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Hydrodynamic limits of the Boltzmann equation

The Boltzmann equation

Formulation

The Boltzmann equation

I A kinetic model for perfect gases

• a statistical description of the microscopic state of the gas

f ≡ f (t, x , v)

density of particles having position x and velocity v at time t

• an evolution driven by binary interactions

∂t f + v · ∇x f︸ ︷︷ ︸
free transport

= Q(f , f )︸ ︷︷ ︸
localized elastic collisions

Q(f , f ) =

∫∫
[f (v ′)f (v ′∗)︸ ︷︷ ︸

gain term

− f (v)f (v∗)]︸ ︷︷ ︸
loss term

b(v − v∗, ω)dv∗dω
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The Boltzmann equation

Formulation

The pre-collisional velocities v ′ and v ′∗ are parametrized by ω ∈ S2

v ′ + v ′∗ = v + v∗, |v ′|2 + |v ′∗|2 = |v |2 + |v∗|2

The cross-section b depends on the microscopic potential of interaction

b(v − v∗, ω) = |(v − v∗) · ω| for hard spheres

It is supposed to satisfy Grad’s cutoff assumption

0 < b(z , ω) ≤ Cb(1 + |z |)β | cos(ẑ , ω)| a.e. on R3 × S2 ,∫
S2

b(z , ω)dω ≥ 1

Cb

|z |
1 + |z |

a.e. on R3 .
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The Boltzmann equation

The conservation laws

I The conservation laws
• Symmetries of the collision operator
- the pre-post collisional change of variables

(v ′, v ′∗, ω) 7→ (v , v∗, ω)

is involutive, has unit Jacobian ;
- it leaves the cross-section invariant

b(v − v∗, ω) ≡ b(|v − v∗|, |(v − v∗) · ω|)

Therefore∫
Q(f , f )ϕ(v)dv =

1

4

∫∫∫
b(v−v∗, ω)(f ′f ′∗−ff∗)(ϕ+ϕ∗−ϕ′−ϕ′∗)dvdv∗dω

• The collision invariants

∀f ∈ Cc(R3),

∫
R3

Q(f , f )ϕ(v)dv = 0 ⇔ ϕ ∈ Vect{1, v1, v2, v3, |v |2}.
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The Boltzmann equation

The conservation laws

• Local conservation of mass, momentum and energy

∂t

∫
R3

fdv +∇x ·
∫

R3

vfdv = 0,

∂t

∫
R3

vfdv +∇x ·
∫

R3

v ⊗ vfdv = 0,

∂t

∫
R3

1

2
|v |2fdv +∇x ·

∫
R3

1

2
|v |2vfdv = 0,

- reminiscent of the Euler equations for compressible perfect gases

∂tR +∇x · (RU) = 0,

∂t(RU) +∇x · (RU ⊗ U + P) = 0,

∂t
1

2
(R|U|2 + Tr(P)) +∇x ·

∫
R3

1

2
|v |2vfdv = 0
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The Boltzmann equation

Boltzmann’s H-theorem

I Boltzmann’s H-theorem

• Symmetries of the collision operator

D(f )
def
= −

∫
Q(f , f ) log fdv

=
1

4

∫
B(v − v∗, ω)(f ′f ′∗ − ff∗) log

f ′f ′∗
ff∗

dvdv∗dω ≥ 0

• Thermodynamic equilibria

Let f ∈ C (R3) such that∫
fdv = R,

∫
vfdv = RU and

∫
|v |2fdv = R(|U|2 + 3T ) .

Then

D(f ) = 0 ⇔ f minimizer of

∫
f log fdv

⇔ f (v) =MR,U,T (v) =
R

(2πT )3/2
exp

(
−|v − U|2

2T

)
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The Boltzmann equation

Boltzmann’s H-theorem

• Local decay of entropy

∂t

∫
R3

f log fdv +∇x ·
∫

R3

vf log fdv =

∫
Q(f , f ) log f ≤ 0,

- reminiscent of Lax-Friedrichs criterion that selects admissible solutions
of the compressible Euler equations

∂tS + U · ∇xS ≤ 0,

S = log
Tr(P)

R
.

- suggests that f (t) should relax towards global (in x) thermodynamic
equilibrium as t →∞.
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Hydrodynamic regimes

Physical parameters and scalings

Hydrodynamic regimes
I Physical parameters and scalings

Length scales

• lo observation length scale (macroscopic)

• λ mean free path (mesoscopic)

• δl size of the particles (microscopic) neglected

Velocity scales

• uo bulk velocity (macroscopic)

• c thermal speed (mesoscopic) related to the temperature T

Time scales

• to observation time scale (macroscopic)

• τ average time between two collisions (mesoscopic) related to the
density ρ

• δt duration of a collision process (microscopic) neglected
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Hydrodynamic regimes

Physical parameters and scalings

Nondimensional parameters

• the Mach number Ma =
uo

c
measures the compressibility of the gas

• the Strouhal number St =
lo

cto

Ma = St in the sequel (nonlinear dynamics)

• the Knudsen number Kn =
λ

lo
measures the adiabaticity of the gas

• the Reynolds number Re measures the viscosity of the gas

Re =
Ma
Kn

for perfect gases

Nondimensional form of the Boltzmann equation

St∂t f + v · ∇x f =
1

Kn
Q(f , f )
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Hydrodynamic regimes

Qualitative behaviour of the Boltzmann equation

I Qualitative behaviour of the Boltzmann equation
Fast relaxation asymptotics Kn→ 0
local thermodynamic equilibrium is reached almost instantaneously

f (t, x , v) ∼ R(t, x)

(2πT (t, x))3/2
exp

(
−|v − U(t, x)|2

2T (t, x)

)
the state of the gas is determined by the thermodynamic fields R, U, T
⇒ the Knudsen number Kn governs the transition from kinetic theory to
fluid dynamics

Main features of the macroscopic flow

• Ma ∼ 1 : compressible inviscid

• Ma << 1 and Ma >> Kn : incompressible inviscid

• Ma ∼ Kn : incompressible viscous

⇒ the Mach number Ma determines the fluid regime
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Hydrodynamic regimes

The compressible Euler limit

I The compressible Euler limit

Hilbert’s (formal) expansion

f (t, x , v) =Mf (t, x , v) + O(Kn)

(provided that Q satisfies good relaxation estimates)

The asymptotic conservation laws

Ma∂tR +∇x · (RU) = 0

Ma∂tRU +∇x · (RU ⊗ U + RT ) = O(Kn)

Ma∂t

(
1

2
R|U|2 +

3

2
RT

)
+∇x ·

(
1

2
R|U|2U +

5

2
RTU

)
= O(Kn)

(computing the moments of MR,U,T , i.e. the pressure and the energy
flux, in terms of the thermodynamic fields R, U, T )
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Hydrodynamic regimes

Corrections to the first hydrodynamic approximation

I Corrections to the first hydrodynamic approximation

Chapman-Enskog’s expansion

f (t, x , v) =Mf (t, x , v)

1 +
∑
k≥1

(Kn)kgk(t, x , v)


(requires knowing in advance that the successive corrections are systems
of local conservation laws)

The Navier-Stokes equations

Ma∂tR +∇x · (RU) = 0

Ma∂tRU +∇x · (RU ⊗ U + RT ) = Kn∇x · (µ(R,T )DU)

Ma∂t

(
1

2
R|U|2 +

3

2
RT

)
+∇x ·

(
1

2
R|U|2U +

5

2
RTU

)
= Kn∇x · (κ(R,T )∇xT ) + Kn∇x · (µ(R,T )DU · U)

obtained by solving the Fredholm equation

2Q(Mf ,Mf g1) = St∂tMf + v · ∇xMf
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Hydrodynamic regimes

Corrections to the first hydrodynamic approximation

  

     Scaled Boltzmann equation

compressible Euler equations
(+ viscous correction O(Kn))

incompressible Euler equations incompressible Navier-Stokes equations

AROUND A GLOBAL EQUILIBRIUM

FAST RELAXATION LIMIT Kn<<1

INCOMPRESSIBLE LIMIT Ma<<1

Kn<<Ma Kn~Ma
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Formal derivation of the incompressible fluid limits

Considering fluctuations

Formal derivation of the incompressible fluid limits

I Considering fluctuations around a global equilibrium M

The relative entropy

H(f |M) =

∫∫ (
f log

f

M
− f + M

)
dvdx

• By the global conservation of mass, momentum and energy, and
Boltzmann’s H Theorem, it is uniformly bounded

H(f |M) ≤ H(fin|M)

• It is expected to control the size of the fluctuation g defined by

f = M(1 + Mag)

Define h(z) = (1 + z) log(1 + z)− z . Formally

H(f |M) =

∫∫
Mh(Mag)dvdx ∼ 1

2
Ma2

∫∫
Mg 2dvdx
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Formal derivation of the incompressible fluid limits

Considering fluctuations

Young’s inequality

Assume that
H(fin|M) ≤ CinMa2.

Starting from Young’s inequality

pz ≤ h∗(p) + h(z) , ∀p, z ≥ 0 ,

we get, using the superquadraticity of h∗,

M|g |(1 + |v |2) ≤ 4
M

Ma2

(
h(Mag) + h∗

(
Ma
4

(1 + |v |2)

))
≤ 4

M

Ma2 h(Mag) + 4Mh∗
(

1

4
(1 + |v |2)

)
meaning that

g ∈ L∞t (L1
loc(dx , L1(M(1 + |v |2)dv)))
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Formal derivation of the incompressible fluid limits

Relaxing towards local thermodynamic equilibrium

I Relaxing towards local thermodynamic equilibrium

The scaled Boltzmann equation

Ma∂tg + v · ∇xg = − 1

Kn
LMg +

Ma
Kn

1

M
Q(Mg ,Mg)

where LM is the linearized collision operator defined by

LMg = − 2

M
Q(M,Mg).

The thermodynamic constraint
In the limit Kn→ 0, Ma→ 0, we have formally

LMg = 0

(rigorous for instance if g is bounded in some weighted L2-space)
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Formal derivation of the incompressible fluid limits

Relaxing towards local thermodynamic equilibrium

The linearized collision operator (see [Grad])
• Hilbert’s decomposition

LMg(v) = ν(|v |)g(v)−Kg(v)

where 0 < ν− ≤ ν(|v |) ≤ ν+(1 + |v |)β , and K is a compact operator
(under Grad’s cut-off assumption)

• Fredholm alternative
LM is a nonnegative unbounded self-adjoint operator on L2(Mdv) with

D(LM) = {g ∈ L2(Mdv) | νg ∈ L2(Mdv)}

Ker(LM) = Span{1, v1, v2, v3, |v |2} .

• Coercivity estimate
For each g ∈ D(LM) ∩ (Ker(LM))⊥∫

gLMg(v)M(v)dv ≥ C‖g‖2
L2(Mνdv) .
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Formal derivation of the incompressible fluid limits

Deriving the macroscopic constraints

I Deriving the macroscopic constraints

The scaled conservation laws

Ma∂t

∫
Mgdv +∇x ·

∫
vMgdv = 0

Ma∂t

∫
vMgdv +∇x ·

∫
v ⊗ vMgdv = 0

Ma∂t

∫
|v |2Mgdv +∇x ·

∫
v |v |2Mgdv = 0

The macroscopic constraints
In the limit Kn→ 0, Ma→ 0, we have in particular

∇x ·
∫

vMgdv = 0

∇x ·
∫

v ⊗ vMgdv = 0
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Formal derivation of the incompressible fluid limits

Deriving the macroscopic constraints

In terms of the thermodynamic fields
Plugging the Ansatz

g(t, x , v) = ρ(t, x) + u(t, x) · v + θ(t, x)
|v |2 − 3

2

coming from the thermodynamic constraint, we get

• the incompressibility relation

∇x · u = 0;

• the Boussinesq relation

∇x(ρ+ θ) = 0.

Constraints obtained in the zero Mach limit for quasi-homogeneous flows
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Formal derivation of the incompressible fluid limits

Taking limits in the evolution equations

I Taking limits in the evolution equations

The suitable evolution equations
Because of the macroscopic constraints, it is enough to study the
asymptotics of the following combinations

∂tP
∫

vMgdv +
1

Ma
P∇x ·

∫
(v ⊗ v − 1

3
|v |2Id)Mgdv = 0

∂t

∫
(|v |2 − 5)Mgdv +

1

Ma
∇x ·

∫
v(|v |2 − 5)Mgdv = 0

Let us define the kinetic fluxes

φ(v) = v ⊗ v − 1

3
|v |2Id ∈ (KerLM)⊥ ⇒ φ = LM φ̃

ψ(v) = v(|v |2 − 5) ∈ KerLM ⇒ ψ = LM ψ̃

Because LM is self-adjoint and LMg = O(Ma), the momentum and
enegy fluxes are bounded.
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Formal derivation of the incompressible fluid limits

Taking limits in the evolution equations

Diffusion and convection terms
The kinetic equation gives

LMg = Ma
1

M
Q(Mg ,Mg)−Knv · ∇xg + O(KnMa)

Plugging that Ansatz in the fluxes leads to

1

Ma

∫
ζMgdv =

1

Ma

∫
ζ̃MLMgdv

=

∫
ζ̃Q(Mg ,Mg)dv︸ ︷︷ ︸

convection

− Kn
Ma

∫
ζ̃(v · ∇x)Mgdv︸ ︷︷ ︸
diffusion

+O(Kn)

The (formal) limiting equations
In the limit Kn→ 0, Ma→ 0, the thermodynamic constraint gives

∂tPu + P∇x · (u ⊗ u) =

(
lim

Kn
Ma

)
µ∆xu,

∂t(3θ − 2ρ) + 5∇x · (θu) = 5

(
lim

Kn
Ma

)
κ∆xθ
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Some mathematical difficulties

The mathematical difficulties

RELAXATION OSCILLATIONS

SMOOTHING

t

t

x

Kn

Ma

(Re) -1/2
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