasing as a function of wavelength √L. The numerical value of the
period for typical surface gravity waves varies roughly from 0.1 s to 30 s cf. [Lighthill].



I Let us investigate the dependence of (c − u∗) on the average depth d for fixed frequency ß = ∑(c − u∗),
representing the number of cycles of the wave that pass by any fixed point during a time interval of length
2π. From (di) the get

ß2 = g∑ tanh(∑d) = g
ß

c − u∗ tanh
“ ßd

c − u∗

”

. (ß)

This shows that as the average depth d varies gradually becoming smaller and smaller (at a fixed frequency
ß), the speed (c − u∗) has to decrease. The interest of this consideration lies in the fact that as ocean
waves approach the coast, passing through water of gradually less and less depth, the frequency ß is
practically constant (so that the number of crests approaching the shore per unit time is equal to the
number far from the shore — as a glance at these waves will confirm). Let us consider for example a wave
with time period ~ = 8 s having wavelength √L = 100 m in water of large uniform depth. By (ß) we have

c − u∗ =
g

ß
tanh

“ ßd

c − u∗

”

<
g

ß

which yields
ßd

c − u∗ > ßd
ß

g
=

ß2

g
d so that

c − u∗ =
g

ß
tanh

“ ßd

c − u∗

”

>
g

ß
tanh

“ ß2

g
d

”

.

The previously two displayed relations show that for ß fixed we have

(c − u∗) ≈
g

ß
≈ 45 km/h for large d.

Numerically, since tanh(s) > 0.95 for s > 1.5, and
ß2

g
d ≈

d

16 m
, the above estimate has an accuracy

within 5 % for d ≥ 24 m. Both the wave speed and the wavelength are reduced with passage into
gradually shallower water: at a depth of 1 m, using (sww), the speed of this wave with time period ~ = 8 s
(as the frequency ß is preserved, ~ = 2π/ß remains also constant) is

(c − u∗) ≈
p

gd ≈ 11 km/h

and, since √L =
2π(c − u∗)

ß
, the wavelength is reduced to about 25 m — a fourfold reduction!



Flows with constant vorticity If ∞ 6= 0 is a constant, the substitution

M(p) =
1

√
∏ − 2∞p

M0

“

√
∏ − 2∞p

∞

”

transforms the differential equation in (slps) with µ = −1 into M00
0 = M0. Since M0(p0) = 0, we deduce that up

to a multiplicative constant

M(p) =
1

√
∏ − 2∞p

sinh
“

√
∏ − 2∞p −

p

∏ − 2∞p0

∞

”

, p ∈ [p0, 0].

The boundary condition at p = 0 in (slps) is then equivalent to ∏∗ > 0 being a solution of the equation

tanh
“

√
∏ −

p

∏ − 2∞p0

∞

”

=
∏

∞
√

∏ − g
. (dr0)

From (tf) we obtain that the bifurcating laminar flow is given by

H(p, ∏∗) =

p

∏∗ − 2∞p0 −
√

∏∗ − 2∞p

∞
, p ∈ [p0, 0].

For the corresponding velocity field in physical coordinates we have v = 0, uy = ∞ and

(c − u∗) = (c − u)
˛

˛

˛

at the flat surface
=

1

Hp(0, ∏∗)
, so that

(u − c, v) = (−
√

∏∗ + ∞y, 0), −d ≤ y ≤ 0. (vf )



From the definition

p0 =

Z 0

−d

“

u(x, y) − c
”

dy

of the relative mass flux we get |p0| = d
√

∏∗ +
∞

2
d2, thus

d =

p

∏∗ − 2∞p0 −
√

∏∗

∞
> 0, (d)

the other root being negative. The previous formula enables us to express (dr0) as

tanh(d) =
∏∗

g − ∞
√

∏∗
.

Solving for
√

∏∗ = (c − u∗), we obtain the dispersion relation for 2π-periodic rotational gravity water waves with
constant vorticity

(c − u∗) = −
∞

2
tanh(d) +

1

2

q

∞2 tanh2(d) + 4g tanh(d).

As with irrotational waves, replacing g by ∑−1g , d by ∑d , and ∞ by ∑−1∞, we obtain the dispersion relation for
rotational periodic gravity water waves with constant vorticity

(c − u∗) = −
∞

2∑
tanh(∑d) +

1

2∑

q

∞2 tanh2(∑d) + 4g∑ tanh(∑d). (drc)

For ∞ = 0 we see that (drc) particularizes to (di). Since the right-hand side of (drc) is strictly decreasing in ∞, a
negative vorticity enhances the intrinsic wave speed (c − u∗) with respect to the case of an irrotational flow,
whereas a positive vorticity diminishes it. A smaller speed facilitates the appearance of waves and this suggests
that a current with ∞ > 0 is a favorable current while ∞ < 0 corresponds to an adverse current.



To further clarify this issue, notice that the bifurcating laminar flow with velocity field (vf) is such that

(c − u)
˛

˛

˛

y=0
= −

√
∏∗ < 0

along the flat surface and, using (d),

(c − u)
˛

˛

˛

y=−d
= −

p

∏∗ − 2∞p0 < 0

on the flat bed. This current is positively sheared for ∞ > 0 and negatively sheared for ∞ < 0.
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In the physical variables the waves of small amplitude whose existence is ensured by the local bifurcation result
arise as genuine nonlinear solutions representing small perturbations of the laminar flow with a flat free surface

(c −
√

∏∗ + ∞y, 0), −d ≤ y ≤ 0. (blf )

Given p0 < 0 and the normalized wavelength √L = 2π, we found solutions in the moving frame, specifying thus v ,
P, the wave profile η and the horizontal velocity (u − c). This raises the issue of how to determine the wave speed
— a nontrivial matter even in the context of irrotational flows, where the issue was settled by Stokes in 1847. In the
physical variables the velocity field (u, v) beneath the wave can be decomposed into a current of vorticity ∞ that is

steady and aligned in the plane of the wave motion, of the form
“

∞(y + d), 0
”

, and a wave-induced velocity field

(U0(x − ct, y), V0(x − ct, y)) =
“

u(x − ct, y) − ∞(y + d), v(x − ct, y)
”

whose horizontal average beneath the trough level is a uniform current of strength S =
1

2π

Z π

−π
u(x, −d) dx .

Indeed, for each fixed y ∈ [−d, η(−π)] we have

Z π

−π
v(x, y) dx = 0

since v is odd in the x-variable as h is even in the q-variable, while

Z π

−π

“

u(x, y) − ∞(y + d)
”

dx −
Z π

−π
u(x, −d) dx =

Z π

−π

Z y

−d

“

uy (x, y) − ∞
”

dydx

=

Z y

−d

Z π

−π
vx (x, y) dxdy = 0

since v is 2π-periodic in the x-variable. Consequently, at any horizontal level beneath the trough level y = η(−π)
the average of (U0, V0) over one wavelength is precisely (S, 0). We find c by requiring S = 0: the wave-induced
motion is a pure wave motion without an underlying current.



In the case of the laminar flow (blf) we have

u(x − ct, y) = c −
√

∏∗ + ∞y, v(x − ct, y) = 0, −d ≤ y ≤ 0,

so that
c =

√
∏∗ + ∞d =

p

∏∗ − 2∞p0

in view of (d). This formula is a good approximation of the speed of the waves of small amplitude.
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We proved in the context of discussing the possibility µ(∏) = −1 that for functions ∞ ≥ 0 there always exists a
solution ∏∗ > 2Γmax = 0. Notice that a solution ∏∗ > 2Γmax of µ(∏) = −1, if it exists, is unique since
∏ 7→ µ(∏) is strictly increasing in wherever µ(∏) < 0. We also saw that ∞ < 0 constant with |∞| sufficiently large
might prevent local bifurcation. It is of interest to find the necessary and sufficient condition for local bifurcation in
the case of constant vorticity ∞ < 0. We discuss the general case in which we do not fix the wavelength √L = 2π.
Defining the wavenumber ∑ = 2π/√L, the necessary and sufficient condition for local bifurcation is the existence of

a solution ∏ > 2Γmax of (dr0) in which we replace g by ∑−1g , ∞ by ∑−1∞, and p0 by ∑p0: we have

√̃(x̃, ỹ) = ∑ √(x, y).

That is, we seek roots ∏ > 2Γmax of

f (∏) = tanh
“ 2p0∑

√
∏ +

p

∏ − 2∞p0

”

−
∏∑

∞
√

∏ − g
. (dr∑)

i) For ∞ = 0 we have Γ ≡ 0. The smooth function f : (0, 1) → R is such that lim∏→1 f (∏) = 1 while
lim∏↓0 f (∏) = −1 so that there exists a root ∏∗ > 0.

ii) For constant ∞ ≥ 0 we have Γ(p) = ∞p so that Γmax = 0. The smooth function f : (0, g2/∞2) → R has a

root since lim
∏↑g2/∞2 f (∏) = 1 while lim∏↓0 f (∏) = − tanh

“

∑

r

2|p0|
∞

”

< 0.

iii) For constant ∞ < 0 we have Γ(p) = ∞p so that Γmax = ∞p0 and local bifurcation occurs if and only if there is
a solution ∏ > 2∞p0 of (dr∑). The function f : (2∞p0, 1) → R is smooth and strictly increasing (as a sum of
two strictly increasing functions). Clearly lim∏→1 f (∏) = 1 so that for waves with wavelength √L in a flow of
constant vorticity ∞ < 0 the necessary and sufficient condition for local bifurcation is

tanh
“

∑

s

2p0

∞

”

>
2∞p0∑

g − ∞
√

2∞p0
, (nsc)

expressing lim∏↓2∞p0
f (∏) < −1. Passing to the limit ∑ → 0 and ∑ → 1 we see that for local bifurcation to

occur the wavelength √L must be sufficiently large, while for very short wavelengths there are no genuine waves.


