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Modeling (1)

We consider two (macroscopically) immiscible incompressible, viscous
fluids like oil and water.

Classical Models: Interface is a two-dimensional surface.
Surface tension is proportional to the mean curvature.

But: Sharp interface is an idealization (van der Waals).
Fluid mix in a thin interfacial region.
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Overview

o Phase Separation and Cahn-Hilliard Equation
@ Free Energy and the Cahn-Hilliard Equation
@ Monotone Operators and Subgradients
@ Analysis of the Cahn-Hilliard Equation with Singular Free Energies
@ Asymptotic Behavior for Large Times
© Model H - Diffuse Interface Model for Matched Densities
@ Basic Modeling and First Properties
@ Well-Posedness of Model H
@ Cahn-Hilliard Equation with Convection
@ Stokes Equation with Variable Viscosity
© Diffuse Interface Models for Non-Matched Densities
@ A Model by Lowengrub and Truskinovsky
@ Modified Model H
@ Sharp Interface Limits and Analysis of a Limit Model
@ Sharp Interface Limit for the Cahn-Hilliard Equation
@ Sharp Interface Limit for Modified Model H
@ Analysis of the Navier-Stokes/Mullins-Sekerka System
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Overview

@ Phase Separation and Cahn-Hilliard Equation
@ Free Energy and the Cahn-Hilliard Equation
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Free Energy of a Two-Component Mixture
We consider a binary mixture e.g. Al-/Ni alloy, water and oil, polymeric
mixture, ...

Let ¢j: © — R be the concentration of the component j = 1,2,
c=c1 — ¢, and let

E.(c) = g/Q|VC(X)|2dX—|—€_1/Qf(c(X)) dx

be the free energy of the mixture, where Q C R,
d=1,2,3,¢>0and

Example:

f:R— [07 OO) W|th f(C) =0« ¢c=+41. f(c) = %(1,(_.2)2
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Free Energy of a Two-Component Mixture

We consider a binary mixture e.g. Al-/Ni alloy, water and oil, polymeric
mixture, ...

Let ¢j: © — R be the concentration of the component j = 1,2,
c=c1 — ¢, and let

E.(c) = g/Q|VC(X)|2dX—|—€_1/Qf(c(X)) dx

be the free energy of the mixture, where Q C R,
d=1,2,3,¢>0and
Example:

f:R— [07 OO) W|th f(C) =0« ¢c=+41. f(c) = %(1,(_.2)2

Moreover, we assume

ﬁ/ﬂc(x)dx:fe(—l,l) if 0] < oc.
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Remarks

@ A "typical” profile of a diffuse interface is

X
= tanh — R
c(x) = tan e x € R, I

which minimizes E. in the case Q = R with constraint
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Remarks

@ A "typical” profile of a diffuse interface is

X /
= tanh — R
c(x) = tan e x € R,

which minimizes E. in the case Q = R with constraint
@ Modica-Mortola '77, Modica '87 proved

EE %5_)0 UP
in the sense of M-convergence (w.r.t. L'), where

d—1 % " ” . _ _
P(v) = {H (0°F) ="arealOE)" if v=2xe ~1
+00 else.

and o = o(f).
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Cahn-Hilliard Equation (1)

Let J: Q x (0,00) — RY be the mass flux, i.e.

%/vc(x,t)dx:—/avn-J(x7t)da(x):—/VdivJ(x, t) dx

forall V CcQ, t>0.
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Cahn-Hilliard Equation (1)

Let J: Q x (0,00) — RY be the mass flux, i.e.

i/ c(x, t)dx = —/ n-J(x,t)do(x) = —/ div J(x, t) dx
dt Jy oV v
forall V. CcQ, t>0. Then

Orc(x, t) = —divJ(x,t) for (x,t) € Q x (0,00).
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Cahn-Hilliard Equation (1)

Let J: Q x (0,00) — RY be the mass flux, i.e.

%/\/c(x,t)dx:—/avn-J(x, t)da(x):—/ div J(x, t) dx

%
forall V. CcQ, t>0. Then
Orc(x, t) = —divJ(x,t) for (x,t) € Q x (0,00).
Assumption (Cahn-Hilliard '58): For some m(c) > 0 we have
J=-m(c)Vp (generalized Fick's law)

)=
H= 5; = —cAc+e f'(c) (chemical potential)

Remark: pu = % =const. & J=0
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Cahn-Hilliard Equation (1)

We consider

Orc = div(m(c)Vp) in Q x (0, 00), (1)
p=—eAc+e'(c) inQx(0,00) (2)

in a bounded smooth domain Q C R" together with

n-Vclga=n-m(c)Vulsa =0 on 9Q x (0,00), (3)
Clt=o=c¢cp in Q. (4)
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Cahn-Hilliard Equation (1)

We consider

Orc = div(m(c)Vu) in Q x (0,00), (1)
p=—eAc+e'(c) inQx(0,00) (2)
in a bounded smooth domain Q C R" together with
n-Vclga=n-m(c)Vulsa =0 on 9Q x (0,00), (3)
Clt=o=c¢cp in Q. (4)
Remark: For every smooth solution we have:
d
SEAC() = = [ mlc(x)IVa(ex)? o

Questions:
@ Does a unique solution c(t, x) exist for all t > 07
@ Does c(t, x) converge as t — oo to a critical point of E.?
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Well-Posedness and Convergence

If f(c) is smooth, m(c) = const.:
Existence: Elliott & Zheng '86, Convergence: Hoffmann & Rybka '99
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Well-Posedness and Convergence

If f(c) is smooth, m(c) = const.:
Existence: Elliott & Zheng '86, Convergence: Hoffmann & Rybka '99

Problem: Does ¢(t, x) € [-1,1] hold if ¢o(x) € [-1,1]?
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Well-Posedness and Convergence

If f(c) is smooth, m(c) = const.

Existence: Elliott & Zheng '86, Convergence: Hoffmann & Rybka '99
Problem: Does ¢(t, x) € [-1,1] hold if ¢o(x) € [-1,1]?

One solution: Use a singular free energy density as e.g.

f(c)=6((1 —c)log(l —c) + (1 +c)log(l+¢)) — b.c?, ce[-1,1],

with 0 < 6 < 6., cf. Cahn & Hilliard '58.

Existence: Elliott & Luckhaus '91,
Debussche & Dettori '95, Kenmochi et al. '95

Convergence: A. & Wilke '07

Remark:
For every solution c(t,x) € (—1,1) a.e.

VRN

Other results: Existence of weak solutions for degenerate mobility (Elliott
& Garcke '96) and double obstacle potential (Blowey & Elliott '91)
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Overview
@ Phase Separation and Cahn-Hilliard Equation

@ Monotone Operators and Subgradients
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Monotone Operators and Subgradients (1)

Let H be a real Hilbert space with inner product (.,.)H.
Definition
A: D(A) C H — H is monotone if

(A(x) — A(y),x —y)u >0 for all x,y € D(A).

Remark: If E: H — R is differentiable and convex, then DE: H — H is
monotone.
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Monotone Operators and Subgradients (1)
Let H be a real Hilbert space with inner product (.,.)H.
Definition

A: D(A) € H — H is monotone if

(A(x) — A(y),x—y)n >0 for all x,y € D(A).

Remark: If E: H — R is differentiable and convex, then DE: H — H is
monotone.

Proof: Consider f(t) = E(tx + (1 — t)y), t € [0, 1].

Then 7: [0,1] — R is convex, f": [0,1] — R is non-decreasing and

f'(t) = (DE(tx + (1 — t)y),x — y)H.
Hence

(1) = f(0) & (DE(x) = DE(y),x = y)n 20
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Monotone Operators and Subgradients (I1)
Definition

Let E: H— RU{+o0} be convex. Then the subgradient
OHE: H — P(H) of E is defined by

w € OHE(x) & E(y) > E(x)+ (w,y — x)H forall y € H.

Remark: OyE: H — P(H) is a multi-valued monotone operator, i.e.,

(w—z,x—y)y>0 for all w € OyE(x),z € OnE(y)
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Monotone Operators and Subgradients (I1)

Definition
Let E: H— RU{+o0} be convex. Then the subgradient
OHE: H— P(H) of E is defined by

w € OHE(x) & E(y) > E(x)+ (w,y — x)H forall y € H.

Remark: OyE: H — P(H) is a multi-valued monotone operator, i.e.,
(w—z,x—y)y>0 for all w € OyE(x),z € OnE(y)
Application: In the following let

Eo(c) = ;/QWC(X)\2dx+g—1/Qrb(c(x)) d

with fo(c) = 6((1 — ¢)log(1 — c) + (1 + c) log(1 + ¢)) be the "convex

part” of the free energy E.(c) and

H=1{,(Q) = {u € L%(Q): /Qu(x) dx = 0}
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Subgradient of the Free Energy
Let Py be the orthogonal projection of L?(Q) onto Lfo)(Q) = H.
Theorem (A., Wilke '07)
_ -1 / -
Opz, Eo(c) = {{ - Gl D(0w, £o),

0 else
where

D(aLfo)Eo) = {C € L%O)(Q) : V3¢, fi(c) € L2(Q),n- Vc|oq = 0}.

Moreover, we have for every c € D(@L%O) Eo):

192€liz@) + 160y < € (o, Eole)lizqey +1)
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Subgradient of the Free Energy
Let Py be the orthogonal projection of L?(Q) onto Lfo)(Q) = H.

Theorem (A., Wilke '07)

—eAc+ e 1Pyf!(c ifc € D(0,2 Ey),
8L2 Eo(c) = { 0 0( )} ( LEO) 0)
© 0 else

where
D(aLgo)Eo) = {c € L%O)(Q) : V3¢, fi(c) € L2(Q),n- Vc|oq = 0}.

Moreover, we have for every c € D(@L?O) Eo):

192€liz@) + 160y < € (o, Eole)lizqey +1)

= —Ac + Pyfy(c) is a (maximal) monotone operator.
= Existence of solutions of the Cahn-Hilliard equation from general theory.
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Sketch of the Proof
Formal Proof: Let ¢s(x) = ¢(x) + s fy(c(x)), s > 0.
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Sketch of the Proof
Formal Proof: Let ¢s(x) = ¢(x) + s f§(c(x)), s > 0.Then

d
(912, Eo(c), fo(c)iz) = —Eo(Cs)

_ /VC V(£(<) dx+/f0’(c)f0’(c)dx
Q

| BT ax+ [ e o
QT Q
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Sketch of the Proof
Formal Proof: Let ¢s(x) = ¢(x) + s f§(c(x)), s > 0.Then

d
(912, Eo(c), fo(c)iz) = —Eo(Cs)

_ /VC V(£(<) dx+/f0’(c)f0’(c)dx
Q

| BT ax+ [ e o
Q‘———;g———’ Q

15 2 < 1923, Eo(€)lizcay

Hence
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Sketch of the Proof
Formal Proof: Let ¢s(x) = ¢(x) + s f§(c(x)), s > 0.Then

d
(3Lgo)Eo(C)afé(C))L2(Q) = *Eo(Cs)

_ /VC V(£(<) dx+/f0’(c)f0’(c)dx
Q

/f({’(c)|VC|2 dx—l—/ f(f(c)2 dx
QT Q

15 2y < 1922, Eo(€)lizcay

To justify formal calculation:

Hence

@ Approximate fy by non-singular f,,: R - R, m e N.

o Correct mean value of ¢ suitably to obtain ¢, € L ().
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Subgradient of the Convex Part of the Energy (Il)

Now we consider Eq as functional on H(Bi(Q) = (HY(Q) N LE,(Q)) by
setting Eo(c) = +oo if ¢ ¢ dom(Eo) C Lfy ().
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Subgradient of the Convex Part of the Energy (Il)

Now we consider Eg as functional on H(Bi(Q) = (HY{(Q)N L%O)(Q))’ by
setting Eo(c) = +oo if ¢ ¢ dom(Eo) C Lfy ().

Corollary
8H_1 Ep is a (maximal) monotone operator on H(B}(Q) and

0y-1Ep = —ApNO,2 Eg. Moreover,
Hgy 0 = ~ N =0

(0)

D01 Eo) = {c e D(92E0) : I, Eo(c) € Hl(Q)}

Here Ay: H'() N L7, () — H(;);(Q) is defined by

(—Anu, @) -1 = (Vu, Vo) 20y, ¢ € HH(Q) N Ly (Q).
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Overview
@ Phase Separation and Cahn-Hilliard Equation

@ Analysis of the Cahn-Hilliard Equation with Singular Free Energies
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Cahn-Hilliard Equation with Singular Free energies

We consider

Orc = div(mVp) in Q x (0, 00), (5)
p=—eAc+e'(c) inQx(0,00) (6)

with the initial and boundary conditions
n-Vclpo =n-mVulsga =0 on 9Q x (0, c0), (7)
Clt=0o = co in Q. (8)

Helmut Abels (U Regensburg) Sharp and Diffuse Interface Models EVEQ 2012 — July 9-13, 2012 17 /78



Cahn-Hilliard Equation with Singular Free energies

We consider

Orc = div(mVp) in Q x (0, 00), (5)
p=—eAc+e'(c) inQx(0,00) (6)

with the initial and boundary conditions
n-Vclpo =n-mVulsga =0 on 9Q x (0, c0), (7)
Clt=0o = co in Q. (8)

Let m=¢e = 1. Use that
0
f(e) = o) - =2

where fy is convex.
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Cahn-Hilliard Equation with Singular Free energies

We consider

Orc = div(mVp) in Q x (0,00), (5)
p=—eAc+e'(c) inQx(0,00) (6)
with the initial and boundary conditions
n-Vclga=n-mVpyulspa =0 on 9Q x (0,0), (7)
Clt=o =cp in Q. (8)
Let m=¢ =1. Use that
flc) = fo(e) ~ £,
where fy is convex. Then (5)-(6) are equivalent to
Orc _A(-Ac fo(c)) = _0Ac
monotone operator “Lipschitz perturbation”

Existence of solutions:
General result on perturbations of (maximal) monotone operators.
~ Helmut Abels (U Regensburg) | Sharp and Diffuse Interface Models  [SYZ RPN SERC LI LIS T VA ;]



Lipschitz Perturbations of Subgradients

Let H; be Hilbert spaces such that H; < Hy densely. We consider

du
7 (8 T Omep(u(t)) > Blu(t)) +g(t), te(0,T), (9)
u(0) = uwo. (10)
and assume that B: H; — Hp is globally Lipschitz continuous.

(In our case: B=—20.A, Hy = H(_O)l(Q), Hy = H{().)
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Lipschitz Perturbations of Subgradients
Let H; be Hilbert spaces such that H; < Hy densely. We consider

%(f)Jr@HOSO(U(t)) > B(u(t)) +g(t), t<(0,T), (9)

u(0) = up. (10)
and assume that B: H; — Hp is globally Lipschitz continuous.
(Inour case: B=—"T0.A, Hy = H(_O)l(Q), H = H(lo)(Q).)
Theorem ( A./Wilke '07)

Let ¢ = @1 + 2 be a proper, l.s.c., convex functional such that
@ > > 0 is convex,
e dom 1 = Hi and 1|, is a bounded, coercive, quadratic form on Hs.

Then for every g € L?(0, T; Ho), uo € dom(¢) there is a unique solution
u € WE(0, T; Ho) N L>®(0, T; H1) of (9)-(10). Moreover, p(u) € L*°(0, T)

v
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Main Existence Result for Cahn-Hilliard Equation

Theorem (A./Wilke '07)

For every co € HY(Q) with E.(co) < oo there is a unique solution

ce L°°(O oo; HY(Q)) N L2(0 o0; H?(2)) of (5)-(8) with

drc € L2(0, 00; Hyg 1(Q)) f'(c) € L2((0,00) x Q), p € L2 ([0, 00); HL(R)),
satisfying

)
E.(c(T)) + /0 IV ()22t = Ex(co0)

for all T > 0.
V.
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Main Existence Result for Cahn-Hilliard Equation

Theorem (A./Wilke '07)

For every co € HY(Q) with E.(co) < oo there is a unique solution
¢ € L°°(0,00; HY(R)) N L2(0, 0o; H2(Q)) of (5)-(8) with

drc € L%(0, oo; H(B:)l(Q)), f'(c) € L2((0,00) x Q), p € L2 _([0,00); HL(RQ)),

loc

satisfying
;
BT + | IVi(O)fe) o = Ew)
for all T > 0. Furthermore, for 6 > 0
c € L%(5,00; H3(Q)), f'(c) € L5, o0; L3(Q)),
€ L°(5,00; HY(Q)),
dec € L(8, 00; Hig () N L2(8, 00; H(R2)).

Remark: If additionally ¢ € D(OE), then the last statement holds with
d=0.
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Overview
@ Phase Separation and Cahn-Hilliard Equation

@ Asymptotic Behavior for Large Times
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Convergence to Stationary Solutions (1)
Theorem (A./Wilke '07)
Let f be analytic in (—1,1). Then

Jim c(t) = o in H*(Q),r € (0,1),

for some co € H?(Q) with cx(Q) C (—1,1) solving the stationary system
— Acs + f'(coo) = const.  in Q, (11

aycoolag =0 on 0f). (12
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Convergence to Stationary Solutions (1)
Theorem (A./Wilke '07)
Let f be analytic in (—1,1). Then

Jim c(t) = o in H*(Q),r € (0,1),

for some co € H?(Q) with cx(Q) C (—1,1) solving the stationary system
— Acs + f'(coo) = const.  in Q, (11

&,Coolag =0 on 0f). (12

Main ingredients:

o c(t,x) e[-1+¢e,1—¢]forall t > Ti,x € Q and some Ty, > 0.
e For t > Tj replace f by smooth  with ?|[,1+€,1,€] = fll—14e1--
Apply the Lojasiewicz-Simon inequality to the modified E.
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Convergence to Stationary Solutions (I1)

The proof is based on the Lojasiewicz-Simon gradient inequality:
()~ Eex) " < CIDEO e 0€(03 (L)

for ¢ in a neighborhood of a critical point cy.
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Convergence to Stationary Solutions (I1)

The proof is based on the Lojasiewicz-Simon gradient inequality:

|E<(c) — E-(coo)['0 < CIIDEE(C)IIH@;, 0 € (0,3] (LS)
for ¢ in a neighborhood of a critical point ¢,,. Consider
H(t) = (E(c(t)) — E-(cx))’
Vu(t)|?
dt (E=(c(t)) — E<(c0))
© Va3

= TIDE(e)l > [[Vp(t)lle2

since g E-(t) = —[[Vu(t)l|72(q) and IDE(c(t))llyr < CIIVA(t)lle2.
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Convergence to Stationary Solutions (I1)

The proof is based on the Lojasiewicz-Simon gradient inequality:

|E-(¢) = E-(coo) M7 < ClIDE(e)ll 1, 0 € (0, 3] (LS)
for ¢ in a neighborhood of a critical point ¢,,. Consider
H(t) = (E(c(t)) — Ex(cw))’
Vu(t)|?
L e = g IO
dt (E=(c(t)) = Ex(ce0))
© VR,

* By = VOl

since & E-(t) = ~ | Vu(t)|[2q) and || DE-(e(t)) 41 < CIVa(e)]2
Hence

| 10Ol de < € [ IV de < € (Exfeo) - E-(ex))'
0 0

= limisoo c(t) = co + [~ Oec(7) dT exists.
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Coarse Graining/Ostwald Ripening

Question: What is the asymptotic behavior of ¢(t) as t — co?

Sternberg & Zumbrun '98: For every stable critical point of 2 the diffuse
interface is connected.

This is related to the effect of Ostwald ripening.
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Coarse Graining/Ostwald Ripening

Question: What is the asymptotic behavior of ¢(t) as t — co?

Sternberg & Zumbrun '98: For every stable critical point of 2 the diffuse
interface is connected.

This is related to the effect of Ostwald ripening.

Simulation by S. Bartels
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Overview

© Model H - Diffuse Interface Model for Matched Densities
@ Basic Modeling and First Properties

Helmut Abels (U Regensburg) Sharp and Diffuse Interface Models EVEQ 2012 — July 9-13, 2012 24 /78



Basic Modeling (1)

Idea: Sharp interface is an idealization. (Korteweg/van der Waals)
Therefore: Introduce an interfacial region, where both fluids mix.

Moreover: Take diffusion effects of particles into account.
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Basic Modeling (1)

Idea: Sharp interface is an idealization. (Korteweg/van der Waals)
Therefore: Introduce an interfacial region, where both fluids mix.
Moreover: Take diffusion effects of particles into account.

Ansatz: Let ¢ be the concentration difference of both fluids.
Assume that the interfacial energy is given by

E.(c) = 8/ IVe(x)|2 dx + 5—1/ F(c(x)) d,
2 Ja Q
where the free energy density f is a suitable double well potential.
Diffusion: Assume that
oic+v-Vec=divJ

J=mVypu (Fick's law)

OE,
L= 6; = —eAc+ef(c) (chemical potential)

Classical models: Pure transport of the interface (m=0).
~ Helmut Abels (U Regensburg) | Sharp and Diffuse Interface Models  [SYZ RPN IS ERC LI LI ]



Basic Modeling (II)

Conservation of mass and momentum yield

pOev + pv - Vv — div T(c, v, p)
pt +div(pv) =

where T(c,v, p) is the stress tensor to be specified later.
Assumption p(c¢) = const.(= 1). Hence divv = 0.
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Basic Modeling (II)

Conservation of mass and momentum yield

pOev + pv - Vv — div T(c, v, p)
pt +div(pv) =

where T(c,v, p) is the stress tensor to be specified later.
Assumption p(c¢) = const.(= 1). Hence divv = 0.

The kinetic energy is given by

Eyin(v) = / lv(x)|? dx
and the total energy of the system is

E(c,v) = E-(¢) + Exin(v).
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Energy Dissipation
< E(e(t),v(1))
= _/T(C7VC7DV7P):DVdX—/m|Vﬂz|2dx—/MVC'VdX
Q Q Q
= —/(S(C,VC, Dv)+5Vc®VC):Dvdx—/ m|V u|? dx
Q Q

where T(c, Ve, Dv, p) = S(¢, Ve, Dv) — pl and

2
pVe =—ediv(Ve® Ve) +V (a_lf(c) + 5@)
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Energy Dissipation
& E(e(t).v(1)
= —/ T(c,Vec,Dv,p): Dvdx—/ m|Vpu|? dx — / uVe - vdx
Q Q Q
= —/(S(C,Vc, Dv) +¢eVec @ Vc) : Dvdx —/ m|V u|? dx
Q Q
where T(c, Ve, Dv, p) = S(¢, Ve, Dv) — pl and
: -1 [Vel?
pVe = —ediv(Ve®o Ve) +V (e f(c) + e
Constitutive Assumption:
S(c,Ve,Dv) +eVe® Ve =v(c)Dv

for some viscosity coefficient v(c) > 0.

:%E(c(t),v(t)) - —/Qv(c(t))\Dv(t)Fdx—/Qm|Vu(t)|2dx
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Diffuse Interface Model in the Case of Matched Densities
We derived:

Ov + v - Vv —div(v(c)Dv) +Vp = —ediv(Ve ® V) (13)
—_———— -
inner friction surface tension
divv =0 (14)
Orc+v-Vec=mAp (15)

p=—eAc+e '(c) (16)

where Dv = 2(Vv + VvT) together with
Vlpga = n-Vclga =n-Vylagg =0 on 99 x (0,00), (17)
(v, €)|e=0 = (vo, c0) in . (18)

Derivation: Hohenberg & Halperin '74, Gurtin et al. '96
Analytical results:
Starovoitov '93, Boyer '03, X.Feng '06, Gal & Grasselli '09, A. '07/'09

Helmut Abels (U Regensburg) Sharp and Diffuse Interface Models EVEQ 2012 — July 9-13, 2012 28 /78



Diffuse Interface Model in the Case of Matched Densities
We derived:

Ov + v - Vv —div(v(c)Dv) +Vp = —ediv(Ve ® V) (13)
—_—— ~
inner friction surface tension
divv =0 (14)
Orc+v-Vec=mAp (15)
p=—eAc+e () (16)

where Dv = 3(Vv + VvT)
Remark: (13) can be replaced by:

Ov + v - Vv —div(v(c)Dv) + Vg = uVe
where g = p+ 7 f(c) + §|Vc|?. — Use (16) multiplied by Vc and

Vel?

—ediv(Ve® V) = —eAcVe — 6VT
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Overview

© Model H - Diffuse Interface Model for Matched Densities

@ Well-Posedness of Model H
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Well-Posedness of Model H

Theorem (Existence, Regularity, Uniqueness, A. '07/'09)

Let d = 2,3. For every vg € L2(Q), co € HY(Q) with E.(co) < oo there is
a weak solution (v, c, ) of (13)-(16), which satisfies

(v,Vc) € L(0,00; L2(Q)), (Vv, V) € L%(0,00; L3(Q)),
Ve, f'(c) € L2 ([0, 00); L5()).

Moreover, ¢ € BUC([0, 00); W[ (2)) with g > d. For (vo, co) sufficiently
smooth:

©Q Ifd = 2, then the weak solution is unique and regular.

@ Ifd =3, there are some 0 < Tg < T1 < oo such that the weak
solution is regular and (locally) unique on (0, To) and [T1, c0).

© There is a critical point cs, of E. s.t. (v(t),c(t)) = t—00 (0, Cx0)-

Remark: Here € > 0 and m > 0 are essentiall
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Structure of the Proof

First study the separate systems:

@ Cahn-Hilliard equation with convection and singular potential
(based on E.(c) = Eo(c) — §||c||3 with Ey convex)

@ (Navier-)Stokes system with variable viscosity
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Structure of the Proof

First study the separate systems:
© Cahn-Hilliard equation with convection and singular potential
(based on E.(c) = Eo(c) — §||c||3 with Ey convex)
@ (Navier-)Stokes system with variable viscosity
Existence of weak solutions:
Approximation and compactness argument
Higher Regularity: Use regularity results for separate systems

Uniqueness: Gronwall's inequality once ¢ € L°°(0, T; C}(Q)) and
veL®0,T; WHQ)), s >d.

Crucial ingredient for higher regularity:
A priori estimate for ¢ € BUC([0, 0); W;(Q)), q>d!

Convergence to stationary solutions: Based on regularity for large times
and the Lojasiewicz-Simon inequality.
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Overview

© Model H - Diffuse Interface Model for Matched Densities

@ Cahn-Hilliard Equation with Convection
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Cahn-Hilliard Equation with Convection — Existence

We consider

Oic+v-Vec=mAp in Q x (0,00), (17)
p=—eAc+e'(c) inQx(0,00) (18)
n-Vclgo=n-Vulog =0 on 0Q x (0,00),  (19)
Clt=0 = @ in Q. (20)

where m = const.,e > 0 for a given v € L%(0, 00; L2) N L?(0, oo; H')
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Cahn-Hilliard Equation with Convection — Existence

We consider

Orc+v-Ve=mAp in Q x (0,00), (17)
p=—eAc+e'(c) inQx(0,00) (18)
n-Vclgo=n-Vulog =0 on 0Q x (0,00),  (19)
Clt=0 = @ in Q. (20)

where m = const.,e > 0 for a given v € L%(0, 00; L2) N L?(0, oo; H')
Theorem (A. '07/'09)

For every co € HY(Q) with E.(co) < oo there is a unique solution
c € L>(0,00; HY(Q)) N L2, ([0, 00); WZ(R)) of (17)-(20) with

uloc

drc € 12(0, o0; H@%(Q)), f'(c) € L2, .([0,00); L5(Q)),

uloc

p e L2 ([0,00); HY()). Moreover, for every T > 0

uloc

T T
Eg(c(T))-I—/o IV (8) 220 dt:Ea(co)—/o /Qv-,chdxdt

v
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A priori Estimates for ¢

W?2-estimate for c: Formally multiply
u(x, ) = —Bc(x, £) + F(c(x, 1))

by f'(c(x,t)) = fy(c(x,t)) — Occ(x, t) to obtain

/ Rc(6)? dx + / )|Vc (0) dx < C(llu(0)|3 + [Ve]3).
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A priori Estimates for ¢

W?2-estimate for c: Formally multiply
(x, t) = —Ac(x, ) + F(c(x, 1))

by f'(c(x,t)) = fy(c(x,t)) — Occ(x, t) to obtain

/ Rc(6)? dx + / )|Vc (0) dx < C(llu(0)|3 + [Ve]3).

Similarly, multiplying with 1‘0’(c)]f0’(<:)|’_2 for 2 < r < oo yields
I (N + le®lwz < C ()]l + [Ve(t)ll2) -

= Cc Luloc([07 OO); W62(Q))

where

lcll 2 ([0,00);X) = SUp ||CHL2(t,t+1;X)'
>0

Ioc
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Cahn-Hilliard Equation with Convection — Regularity

Lemma
Let (c, i) be the solution above, ¢y € D(@H(_; Eo), and let 0 < T < oo.
0

Q@ Ifowv € LY(0, T; L2(RQ)), then (c,p) satisfy
dec € L(0, T; Hgy () N L2(0, T; HY()),
c € L>=(0, T; W2(Q)), f'(c) € L°°(0, T; L5(2)),
p € L%(0, T; HY(Q)).

@ Ifve By (0,T;H*(Q)) for some —5 < s <0 and a € (0,1), then
3

ke € C([0, T]; Higy () N B3 (0, T: HH(92))-

v

0,00; H71(Q)?) and the first

Remark: In general we only have O;v € Luloc(
part cannot be applied; but the second part.
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Higher Time Regularity for ¢

First part: L°°(0, oo; H(Bi)—estimate of ;¢ follows from: Multiplying

2c + A(Adic — f]/(c) drc) = —0:(v - V) — 0. Ad:c
N——

>0

by —Ap 0kc yields

||8tc||L°0(0,oo;H(B)1) + ||V8tc||/_2(Q) < C(co) (1 + Hatv”LL%oc(O,oo;V,ﬁ))

where V,(Q) = {¢ € HY(Q)? : n- ¢|sq = 0}.
= p € L>(0, 00; H(Q))
= c € L%®(0,00; W3(Q)), r=6ifd=3and 1 <r<ocifd=2.
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Higher Time Regularity for ¢

First part: L*(0, oo; H(B})—estimate of ;¢ follows from: Multiplying

2c + A(Adic — f]/(c) drc) = —0:(v - V) — 0. Ad:c
~——

>0

by _Aﬁl8tc yields
||8tc||L00(0,oo;H(6)l) + ||Vatc||/_2(Q) < C(CO) (1 + Hatv”LL%oc(O,oo;V,ﬁ))

where V,(Q) = {¢ € HY(Q)? : n- p|oq = 0}.

= p € L>(0, 00; H(Q))

= ce 10,00, W2(Q)), r=6ifd=3and 1 < r < oo if d = 2.
oel[0.50): H(@)
with 0 < s < 3 as well as H§(Q) = H*(Q) and H5(Q) = H5(Q)".
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Overview

© Model H - Diffuse Interface Model for Matched Densities

@ Stokes Equation with Variable Viscosity
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Maximal Regularity for the Stokes Equation

We consider the Stokes equation with variable viscosity

Opv — div(v(x, t)Dv) + Vp
divv
v]an

V|t:0

O O O =™

in Q x (0, T),
in Q x (0, T),
T),

on 99 x (0,
in Q

where Dv = 3(Vv + VvT) in a suitable domain Q C RY with

8Q€W 7,1/€BUC([0 T]; WH(Q)), where 2 < d < r < c0.

Theorem (A. & Terasawa '09, A '10/ A '07 (q=2))

Letl<g<oowithq,q <r,v(x)>1v9>0,and0< T < oco. Then for
every f € L9(Q x (0, T))? there is a unique solution of v of (21)-(24) s.t.

1(0ev, Vv, V)|l Laax(0,7)) < CrllfllLagax(o,7))-

: 10) 1 1
NB: fg € W, (Q) if f € W;(Q),g € W (), 1<g<r andr>d.
~ Helmut Abels (U Regensburg) | Sharp and Diffuse Interface Models  [SY/=e R LRI S kR0
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Maximal Regularity for the Stokes Equation

We consider the Stokes equation with variable viscosity

ov —div(v(x,t)Dv) +Vp = £  inQx(0,T), (21)
dive = 0 inQx(0,T), (22)
vlgg = 0 on 9Q x (0, T), (23)
V[0 = 0 in Q (24)

where Dv = 3(Vv + VvT) in a suitable domain Q C R with

_1
a0 € W7, v e BUC([0, T]; WX(RQ)), where 2 < d < r < cc.
Remark: If v(x, t) = 1p(x), (21)-(24) can be written as X-valued ODE:

d
av(t) +Aqu(t) = Pof(t), t € (0, 00),

V|t=0 =0

where Agv = — P div(1o(x)Dv), Pq is the Helmholtz projection, and
X =L4Q) ={f € L9(Q)Y : divf =0,n-f|sq = 0}.
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Maximal Regularity for the Stokes Equation

We consider the Stokes equation with variable viscosity

Ov —div(v(x,t)Dv) +Vp = f in Qx (0, T),
divve = 0 in Q2x(0,7),
Vg = 0 on 02 x (0, T),
Vo = 0 in Q

where Dv = %(Vv + VvT) in a suitable domain Q C R9 with
_1
o0 e W,2 *, v e BUC([0, T]; WHQ)), where 2 < d < r < oo.

If g =2, v(x, t) = vo(x), the results follows from the fact that
Ar: D(Ap) C L2(Q) — L2(Q) is a positive self-adjoint operator, where

D(Ay) = H*(Q)4 N HH Q)Y N L2(Q).
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Maximal Regularity for the Stokes Equation

We consider the Stokes equation with variable viscosity

o —div(v(x, t)Dv)+Vp = f  inQx(0,T), (21)
dvv = 0 inQx(0,T), (22)
vlgo = 0 on 9Q x (0, T), (23)
Vo = 0 in Q (24)

where Dv = %(Vv 4+ VvT) in a suitable domain Q C R9 with
1
o0 € W,2 *, v e BUC([0, T]; WHQ)), where 2 < d < r < oo.
If 1 < g < oo, Dore & Venni '87 implies the result if A; possesses bounded

imaginary powers, i.e.,

Aiy . 1

= [ (=Y + A,) " tdA R

is bounded on LZ(R2), where (A + Ag)~t = O(]A|71).
Proof: Approximation of (A + A;)~! with pseudodifferential operators.
~ Helmut Abels (U Regensburg) | Sharp and Diffuse Interface Models  [SYZ Rl b RN 1A SRR LI WA ]



Overview

© Diffuse Interface Models for Non-Matched Densities
@ A Model by Lowengrub and Truskinovsky
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Quasi-Incompressible Model
Lowengrub & Truskinovsky'98 derived:

pOv + pv - Vv — div(v(c)Dv) + Vp = —ediv(Ve ® V) (25)

surface tension

Otp + div(pv) =0 (26)
potc+ pv-Vec=mAyp (27)
2
p= —ngﬁ <p + |V2C|> +ef(c) —eptAc (28)

in Q x (0, T), where Dv = 3(Vv + VvT), together with suitable initial
and boundary conditions.

@ v, p are the velocity and pressure of the fluid mixture.
@ p = p(c) is the density given as a constitutive function.
@ ¢ = ¢ — ¢ is the difference of the (mass) concentrations of the fluids.
@ /i is the chemical potential and m > 0 the (constant) mobility.
e 7R — [0,00) is a (homogeneous) free energy density
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Quasi-Incompressible Model
Lowengrub & Truskinovsky'98 derived:

pOev + pv - Vv — div(v(c)Dv) + Vp = —ediv(Vec ® V) (25)

surface tension

Otp + div(pv) =0 (26)
poic + pv - Ve =mAp (27)
2
= —,0_2% <p + W;‘) +e ' (c)—eptAc (28)

New difficulties:
e divv # 0 and p enters equation for chemical potential (28).
@ (25)-(26) and (27)-(28) are coupled in highest order if p # const.!

Analytic results:
A. '09: Existence of weak solutions for modified free energy/system

q
EE(c)zsq_l/ |v;|dx+5_l/pf(c(x))dx with g > d!
Q Q

A. '12: Strong well-posedness locally in time in L2-Sobolev spaces.
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Overview

© Diffuse Interface Models for Non-Matched Densities

@ Modified Model H
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New Diffuse Interface Model (A., Garcke, Griin '12)

In the case of non-matched densities one can derive

p(‘?tv—l—(pv—i—apJ )- Vv

—div(2v(¢)Dv) + Vp = —ediv(Vy @ V) (29)
divv =0 (30)
Orp +v -V =div(m(e)Vpy) (31)

where J, = —m(¢)V i together with

p=cetf'(p) —elp (32)
Here
@ vV = vy + @ovo — volume averaged velocity.
@ v; — velocity of fluid j.
@ ¢; — volume fraction of quidj © =2 — Q1.
o p=1p(p)=5%n + e 225, and pj are the specific densities.

Lowengrub,Trusklnovsky. v is the mass averaged velocity pv = p1vi + pavo
~ Helmut Abels (U Regensburg) | Sharp and Diffuse Interface Models  [SYZ RPN S ERCIIEIVEWA ]



New Diffuse Interface Model (A., Garcke, Griin '12)

In the case of non-matched densities one can derive

POV + (pv + g—chp) - Vv

C

— div(2v(p)Dv) + Vp = —ediv(Ve ® Vi) (29)
divv =0 (30)
I +v - Vo = div(m(p)Vp) (31)
where J, = —m(¢)V i together with
p=etf(p)—elp (32)
Conservation of mass:
O¢p + div (pv N m(go)Vu) =0
_ oy,

Bo—p1 _ 9 . .
Here 252 m(¢)Vp = 5 m(p)V is a flux relative to pv related to
diffusion of the particles.
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Modeling: Conservation of Linear Momentum
Starting point:

: . Op :
Ot(pv) + div(pv @ v) +div ( v® %J@ =divT

where J, = m(p)Vp, cf. Alt '09.
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Modeling: Conservation of Linear Momentum

Starting point:
: . Op :
Ot(pv) + div(pv @ v) +div ( v® %J@ =divT

where J, = m(p)Vp, cf. Alt '09. This is equivalent to

POV + (pv + g—ZLp) -Vv=divT (33)

and, if V/(t) is transported by pv = pv — g—gm(go)Vu,

2
i/ plvl dx:/ n-Tdx
dt Jyi 2 av(t)

@ The left-hand side of (33) is objective in contrast to pdsv + pv - Vv
and 0¢(pv) + div(pv @ v) in our situation.
@ Therefore T is objective too.
~ Helmut Abels (U Regensburg) | Sharp and Diffuse Interface Models  [SYZ PR SERC LI EIVE WA ]
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Derivation of the Model

Starting Point
pOev + (pv + an )-Vv=divT
divv =10
Orp+v-Vo+divl, =0
Oie +v-Ve+divle <0

conservation of momentum)

~_~ o~ o~ o~

local energy inequality)

conservation law for components, |)

conservation law for components, II)

Here T is the stress tensor, J,, Je are fluxes, and

[v[?

\v4 2
> —i—e_lf(gp)—l—si' <p\'

e = e(v.4, V) = (%) :
Lagrange multiplier approach:
o Exploiting the energy inequality and the conservation laws give
restrictions for the constitutive assumptions on T, J,, Je.
@ The chemical potential  and the pressure p arise as Lagrange

multipliers to the constraints given by the conservation laws.
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Existence of Weak Solutions: Assumptions
We consider

pOev + (pv + gngo) -Vv

—div(2v(¢)Dv) + Vp = —ediv(Vy @ Vo) (34)
divv =20 (35)

drp +v - Vi =div(m(p)Vp) (36)
p=ct(p) —elp (37)

where J, = m(p)Vu with 0 < mg < m(p) < Mg in Q x (0, T), where
Q C R" is a bounded smooth domain, together with

Vigo =n-Voylga=n-Vulspg = 0 (38)
(v.9)lt=0 = (vo,%0)(39)

For f we choose e.g.: /\

F(y) = {9((1 — @) log(l — ) + (1 + @) log(L + )¢ — Oce?, o € [1,1],

- +oo else.
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Theorem (A., Depner, Garcke '11)

Let d = 2,3. Forevery vo € L2(Q), o € HY(Q) with E-(po) < oo there is
a weak solution (v, p, 1) of (34)-(39), which satisfies

(v, V) € L(0,00; L2(Q)), (Vv,Vu) € L3(0,00; L*(Q)),
V20, /() € Lie([0, 00); L2(R))-

In particular, ¢(t,x) € (—1,1) almost everywhere.

Energy dissipation: Proof is based on a priori estimates deduced from

GECOMO) =~ [ IDuP ok~ [ m(e)|TuP e with

Eetorve) = [ (020 aer [ MO0,
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Structure of the Proof

o We approximate (34)-(39) by an implicit time discretization for which
we have an analogous discrete energy estimate.

@ In order to deal with the singular logarithmic terms, we use again that

() = folw) — - ¥,

where fy is convex. Then

p=—elp+1f(p) = —elp+ 1fi(p) —bcp
—_———

=0Eo(p)
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Structure of the Proof

e We approximate (34)-(39) by an implicit time discretization for which
we have an analogous discrete energy estimate.

@ In order to deal with the singular logarithmic terms, we use again that

() = folw) — - ¥,

where fy is convex. Then
p=—elp+ 2f(p) = —eDp + fy(p) —bcp
| —
=0Eo(y)
o Essential step: Use regularity result for 0Eg:

lollma) + 16 (D)2 < C(19Eo(#)lli2) + 1)
= Ap f'(p) € L[20,T;L3Q))
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Strong Compactness of Velocity Field

Let (yk, vk, pk) be a sequence of solutions with bounded energies.

In order to pass to the limit in

(pkvk) + div (Vk ® (prvik + dka)>
—div(2v(pk)Dvk) + Vpr = —ediv(Ver @ V)

we use that this equation implies (for a subsequence)
Py (piVi) = koo Po(pv) in L2(2 x (0, T))

by the Lemma of Aubin-Lions. Here P, is the Helmholtz projection.

Helmut Abels (U Regensburg) Sharp and Diffuse Interface Models EVEQ 2012 — July 9-13, 2012 48 / 78



Strong Compactness of Velocity Field

Let (¢k,Vk, pk) be a sequence of solutions with bounded energies.

In order to pass to the limit in
O¢(prvk) + div (vk ® (prvik + dka)>
—div(2v(pk)Dvi) + Vpr = —ediv(Vpr ® Vk)
we use that this equation implies (for a subsequence)
Po(pkVi) —+kss00 Polpv) in L2(Q % (0, T))

by the Lemma of Aubin-Lions. Here P, is the Helmholtz projection.
Hence

T T T
/ /pk\ka dxdt:/ /Po(pkvk)vkdxdt —>kﬂoo/ /p\v\zdxdt
o Ja o Ja 0o Ja

and therefore vy —4 500 v in L2(2 x (0, T)) since px —k—o0 P a.€.
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Weak Continuity of the Velocity

Goal: Show v: [0,00) — L?() is weakly continuous and v|;—¢ = v
Problem: Weak formulation of moment equation (34) only gives control of

OtP,(pv) € L2(0, T; H5(Q)) for some s < 0 and all T < cc.
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Weak Continuity of the Velocity
Goal: Show v: [0,00) — L%(Q) is weakly continuous and v|;—¢ = vg
Problem: Weak formulation of moment equation (34) only gives control of
OtP,(pv) € L2(0, T; H5(Q)) for some s < 0 and all T < cc.
Since pv € L*>(0, T; L2(R)), standard arguments imply
P, (pv) € C([0,00); H1) N L>(0, 00; L2) < Cy ([0, 00); L?)
Hence Py (pv|i=0) = Ps(povo)-
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Weak Continuity of the Velocity
Goal: Show v: [0,00) — L?(R) is weakly continuous and v|;—¢ = v
Problem: Weak formulation of moment equation (34) only gives control of
OtP,(pv) € L2(0, T; H5(Q)) for some s <0 and all T < co.
Since pv € L>=(0, T; L?(Q)), standard arguments imply
P, (pv) € C([0,00); H1) N L>(0, 00; L2) < Cy ([0, 00); L?)
Hence P,(pv|i—0) = Ps(povo). To conclude pv|;—¢ = povo, we use:

Lemma
Let v; € L2(Q), j = 1,2 such that

/pvl-cpdx=/pvz-cpdx for all ¢ € G ().
Q Q

Then vi = v5.

Using this lemma, one can also show v € C, ([0, 00); L2()).
~ Helmut Abels (U Regensburg) | Sharp and Diffuse Interface Models  [SY/Z bR SERCII LIV WA ]



Overview

@ Sharp Interface Limits and Analysis of a Limit Model
@ Sharp Interface Limit for the Cahn-Hilliard Equation
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Sharp Interface Limit of Cahn-Hilliard Equation

We consider
Orc = mAyp, (40)
p=—eAc+et'(c) (41)

together with suitable boundary and initial conditions. Then (40)-(41)
converges to the Mullins-Sekerka equation if m = m(e) = const. > 0:

m
Vi=—Zlnre Vil onT(t)

r)

plrey = oH on I'(t)
Ap=0 on QF(t)

O ()

due to
o Alikakos et al. '94 (local strong solutions)
@ X. Chen '96 (global varifold solutions).
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Theorem (X. Chen '96)

Let (¢, pte)o<e<1 be solutions of (40)-(41). Then for a suitable
subsequence

1
¢ =m0 —1+2xe in C2([0,00); L3(R)) and a.e.

He —e—0 12 in leoc([ov OO); Hl(Q))7
where xg € L>(0, 00; BV(R2)) and
m oy
dexe = DA in /(@ x (0,0)),
—uVxe = %5% in D'(Q x (0, 00)),

where

6Vt ) = [ Vo (1= d)fies)

for all C}(R)9 and 0 < (V,j)j-jd-:1 < lv in M(Q)9x9.
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Sketch of the Proof (due to X. Chen) (1)

Energy estimate: For every 0 < T < oc:

-
E(c(-,T))+ m/ / |Vu|2 dx dt < E.(cpc) < M.
o Ja

Moreover, O;c. = mAp. is bounded in L2(0, 00; H~1(Q)). Arguments by
Modica and Mortola and embeddings give

1
C: =0 —142xe in C2_([0,00); L3(Q)) and a.e.,

loc

where ||[VxE(t)l|pmo) < LM forae 0<t<oo.
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Sketch of the Proof (due to X. Chen) (II)
Let e. = z—:% + @ Then (e-)o<e<1 € L>(0,00; L1(2)). Hence
e =l oV in L37(0, 00, M(€))
eVe @ Ve =t i)z in L35.(0, 00 M(Q)779)
Using
ueVe: =div (el —eVe ® Ve.)

yields in the limite — 0

2uVxe = div (l/l - (V;J)7J21> =0V
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Sketch of the Proof (due to X. Chen) (II)
Let e. = z—:% + @ Then (e-)o<e<1 € L>(0,00; L1(2)). Hence
e = ov in Ly (0, 00; M(R))
eVe: @ Ve =0 (i) in L (0,00, M(Q)779)
Using
ueVe: =div (el —eVe ® Ve.)
yields in the limite — 0
2uVxe = div (VI - (ViJ);-szl) =0V
Essential step: To show 0 < (y,d)dd L < lvin M(Q)9%? one uses that
(&c(c))Tdxdt —=* ;0  in M(Q x (0,00)),

where {(c.) = 5% f(CE) (discrepancy measure).
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Overview

@ Sharp Interface Limits and Analysis of a Limit Model

@ Sharp Interface Limit for Modified Model H
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Diffuse Interface Model (A., Garcke, Griin '12)

We consider

POV + (pv + C’%J@) - Vv
—div(2v(p)Dv) + Vp = —ediv(Vp ® V) (42)
divv =0 (43)
Ot +v -V =div(m(e)Vu) (44)

where J, = —m(¢)V i together with

p=cf(p) —elp (45)
Here
@ v = vy + @ovo — volume averaged velocity.
@ v, — velocity of fluid j.
@ ; — volume fraction of fluid j, ¢ = @2 — 1.
o p=p(p) =525 + 5.
~ Helmut Abels (U Regensburg) | Sharp and Diffuse Interface Models  [SY/Z bR A SRR LRI ]



Sharp Interface Limits via Matched Asymptotics (AGG '12)

Bulk equations: In Q% (t) we have

pOev + (pv + 25223 - Vv — div(v=Dv) + Vp =0 o
divv =0
Interface equations: o)

Case I: m=emg: On I'(t) we have
— [n- (v*Dv — pl)] = gHn
V =n-v|ry

V is the normal velocity, H is the mean curvature, nis a normal. J =0
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Sharp Interface Limits via Matched Asymptotics (AGG '12)

Bulk equations: In Q% (t) we have

pov + (pv + 252J) - Vv — div(v*Dv) + Vp =0 r()
divv =0

Interface equations:
Case I: m=emg: On I'(t) we have

— [n- (v*Dv — pl)] = gHn
V=n- V|F(t)

V is the normal velocity, H is the mean curvature, nis a normal. J =0
Case Il: m = mg > 0: On I'(t) we have
—[n- (vDv — pl)] = oHn
V=n-v|ry — 3[n- Vi
2ulr(ry = oH
together with Ay = 0 in Q*(t), J = 2V
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Theorem (Sharp Interface Limit in Varifold Sense (A. forthcoming))

Let (ve, e, fte)o<e<1 be weak solutions of (13)-(16) with
m = m(e) — mo > 0 such that lim._.oem(e)~* = 0. Then for a suitable
subsequence

(ve, m(e)pe) —emso (v, mop) —in Lioe([0,00); HY ()

1
Ve —es0 —14+2xg in C2 ([0, 00); L2(Q)) and a.e.

loc
where xg, € L>(0,00; BV(Q2)) and

O:(pv) + div(v @ (pv + mo252V 1)) — div(v(xg,)Dv) + Vg = =6V
OtxE, +Vv-VXE = %AM

1
Ifmg >0:—uVyxg = §5Vt

in D(2 x (0,00)), where §V is as in X. Chen '96 and p = p(xE).

Case p1 = p2, mg > 0: See A. Roger '09.
~ Helmut Abels (U Regensburg) | Sharp and Diffuse Interface Models  [SYZ R b RN 1A SRR LI WA ]



Sketch of the Proof (I)

Energy estimate: For every 0 < T < oc:
v(T)]?
Ee(T) + [ (MM o

T . )
+/ /Q(y(gog)\DvsFerglvup) dx dt < E€(¢076)+/QP(C07€)| gl dx.
0

Adapting the arguments of X. Chen/Modica and Mortola one shows

1
¢ —ems0 —1+2xe in C2([0,00); L*()) and a.e.,
where ||[VxE(t)l| pmo) < LM forae 0<t< oo
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Sketch of the Proof (I)

Energy estimate: For every 0 < T < oo:

v 2
EeT) + | o(e(Ty) D)

dx

T ,
=+ D +m v
/ /Q (V(‘Ps)‘ v5\2 By ‘2) dx dt < E-(po.) /Qp(q]’s)|2| dx.
0 ! S Eelpoe) +

Adapting the arguments of X. Chen/Modica and Mortola one shows

([0,00); L2(Q)) and a.e.,
where ||[VxE(t)l| pmo) < LM forae 0<t< oo

1
¢ —erso —1+2ye in CP

loc

Strong convergence of v.: First one shows
Po(p(pe)Ve) —em0 Palp(xe)v)  in L3(Qx (0,T))
for all 0 < T < oo using the Lemma of Aubin-Lions. This implies
Ve eV in L2(Qx (0, T))forall0< T < o0

similarly as in A., Depner, Garcke '11 since divv, = divv = 0.
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Sketch of the Proof (I1)

As before let e. = s% + 1) Then (e)o<ec1 € L(0,00; L1(R)).
Hence
e —I gV in L}, (0, 00; M(Q))
eVe. ® Ve =1 (V;J)?le in L5,(0, o0; M(Q)4*9)
Using

ueVe. =div (el —eVe ® Ve.)
yields in the limit e — 0

2uVxe = div (VI - (V;J)7J21> =0V
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Sketch of the Proof (I1)

As before let e. = s% + @ Then (e:)o<e<1 € L>(0, 00; L1(2)).
Hence

e —I oV in Ly (0, 00; M(R))
eVe. @ Ve =1 (V,"j);-{jzl in L2°,(0, 00; M(Q)9*9)
Using
ueVe. =div (el —eVe ® Ve.)
yields in the limit e — 0
2uVxe = div (VI - (V;J)7J21> =0V
Essential step: To show 0 < (V;J)?le < lv in M(Q)9%9 one uses that
(&-(c))Tdxdt =% 50 in M(Q x (0,00)),

where £(c.) := 5|VCE| f(CE) (discrepancy measure), cf. X. Chen '96.
To this end one needs: 5m(5) e ——]
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Overview

@ Sharp Interface Limits and Analysis of a Limit Model

@ Analysis of the Navier-Stokes/Mullins-Sekerka System
~ Helmut Abels (U Regensburg) | Sharp and Diffuse Interface Models  [SY/Z Rl RN SRR EICT WA ;]



Analytic Results for the Mullins-Sekerka Equation:

We consider

V. =mlnry - V] onT(t) (46)
rio)

plrey = oH on I'(t) (47)
Ap=0 on Q%(t) (48) ot

together with F(0) =Ty CC Q=QT(t)UQ (t) UT(t).

Existence of local, classical solutions:
X. Chen, Hong & Yi '93, (d = 2),
Escher & Simonett '96/'97 (d > 2).

Stability of spheres: X. Chen '93, (d = 2), Escher & Simonett '98, PriiB,
Simonett, & Zacher '09, Kohne, PriiB & Wilke '10 (d > 2).

Existence of weak solutions: Réger '05
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Existence of Strong Solutions (Escher & Simonett '96/'97)

Basic idea: Write '(t) as a graph over a smooth reference manifold X:
M(t)={x€Q:x=s+nzgh(t,s) = Opps for s € L} = Op) (L)
where h(t) € C3(X). Extend On(t) to a diffeomorphism

Opty: 2 — Q (Hansawa transformation)
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Existence of Strong Solutions (Escher & Simonett '96/'97)

Basic idea: Write '(t) as a graph over a smooth reference manifold X:
M(t)={x€Q:x=s+nzgh(t,s) = Opps for s € L} = Op) (L)
where h(t) € C3(X). Extend On(t) to a diffeomorphism
Opty: 2 — Q (Hansawa transformation)
Then (46)-(48) is equivalent to
Oth+ G(h)=0 on X x (0,T), h(0)= ho, (49)

where G(h) = D(h)H(h) and
@ H(h) is the transformed mean curvature of ['(t).
e D(h) is a transformed Dirichlet-to-Neumann-Operator.
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Existence of Strong Solutions (Escher & Simonett '96/'97)
Basic idea: Write I'(t) as a graph over a smooth reference manifold X:
M(t)={x€Q:x=s+nzgh(t,s) = Opps for s € L} = Op) (L)
where h(t) € C*(X). Extend 6, to a diffeomorphism
Opty: 2 — Q (Hansawa transformation)
Then (46)-(48) is equivalent to
Oth+ G(h)=0 on X x (0,T), h(0)= ho, (49)

where G(h) = D(h)H(h) and
e H(h) is the transformed mean curvature of I'(t).
e D(h) is a transformed Dirichlet-to-Neumann-Operator.

Here DG(0) ~ (—Az)%(—Az) generates an analytic semigroup e.g. on

ho(T) = Co(%)

Local existence: Theory of abstract quasi-linear parabolic equations
~ Helmut Abels (U Regensburg) | Sharp and Diffuse Interface Models  [SYZ Rl bR 1SRRI EICE WA ;]



Local Existence of Strong Solutions

Ov+v-Vv—divT(v,q) =0 in QF(t) (50)
divv =0 in Q%(t) (51)

Ap=0 in QF(t) (52)

— [nrey - T(v,q)] = oHnpy on I'(t), (53)

V =nr 'V’F(t) — m[nr(t) -Vu] on I(t), (54)

plrey = oH on I(t). (55)

Theorem (A. & Wilke '11)

44
Let vo € HY(Q)? N L2(R), To = On, with hg € W, "(X), p € (3, 242,
d = 2,3. Then there is some T > 0 such that (50)-(55) has a unique
solution (v(t),[(t)) for t € (0, T), where I'(t) = Op)T

v e L0, T; H*(Q\ (1)) N HY(0, T; L3(Q))

41 1—1
P . P 1 . p
he PO, T; W, "(X))NWHO0, T;W, *(I))
v
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Solving the Navier-Stokes-Part

ov+v-Vv—divT(v,q) =0 in Q%(t),t € (0, T), (56)
divv =0 in Q(t),t € (0, T), (57)

v] =0 onl(t),te (0, T), (58)

— [nry - T(v,q)] = oHnry onT(t),t € (0, T), (59)

vigo =0 on 02 x (0, T), (60)

V|i—0 = w in Q (61)

where T(v,p) = u=Dv — pl. Here ['(t) = On(e)Z is given!
Theorem (A. & Wilke '11)

41 1—1
Let he LP(0, To; W, ") N W20, To; Wy 7)., vo € H3(Q) N L2(Q). Then
there is some 0 < T < Ty such that (56)-(61) has a unique solution

v e 20, T; H3(Q\ (1)) N HY(0, T; L3(Q))

Moreover, the mapping h — v is C1 w.r.t. to the corresponding norms.
W
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Solving the Navier-Stokes-Part — Sketch of Proof

Let Fr(t) = Opr) © @;01: Q — Q. Then Fu(t)(Ip) = I'(t) for all
t € (0, T) and Fu(0) = Id. Defining u(x, t) = v(Fu(t)(x), t) (56)-(59) can
be transformed to

dru4u-Vyu—divy Tpi(u,§) =0¢Fp-Viau  in (Q\ o) x (0, T)

divpru=0 in (2\Tp) x(0,7)
u=0 on I
—[Anenry - The(u,§)] = oHp ¢ Apenr, on o x (0, T)
ufpn =0 on Q2 x (0, T)
Here
Apt =L, Ve =V, Tp(u,§) = T(u,g),... ifte(0,7),0<Tx1

Moreover, since p > 3,

~ 21 1 1-1
Hye € LP(0, T; W, ?(Fo)) N W3 (0, T; W, ?(Io))
<y 12(0, T; H2(Fo)) N H4(0, T; L2(To))
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Sketch of Proof: Local Well-Posedness
Again we write I'(t) as a graph over a smooth reference manifold X:
M(t)={x€Q:x=s+nzgh(t,s) = Opps for s € L} = Op)(X)

where h(t) € C*(X) and use the Hansawa transformation ©j;y: Q — Q.
Then (46)-(48) is equivalent to
9¢h(t) + G(h(t)) + Fr(h)(t) = 0,  te(0,7), (62)
h(0) = ho, (63)
where G(h) = D(h)H(h) and
@ H(h) is the transformed mean curvature of I'(t).
@ D(h) is a transformed Dirichlet-to-Neumann-Operator.

o Fr(h)(t) = (nr(z) - v(t)) © Op(p)lx is the transformed convection term.
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Sketch of Proof: Local Well-Posedness
Again we write I'(t) as a graph over a smooth reference manifold X:
= {X €Q:x=s+ngh(ts)=: Gh(t)s fors € Z} = Gh(t)(Z)

where h(t) € C*(X) and use the Hansawa transformation ©j;y: Q — Q.
Then (46)-(48) is equivalent to

0:h(t) + G(h(t)) + Fr(h)(t) = O, te(0,T), (62)
h(0) = ho, (63)
) = D(h)H(h) and

is the transformed mean curvature of I'(t).

where G(h
H(h)

° D(h) is a transformed Dirichlet-to-Neumann-Operator.
o Fr(h)(t) = (nr(z) - v(t)) © Op(p)lx is the transformed convection term.

Here F1(h) is a non-local Volterra-type operator and a lower order

perturbation. Therefore local existence can be proved similarly as for the
Mullins-Sekerka system.
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Stability of Spheres
Theorem (A. & Wilke '11)

Let ¥ = 0Bgr(x) C Q. Then there is some 6 > 0 such that for any
v € HY(Q)9 N L2(Q) and Ty = Op, with

Vol + llholl oo

W,

such that the unique solution (v(t),(t)) of (50)-(55) exists for all
t € (0,00), where

4 S‘i
P(x

ve 20, T; H3(Q\ I'(¢))?) n HY(0, T; L?(Q)9)
41 1—1
he PO, T; W, *(X))NW,(0,T; W, (X))
for every T < oo and there is some hy, such that 6, 3 is a sphere and

_a
(v(t), h(t)) —t—00 (0, hoo) exponentially in H*()9 x W: P(X).

Proof: Based on the “Generalized Principle of Linearized Stability”
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Generalized Principle of Linearized Stability
Alternative approach to stability: We consider

%u(t) + A(u(t))u(t) = F(u(t)),t>0 u(0)=up
such that (A, F) € CY(V, L(X1, Xo) X Xo), where X; — X densely,

V C X, :=(Xo,X1);_ 1, 0pen 1 < p < oo, A(0) has maximal
p7
LP-regularity, and F(0) = 0. Let

E={uveVnX:Au)u=F(u)}.

Theorem (PriiB, Simonett, Zacher '09)

Assume that
o & is a Cl-manifold of dimension m € Ny, ToE = N(A(0))
e 0 is a semi-simple eigenvalue, i.e., N(A(0)) & R(A(0)) =
e 0(A(0))\ {0} c {ze C:Rez < 0}.

Then 0 is stable in X, and there is some 6 > 0 such that for every

luollx, < 9 there is some ux, € £ such that u(t) —t e Uso exponentially.
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Remarks on the Proof

o Here ¥ = 0Bg,(x0) C  the set of equilibria
E={(0,h): he C*(X),04(X) = 9Br(x) C Q,x € QR >0}

is an (d + 1)-dimensional manifold and To& = N (A(0)) = N (Ayx),
As = Ay + %. Proofs: Similar to Escher & Simonett ‘98.
0
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Remarks on the Proof

o Here ¥ = 0Bg,(x0) C  the set of equilibria
E={(0,h): he C*(X),04(X) = 9Br(x) C Q,x € QR >0}

is an (d + 1)-dimensional manifold and To& = N (A(0)) = N (Ax),
As = Ay + degl. Proofs: Similar to Escher & Simonett ‘98.
0
@ Since the linearized operators are defined on

12(0, 00; L2(9)) x L9(0, 00; Wi # (X))

we do not apply the theorem directly, but modify its proof.

@ The phase manifold for the evolution is given by

PM = {(u, h) € H(Q)9 x W:_%(Z): divu = Fy(u, h)}
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Weak Solutions — Definition

(vixo 1) € L2(0, T HY(Q)) x L3 (0, T3 BV(Q) x L*(0, T; HY(Q))
is a weak solution of the Navier-Stokes/Mullins-Sekerka system if

Orv+ v - Vv —div(v(x)Dv) + Vp=uVx  in D'(2 x (0, 00)),
divv=0 in D'(Q x (0, 00)),
Oex +v-Vyx = moAp, in D'(Q x (0,0)),

and %,u\a*{le} is the generalized mean curvature of 9*{x = 1}, which is
defined with the aid of inner variations.
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Weak Solutions — Definition

(v,x, 1) € L2(0, T; H{(Q)) x L35.(0, T; BV(Q)) x L(0, T; HY(Q))
is a weak solution of the Navier-Stokes/Mullins-Sekerka system if
v+ v - Vv —div(v(x)Dv) + Vp=uVx  in D'(Q x (0,00)),
divv=0 in D'(Q x (0, 00)),
Oex +v-Vx =meAp, inD'(Qx(0,0)),

and %,u\a*{le} is the generalized mean curvature of 9*{x = 1}, which is
defined with the aid of inner variations.

Theorem (A. & Roger '09)

Let vo € L2(T9), xo € BV(T9;{0,1}), d = 2,3, T > 0. Then there exists
a weak solutions (v, x, j) of the Navier-Stokes/Mullins-Sekerka system
with Q = T9. Moreover, tloxfx(t,)=1} € L*(T9, d|Vx(t)|) and

9*{x(t,.) = 1} has generalized mean curvature ..

Note: If m = 0, existence of weak solution is open, cf. A. '07.
~ Helmut Abels (U Regensburg) | Sharp and Diffuse Interface Models  [SYZ RPN TS RN ZWA ;]



Proof: Semi-Implicit Time Discretization

Let Xkt+1 = XE,,, be the minimizer of F": BV(T9; {0,1}) — R

ey, 1
Fi(xe) = oH O E) + o lIx = xu + hvic- Vb1 (rey

under the constraint [, x£ dx = |Qo|.

Moreover, let vy 41 € HL(T9) solve

h(v — Vi, @)rd + (Vi - Vv, 0)1a + (V(xk) DV, Dp)pa = —(xk Vi, ©) 1
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Proof: Semi-Implicit Time Discretization

Let Xkt+1 = XE,,, be the minimizer of F": BV(T9; {0,1}) — R

ey, 1
Fi(xe) = oH O E) + o lIx = xu + hvic- Vb1 (rey

under the constraint [, x£ dx = |Qo|.

Moreover, let vy 41 € HL(T9) solve

1
E(V — Vi, @)rd + (Vi - Vv, 0)1a + (V(xk) DV, Dp)pa = —(xk Vi, ©) 1

Consequences:

© Curvature equation:

oHi41 = M2+1 + M1 on 0" Epiq, (64)
where 19,1 == A7 (F(Xkt1 — Xk) + Vi - Vxk).
@ Discrete (perturbed) energy estimate

Main problem: Passing to the limit in mean curvature equation (64).
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Proof: Passing to the Limit in Mean Curvature

Fundamental problem:

—
VXEy(t) —h—oo VXE() IN D' Td) | \ K :
IVXE,(t)] ~hooo B(E) i M(T%)

B0 H B B | B
A h—0 ;
Then [Vxg(y| < 6(t). AN ,\
But in general [Vxg()| # 0(t)! % \\ : _//\¥
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Proof: Passing to the Limit in Mean Curvature

Fundamental problem:

—
VXEh(t) —h—o00 vXE(t) in D,(Td) \\ (ﬁ \/
[

IVXE,(t)] —hosoo O(E) N M(Td) ) Eff)
~ h—0
|

Then [Vxg| < 0(t). A ;\
But in general [Vxg()| # 0(t)! // \\ _//

!
B ( B
|

\
\¥
Schitzle '01 = Since up(t) —p_o p(t) in HY(Q), 6(t) is an integral

varifold with weak mean curvature Hy(;y € L*(d6(t)) and Hp(y) = p(t)v(t)
holds 6(t)-almost everywhere, with

VXE(t) %
v(t, ") = {|V><E(r)| on (),

0 elsewhere.
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Overview of Analytic Results (Case of Same Densities)

Existence of local strong/global weak solutions:

m=20 m>0
€ = 0 | Classical Sharp Interface Model | Navier-Stokes/Mullins-Sekerka
local strong solutions local strong & global weak sol.
e>0 Diffuse Interface Model Diffuse Interface Model
local strong solutions local strong & global weak sol.

NB: If m =0, then existence of global weak solutions is open independent
of e =0 or € > 0! — So far only solutions in sense of general varifolds if

e =0, cf. Plotnikov '93, A. '07 (Interfaces Free Bound.).

References:

e = m = 0: Denisova & Solonnikov '91, Tanaka '93

e > 0, m > 0: Starovoitov '93, Boyer '03, Feng '06, A. '07/'09
e=0,m>0: A. & Roger '09, A. & Wilke '11
e>0,m=0: A. & Terasawa '09
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