On Solvability of a non-linear heat equation with non-integrable convective term and the right-hand side involving measures

Josef Málek

Mathematical Intitute of the Charles University Sokolovská 83, 186 75 Prague 8, Czech Republic

June 19, 2008

References

[F1] **M. Bulíček**, **E. Feireisl**, J. Málek: Navier-Stokes-Fourier system for incompressible fluids with temperature dependent material coefficients, to appear in *Nonlinear Analysis and Real World Applications*, 2008.

[F2] **M. Bulíček**, J. Málek, **K. R. Rajagopal**: Mathematical analysis of unsteady flows of fluids with pressure, shear-rate and temperature dependent material moduli, that slip at solid boundaries, *preprint at* http://ncmm.karlin.mff.cuni.cz

[F3] **M. Bulíček**, **L. Consiglieri**, J. Málek: Slip boundary effects on unsteady flows of incompressible viscous heat conducting fluids with a nonlinear internal energy-temperature relationship

[Q1] **M. Bulíček, L. Consiglieri**, J. Málek: On Solvability of a non-linear heat equation with a non-integrable convective term and the right-hand side involving measures

Problem formulation/1

$$\begin{aligned} e_{,t} + \operatorname{div}(e\mathbf{v}) + \operatorname{div}\mathbf{q}(\cdot, e, \nabla e) &= f \ge 0 & \text{in } Q := (0, T) \times \Omega \\ e(0, x) &= e_0(x) \ge c > 0 & \text{in } \Omega \end{aligned}$$
(*)

 $\mathbf{q}(t, x, e(t, x), \nabla e(t, x)) \cdot \mathbf{n}(x) = 0 \qquad (0, T) \times \partial \Omega$

- for all $(e, \mathbf{u}) \in \mathbb{R} \times \mathbb{R}^d$: $\mathbf{q}(\cdot, e, \mathbf{u})$ is measurable,
- for almost all $(t, x) \in Q$: $\mathbf{q}(t, x, \cdot, \cdot)$ is continuous in $\mathbb{R} \times \mathbb{R}^d$,
- there are $C_1, C_2 > 0$ such that for all $(e, \mathbf{u}) \in \mathbb{R} \times \mathbb{R}^d$ $\mathbf{q}(\cdot, e, \mathbf{u}) \cdot \mathbf{u} \ge C_1 |\mathbf{u}|^q$ and $|\mathbf{q}(\cdot, e, \mathbf{u})| \le C_2 |\mathbf{u}|^{q-1}$,
- for all $e \in \mathbb{R}$ and for all $\mathbf{u}_1, \mathbf{u}_2 \in \mathbb{R}^d$, $\mathbf{u}_1 \neq \mathbf{u}_2$ $(\mathbf{q}(\cdot, e, \mathbf{u}_1) - \mathbf{q}(\cdot, e, \mathbf{u}_2)) \cdot (\mathbf{u}_1 - \mathbf{u}_2) > 0$.

Problem formulation/2

$$\begin{split} e_{,t} + \operatorname{div}(e\mathbf{v}) + \operatorname{div}\mathbf{q}(\cdot, e, \nabla e) &= f \ge 0 & \text{in } Q := (0, T) \times \Omega \\ e(0, x) &= e_0(x) > 0 & \text{in } \Omega \\ \mathbf{q}(t, x, e(t, x), \nabla e(t, x)) \cdot \mathbf{n}(x) &= 0 & (0, T) \times \partial \Omega \end{split}$$

Data: $\Omega \subset \mathbb{R}^d$ with Lipschitz boundary, $T \in (0,\infty)$

$$\begin{split} \mathbf{e}_0 &\in L^1(\Omega) \\ f &\in L^1(Q) \quad \text{or} \quad M(Q) := (C(\overline{Q}))^* \\ \mathbf{v} &\in L^r(0, T; \mathbf{L}^s(\Omega)) \quad (1 \leq r, s \leq \infty) \\ &\quad \text{div} \, \mathbf{v} = 0 \text{ in } Q, \quad \mathbf{v} \cdot \mathbf{n} = 0 \text{ on } (0, T) \times \partial \Omega \end{split}$$

Task: Large data mathematical theory (notion of solution, its existence,uniqueness, ...) to Problem \mathcal{P} , for any set of data and for largest class ofconstitutive relations

Málek (Charles University in Prague) On nonlinear convection-diffusion equation

4 / 29

Approximations and apriori estimates/1

$$\begin{aligned} e_{,t}^{n} + \operatorname{div}(e^{n}\mathcal{H}_{n}(\mathbf{v})) + \operatorname{div}\mathbf{q}(\cdot, e^{n}, \nabla e^{n}) &= f^{n} \geq 0 \\ e^{n}(0, \cdot) &= e_{0}^{n} > 0 \qquad \text{[ic]} \quad (\mathcal{P}_{n}) \\ \mathbf{q}(\cdot, e^{n}, \nabla e^{n}) \cdot \mathbf{n}(x) &= 0 \qquad \text{[bc]} \end{aligned}$$

where

$$\begin{aligned} \mathcal{H}_{n}(\mathbf{v}) &:= (\chi_{n}\mathbf{v}) \ast \omega_{n} - \nabla \eta_{n} \implies \operatorname{div} \mathcal{H}_{n}(\mathbf{v}) = 0 \quad \text{and} \quad \mathcal{H}_{n}(\mathbf{v}) \cdot \mathbf{n} = 0 \\ \implies \mathcal{H}_{n}(\mathbf{v}) \in L^{\infty}(0, T; \mathbf{L}^{k}(\Omega)) \quad \forall k \in [1, \infty) \\ \implies \mathcal{H}_{n}(\mathbf{v}) \rightarrow \mathbf{v} \in L^{r}(0, T; \mathbf{L}^{s}(\Omega)) \\ f^{n} \in L^{\infty}(Q) \qquad f^{n} \rightarrow f \text{ in } M(Q) \text{ or in } L^{1}(Q) \\ 0 < e_{0}^{n} \in L^{\infty}(\Omega) \qquad e_{0}^{n} \rightarrow e_{0} \text{ in } L^{1}(\Omega) \end{aligned}$$

June 19, 2008 5 / 29

(日) (同) (三) (三)

э

Approximations and apriori estimates/2

$$\begin{split} e_{,t}^{n} + \operatorname{div}(e^{n}\mathcal{H}_{n}(\mathbf{v})) + \operatorname{div}\mathbf{q}(\cdot, e^{n}, \nabla e^{n}) &= f^{n} \geq 0 \\ e^{n}(0, \cdot) &= e_{0}^{n} > 0 \qquad \text{[ic]} \quad (\mathcal{P}_{n}) \\ \mathbf{q}(\cdot, e^{n}, \nabla e^{n}) \cdot \mathbf{n}(x) &= 0 \qquad \text{[bc]} \end{split}$$

Truncation operators

$$egin{aligned} T_k(z) &:= egin{cases} z & ext{if } |z| \leq k, \ ext{sign}(z)k & ext{if } |z| > k, \ T_{k,\delta}(z) &:= egin{cases} z & ext{if } |z| \leq k, \ ext{sign}(z)(k+\delta/2) & ext{if } |z| > k+\delta \ \end{aligned}$$

such that $T_{k,\delta} \in \mathcal{C}^2(\mathbb{R})$, $0 \leq T'_{k,\delta} \leq 1$.

$$\Theta_k(s) := \int_0^s T_k(t) dt, \qquad \Theta_{k,\delta}(s) := \int_0^s T_{k,\delta}(t) dt.$$

Málek (Charles University in Prague) On nonlinear convection-diffusion equation

Approximations and apriori estimates/3

$$\begin{split} e_{,t}^{n} + \operatorname{div}(e^{n}\mathcal{H}_{n}(\mathbf{v})) + \operatorname{div}\mathbf{q}(\cdot, e^{n}, \nabla e^{n}) &= f^{n} \geq 0 \\ e^{n}(0, \cdot) &= e_{0}^{n} > 0 \qquad \text{[ic]} \quad (\mathcal{P}_{n}) \\ \mathbf{q}(\cdot, e^{n}, \nabla e^{n}) \cdot \mathbf{n}(x) &= 0 \qquad \text{[bc]} \end{split}$$

For any $\lambda > 0$

$$\mathcal{E} := \left\{ e \geq 0; \quad e \in L^{\infty}(0, T; L^{1}(\Omega)), \quad \nabla(1+e)^{\frac{q-1-\lambda}{q}} \in L^{q}(0, T; L^{q}(\Omega)^{d}) \right\}$$

$$\begin{split} \|e^n\|_{\mathcal{E}} &\leq C \implies \|\,|e^n|^{q-1}\,\|_{L^1(Q)} \leq C \quad \text{ if } q > \frac{2d+1}{d+1} \\ &\|\nabla T_k(e^n)\|_{L^q(Q)} \leq C. \\ &\|T_k(e^n)_t\|_{L^1(0,T;(W^{1,z})^*)} \leq C, \quad \text{ for sufficiently large } z. \end{split}$$

Consequently,

 $e^n \to e$ almost everywhere in Q

Málek (Charles University in Prague) On nonlinear convection-diffusion equation

Weak Solution

Let
$$q > \frac{2d+1}{d+1}$$
 and $\mathbf{v} \in L^r(0, T; \mathbf{L}^s(\Omega))$ with

$$\frac{r'}{s} < \frac{q(d+1)-2d}{d} \quad \text{and} \quad s > \frac{d(q-1)}{q(d+1)-2d}$$

We say that:

 $e \in \mathcal{E}$ is a *weak solution* to Problem (\mathcal{P}) if for all $\varphi \in \mathcal{D}(-\infty, T; \mathcal{C}^{\infty}(\overline{\Omega}))$ $-(e, \varphi_{,t})_{Q} + (\mathbf{q}(\cdot, e, \nabla e), \nabla \varphi)_{Q} = \langle f, \varphi \rangle + (e\mathbf{v}, \nabla \varphi)_{Q} + (e_{0}, \varphi(0))_{\Omega}$

Theorem (Bulíček, Consiglieri, Málek)

There exists a weak solution to Problem (\mathcal{P}) .

Entropy solution

Let q > 1 and $\mathbf{v} \in L^1(0, T; \mathbf{L}^1(\Omega))$ and $f \in L^1(Q)$. We say that:

 $e \in \mathcal{E}$ is an *entropy solution* to Problem (\mathcal{P}) if for a.a. $t \in (0, T)$

$$\begin{split} \langle \varphi_{,t}, T_k(e-\varphi) \rangle_{Q_t} &+ \int_{\Omega} \Theta_k(e(t) - \varphi(t)) + (\mathbf{q}(\cdot, e, \nabla e), \nabla T_k(e-\varphi))_{Q_t} \\ &\leq (T_k(e-\varphi)\mathbf{v}, \nabla \varphi)_{Q_t} + (f, T_k(e-\varphi))_{Q_t} + \int_{\Omega} \Theta_k(e(0) - \varphi(0)) \ dx \\ &\text{for all } \varphi \in L^{\infty}(0, T; W^{1,\infty}(\Omega)) \text{ with } \varphi_{,t} \in L^{q'}(0, T; W^{-1,q'}(\Omega)) \end{split}$$

Theorem (Bulíček, Consiglieri, Málek)

There exists an entropy solution to Problem (\mathcal{P}) . This solution is unique in the class of entropy solutions provided that $\mathbf{v} \in L^{q'}(Q)$ and \mathbf{q} does not explicitly depends on e.

Results and their relation to earlier studies

 $e_{t} + \operatorname{div}(e\mathbf{v}) + \operatorname{div}\mathbf{q}(\cdot, e, \nabla e) = f \ge 0$ **v** given with $\operatorname{div}\mathbf{v} = 0$

Theorem W/a. (Bocardo, Murat '92) $\operatorname{div}(\mathbf{v}\theta) \in L^1$, f non-negative measure \implies existence of weak solution. Theorem W/b. (Diening, Růžička, Wolf '08) $\mathbf{v}\theta \in L^1$, $f \in L^{q'}(0, T; W^{-1,q'}) \implies$ existence of weak solution. Theorem W/c. (Bulíček, Consiglieri, Málek '08) $\mathbf{v}\theta \in L^1$, f non-negative measure \implies existence of weak solution. Theorem E/a. (Prignet '97) $\mathbf{v} = \mathbf{0}, f \in L^1(Q) \implies$ existence and uniqueness of entropy solution. **Theorem E/b.** (Bulíček, Consiglieri, Málek '08) $\mathbf{v} \in L^1(Q), f \in L^1(Q) \implies$ existence of entropy solution. $\mathbf{v} \in L^{q'}(Q)$, $\mathbf{q} = \mathbf{q}(\cdot, \nabla e)$ and $f \in L^1(Q) \implies$ uniqueness.

Key step: almost everywhere convergence of $\{e^n\}$

Theorem

Let given **q** fulfil the assumptions with q > 1 and $\mathbf{v} \in L^1(Q)$. Assume that $\{|e^n|\}_{n=1}^{\infty}$ is bounded in \mathcal{E} , $\{f^n\}_{n=1}^{\infty}$ is bounded in $L^1(0, T; L^1(\Omega))$, and

$$\begin{aligned} \langle T_{k,\delta}(e^n)_{,t},\varphi\rangle + (\mathbf{q}(\cdot,e^n,\nabla e^n),\nabla(T'_{k,\delta}(e^n)\varphi))_Q \\ &= (f^n T'_{k,\delta}(e^n),\varphi)_Q + (e^n \mathcal{H}_n(\mathbf{v}),\nabla(T'_{k,\delta}(e^n)\varphi))_Q, \\ & for \ all \ \varphi \in L^{\infty}(0,T; \ W^{1,\infty}_0(\Omega)) \ and \ all \ k,\delta \in \mathbb{R}_+. \end{aligned}$$

Then there exists a subsequence e^n and e:

$$|e| \in \mathcal{E} \text{ and } \nabla e^n \rightarrow \nabla e \text{ a.e. in } Q$$

Key tool: Lipschitz approximations of Bochner functions/1

Lemma. Let for $1 < q < \infty$

 $u \in L^{\infty}(0, T; L^{2}(\Omega)) \cap L^{q}(0, T; W^{1,q}(\Omega))$ $f \in L^{1}(Q)$ $\mathbf{q} \in L^{q'}(0, T; \mathbf{L}^{q'})$

fulfil

$$u_{t} = \operatorname{div} \mathbf{q} + f \quad \operatorname{in} \, \mathcal{D}'(Q) \, .$$

Moreover, let $E \subset \subset Q$ be an open set such that

$$\mathcal{M}^{\alpha}(|\nabla u|) + \alpha \mathcal{M}^{\alpha}(|\mathbf{q}|) + \alpha \mathcal{M}^{\alpha}(|f|) \leq \mathcal{C} < +\infty, \quad \text{a.e. in } Q \setminus \mathcal{E}.$$
 (1)

Then there holds

$$\nabla \mathcal{L}_{E}^{\alpha} u \in L^{\infty}(0, T; L^{\infty}(\Omega))$$
$$\partial_{t} \left(\mathcal{L}_{E}^{\alpha} u \right) \left(\mathcal{L}_{E}^{\alpha} u - u \right) \in L^{1}_{loc} \left(Q \right)$$

June 19, 2008 12 / 29

Key tool: Lipschitz approximations of Bochner functions/2

and for all $\phi_1 \in \mathcal{C}^\infty_0(\Omega)$ and all $\phi_2 \in \mathcal{C}^\infty_0(0, \mathcal{T})$

$$\int_{0}^{T} \langle \partial_{t} u, T_{\varepsilon}(\mathcal{L}_{E}^{\alpha}u)\phi_{1}\rangle\phi_{2} dt = -\int_{Q} \Theta_{\varepsilon}(\mathcal{L}_{E}^{\alpha}u)\phi_{1}(\partial_{t}\phi_{2}) dx dt$$
$$-\int_{Q} (u - \mathcal{L}_{E}^{\alpha}u)\partial_{t} (T_{\varepsilon}(\mathcal{L}_{E}^{\alpha}u))\phi_{1}\phi_{2} dx dt$$
$$-\int_{Q} (u - \mathcal{L}_{E}^{\alpha}u) T_{\varepsilon}(\mathcal{L}_{E}^{\alpha}u)\phi_{1}(\partial_{t}\phi_{2}) dx dt$$

Proof is a minor (important) generalization (due to BCM) of the assertion due to **Diening**, **Růžička and Wolf (2008)**.

Theorem. (Diening, Málek, Steinhauer '08 inspired by Frehse, Málek, Steinhauer '03) Let $1 < q < \infty$ and $\Omega \in C^{0,1}$. Let

$$\mathbf{u}^n \in W^{1,q}_0(\Omega)^d$$
 and $\mathbf{u}^n \to \mathbf{0}$ weakly in $W^{1,q}_0(\Omega)^d$.

$$\begin{split} \mathcal{K} &:= \sup_{n} \|\mathbf{u}^{n}\|_{1,q} < \infty, \\ \gamma_{n} &:= \|\mathbf{u}^{n}\|_{q} \to 0 \qquad (n \to \infty). \end{split}$$

Let $\theta_n > 0$ be such that (e.g. $\theta_n := \sqrt{\gamma_n}$)

$$\theta_n \to 0$$
 and $\frac{\gamma_n}{\theta_n} \to 0$ $(n \to \infty)$.

Let $\mu_j := 2^{2^j}$.

Set

Then there exists a sequence $\lambda_{n,j} > 0$ with

$$\mu_j \le \lambda_{n,j} \le \mu_{j+1},$$

and a sequence $\mathbf{u}^{n,j} \in W^{1,\infty}_0(\Omega)^d$ such that for all $j,n\in\mathbb{N}$

$$\|\mathbf{u}^{n,j}\|_{\infty} \leq \theta_n \to 0 \qquad (n \to \infty),$$
$$\|\nabla \mathbf{u}^{n,j}\|_{\infty} \leq c \,\lambda_{n,j} \leq c \,\mu_{j+1}$$

and

$$\{\mathbf{u}^{n,j}\neq\mathbf{u}^n\}\subset\Omega\cap(\{M\mathbf{u}^n>\theta_n\}\cup\{M(\nabla\mathbf{u}^n)>2\lambda_{n,j}\}),\$$

and for all $j \in \mathbb{N}$ and $n \to \infty$

$$\begin{split} \mathbf{u}^{n,j} &\to \mathbf{0} \quad \text{strongly in } L^s(\Omega)^d \text{ for all } s \in [1,\infty], \\ \mathbf{u}^{n,j} &\to \mathbf{0} \quad \text{weakly in } W^{1,s}_0(\Omega)^d \text{ for all } s \in [1,\infty), \\ \nabla \mathbf{u}^{n,j} \stackrel{*}{\to} \mathbf{0} \quad \text{weakly-} * \text{ in } L^\infty(\Omega)^{d \times d}. \end{split}$$

Furthermore, for all $n, j \in \mathbb{N}$

$$|\{\mathbf{u}^{n,j}\neq\mathbf{u}^n\}|_d\leq\frac{c\|\mathbf{u}^n\|_{1,q}^q}{\lambda_{n,j}^q}+c\left(\frac{\gamma^n}{\theta^n}\right)^q$$

and

$$\|\nabla \mathbf{u}^{n,j} \chi_{\{\mathbf{u}^{n,j}\neq\mathbf{u}^n\}}\|_{q} \leq c \, \|\lambda_{n,j}\chi_{\{\mathbf{u}^{n,j}\neq\mathbf{u}^n\}}\|_{q} \leq c \, \frac{\gamma_n}{\theta_n} \, \mu_{j+1} + c \, \epsilon_j,$$

where $\epsilon_j := K 2^{-j/q}$ vanishes as $j \to \infty$. The constant *c* depends on Ω .

The gradient of any function $\phi \in W^{1,1}_{loc}(\Omega)$, that is constant on some measurable subset of Ω , vanishes on this set. Consequently for $\phi := \mathbf{u}^{nj}$

$$\nabla \mathbf{u}^{n,j} = \nabla (\mathbf{u}^{n,j} - \mathbf{u}^n) + \nabla \mathbf{u}^n = (\nabla \mathbf{u}^{n,j} - \nabla \mathbf{u}^n) \chi_{\{\mathbf{u}^{n,j} \neq \mathbf{u}^n\}} + \nabla \mathbf{u}^n$$
$$= \nabla \mathbf{u}^{n,j} \chi_{\{\mathbf{u}^{n,j} \neq \mathbf{u}^n\}} + \nabla \mathbf{u}^n \chi_{\{\mathbf{u}^{n,j} = \mathbf{u}^n\}}.$$

In particular this implies that

if div
$$\mathbf{u}^n = \mathbf{0}$$
 then div $\mathbf{u}^{n,j} = \operatorname{div} \mathbf{u}^{n,j} \chi_{\{\mathbf{u}^{n,j} \neq \mathbf{u}^n\}}$.

Relation to analysis of unsteady flows of heat-conducting incompressible ${\rm fluids}/1$

$$\operatorname{div} \mathbf{v} = 0 \tag{2}$$

$$\mathbf{v}_{,t} + \operatorname{div}(\mathbf{v} \otimes \mathbf{v}) - \operatorname{div} \mathbf{S} = -\nabla p$$
 (3)

$$(e+|\mathbf{v}|^2/2)_{,t}+\operatorname{div}((e+|\mathbf{v}|^2/2+p)\mathbf{v})+\operatorname{div}\mathbf{q}=\operatorname{div}(\mathbf{S}\mathbf{v})$$
(4)

- **v** . . . velocity
- $e \dots$ internal energy total energy $E := e + |\mathbf{v}|^2/2$
- *p*... pressure
- S... a part of the Cauchy stress T = -pI + S, $S = S^T$
- q . . . heat flux

Nonlinear system of PDEs

Constitutive equations

$$\begin{split} \operatorname{div} \mathbf{v} &= 0\\ \mathbf{v}_{,t} + \operatorname{div}(\mathbf{v} \otimes \mathbf{v}) - \operatorname{div} \mathbf{S} &= -\nabla p\\ (e + |\mathbf{v}|^2/2)_{,t} + \operatorname{div}((e + |\mathbf{v}|^2/2 + p)\mathbf{v}) + \operatorname{div} \mathbf{q} &= \operatorname{div}(\mathbf{S}\mathbf{v}) \end{split}$$

Constitutive equations $2\mathbf{D}(\mathbf{v}) := \nabla \mathbf{v} + (\nabla \mathbf{v})^T$

$$S = \nu(p, e, |\mathbf{D}(\mathbf{v})|^2) \mathbf{D}(\mathbf{v})$$
(5)
$$q = -\kappa(p, e, \nabla e, |\mathbf{D}(\mathbf{v})|^2) \nabla e$$
(6)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Linear (Navier-Stokes and Fourier) relations
- Non-Linear constitutive equations (power-law, etc.)

Constitutive Equations - examples

•
$$\nu(|\mathbf{D}(\mathbf{v})|^2) = \nu_0 |\mathbf{D}(\mathbf{v})|^{r-2}$$

• $\nu(|\mathbf{D}(\mathbf{v})|^2) = \nu_0 + \nu_1 |\mathbf{D}(\mathbf{v})|^{r-2}$
• $\nu(p) = \nu_0 \exp(\alpha p)$
• $\nu(\theta) = \nu_0 \exp\left(\frac{a}{b+\theta}\right)$
• $\nu(p, \theta) = A \exp\left(\frac{Bp+D}{\theta}\right)$
• $\nu(p, |\mathbf{D}(\mathbf{v})|^2) = \frac{\nu_0 p}{|\mathbf{D}(\mathbf{v})|}$

Power-law fluids $r \in [1,\infty)$ Generalized NS fluids $r \in [1,\infty)$ Barus (1893) Vogel (1922)

Andrade's (1929), Bridgman (1931)

< ロト < 同ト < ヨト < ヨト

Schaeffer (1987)

$$\begin{aligned} \operatorname{div} \mathbf{v} &= 0\\ \mathbf{v}_{,t} + \operatorname{div}(\mathbf{v} \otimes \mathbf{v}) - \operatorname{div} \mathbf{S} &= -\nabla p\\ (e + |\mathbf{v}|^2/2)_{,t} + \operatorname{div}((e + |\mathbf{v}|^2/2 + p)\mathbf{v}) + \operatorname{div} \mathbf{q} &= \operatorname{div}(\mathbf{S}\mathbf{v}) \end{aligned}$$

Data

- $\Omega \subset \mathbb{R}^3$ bounded open connected container, $\mathcal{T} \in (0,\infty)$ length of time interval
- $\mathbf{v}(0,\cdot) = \mathbf{v}_0$, $e(0,\cdot) = e_0$ in Ω
- α that appears in boundary conditions (thermally and mechanically or energetically isolated body)

Task Mathematical Consistency of a Model - for any set of data to find uniquely defined, smooth, solution (*notion of solution, its existence, uniqueness, regularity*) Weak solution - solution dealing with averages

(日) (同) (三) (三) (三)

Boundary conditions

$$(e + |\mathbf{v}|^2/2)_{,t} + \operatorname{div}((e + |\mathbf{v}|^2/2 + p)\mathbf{v}) + \operatorname{div}\mathbf{q} - \operatorname{div}(\mathbf{S}\mathbf{v}) = 0$$

$$\frac{d}{dt}\left(\int_{\Omega} E(t, x) \, dx\right) + \int_{\partial\Omega} \left[(E + p)\mathbf{v} \cdot \mathbf{n} + \mathbf{q} \cdot \mathbf{n} - \mathbf{S}\mathbf{v} \cdot \mathbf{n}\right] \, dS = 0$$

Mechanically and thermally isolated body, Navier's slip on $[0, T] \times \Omega$:

•
$$\mathbf{v} \cdot \mathbf{n} = 0$$
 $\mathbf{q} \cdot \mathbf{n} = 0$
• $\lambda(\mathbf{Sn})_{\tau} + (1 - \lambda)\mathbf{v}_{\tau} = \mathbf{0}$ for $\lambda \in (0, 1)$ $\mathbf{u}_{\tau} := \mathbf{u} - (\mathbf{u} \cdot \mathbf{n})\mathbf{n}$
• $\lambda = 0 \implies \text{no-slip}$ $\lambda = 1 \implies \text{slip}$

Energetically isolated body, Navier's slip on $[0, T] \times \Omega$:

•
$$\mathbf{v} \cdot \mathbf{n} = 0$$
 $\mathbf{q} \cdot \mathbf{n} = -\alpha |\mathbf{v}_{\tau}|^2$
• $(\mathbf{Sn})_{\tau} + \alpha \mathbf{v}_{\tau} = \mathbf{0}$ $\alpha := (1 - \lambda)/\lambda$

- 31

イロト 不得下 イヨト イヨト

"Equivalent" formulation of the balance of energy/1

$$\begin{split} \operatorname{div} \mathbf{v} &= 0\\ \mathbf{v}_{,t} + \operatorname{div}(\mathbf{v} \otimes \mathbf{v}) - \operatorname{div} \mathbf{S} &= -\nabla p\\ (e + |\mathbf{v}|^2/2)_{,t} + \operatorname{div}((e + |\mathbf{v}|^2/2 + p)\mathbf{v}) + \operatorname{div} \mathbf{q} &= \operatorname{div}(\mathbf{S}\mathbf{v}) \end{split}$$

is equivalent (if \mathbf{v} is admissible test function in BM) to

$$\begin{aligned} \operatorname{div} \mathbf{v} &= 0\\ \mathbf{v}_{,t} + \operatorname{div}(\mathbf{v} \otimes \mathbf{v}) - \operatorname{div} \mathbf{S} &= -\nabla p\\ e_{,t} + \operatorname{div}(e\mathbf{v}) + \operatorname{div} \mathbf{q} &= \mathbf{S} \cdot \mathbf{D}(\mathbf{v}) \end{aligned}$$

 $\begin{array}{l} \mbox{Helmholtz decomposition } \mathbf{u} = \mathbf{u}_{\rm div} + \nabla g^{\mathbf{v}} \\ \mbox{Leray's projector } \mathbb{P}: \mathbf{u} \mapsto \mathbf{u}_{\rm div} \end{array}$

"Equivalent" formulation of the balance of energy/2

$$\begin{aligned} \operatorname{div} \mathbf{v} &= 0\\ \mathbf{v}_{,t} + \operatorname{div}(\mathbf{v} \otimes \mathbf{v}) - \operatorname{div} \mathbf{S} &= -\nabla p\\ (e + |\mathbf{v}|^2/2)_{,t} + \operatorname{div}((e + |\mathbf{v}|^2/2 + p)\mathbf{v}) + \operatorname{div} \mathbf{q} &= \operatorname{div}(\mathbf{S}\mathbf{v})\end{aligned}$$
 is equivalent (if **v** is admissible test function in BM) to

$$\operatorname{div} \mathbf{v} = 0$$
$$\mathbf{v}_{,t} + \mathbb{P}\operatorname{div}(\mathbf{v} \otimes \mathbf{v}) - \mathbb{P}\operatorname{div} \mathbf{S} = \mathbf{0}$$
$$e_{,t} + \operatorname{div}(e\mathbf{v}) + \operatorname{div} \mathbf{q} = \mathbf{S} \cdot \mathbf{D}(\mathbf{v})$$

Advantages/Disadvantages

- \bullet + pressure is not included into the 2nd formulation
- + minimum principle for e if $\mathbf{S} \cdot \mathbf{D}(\mathbf{v}) \geq 0$
- $\mathbf{S} \cdot \mathbf{D}(\mathbf{v}) \in L^1$ while $\mathbf{Sv} \in L^q$ with q > 1

Assumptions on $\mathbf{S} = \nu(e, |\mathbf{D}(\mathbf{v})|^2)\mathbf{D}(\mathbf{v})$ and $\mathbf{q} = \kappa(e, \nabla e)\nabla e$

(C1) given r > 1 there are $C_1 > 0$ and $C_2 > 0$ such that for all symmetric matrices **B**, **D** and $e \in \mathcal{R}^+$ $C_1(1 + |\mathbf{D}|^2)^{\frac{r-2}{2}} |\mathbf{B}|^2 \le \frac{\partial \left[\nu(e, |\mathbf{D}|^2)\mathbf{D}\right]}{\partial \mathbf{D}} \cdot (\mathbf{B} \otimes \mathbf{B}) \le C_2(1 + |\mathbf{D}|^2)^{\frac{r-2}{2}} |\mathbf{B}|^2$

(C2) given $\lfloor q > 1 \rfloor$ there are $C_3 > 0$ and $C_4 > 0$ such that for all vectors **u**, **w** and $e \in \mathcal{R}^+$

$$C_{3}(1+|\mathbf{u}|^{2})^{\frac{q-2}{2}}|\mathbf{w}|^{2} \leq \frac{\partial \left[\kappa(e,\mathbf{u})\mathbf{u}\right]}{\partial \mathbf{u}} \cdot (\mathbf{w} \otimes \mathbf{w}) \leq C_{4}(1+|\mathbf{u}|^{2})^{\frac{q-2}{2}}|\mathbf{w}|^{2}$$

June 19, 2008 25 / 29

Result

Theorem 4. (M. Bulíček, L. Consiglieri, J. Málek '07) Let (C1)-(C2) hold and r and q fulfil

$$r>rac{9}{5}$$
 and $q>rac{7}{4}$

Assume that

- $\partial \Omega \in C^{1,1}$
- $\textbf{v}_0 \in L^2_{\textbf{n},\textit{div}}$ and $\textbf{e}_0 \in L^1,~\textbf{e}_0 \geq C^* > 0$ a.a. in Ω

Then for all T > 0 (and any $\alpha \in (0, 1]$) and any (\mathbf{v}_0, e_0) there exists at least one suitable weak solution (\mathbf{v}, p, e) of the system relevant system completed by Navier's slip boundary conditions (mechanically and thermally isolated domain).

- General mathematical theory for internal unsteady flows of incompressible heat conducting fluids - mathematical self-consistency of IBVP
- Implicit constitutive theory
- "Equivalent" forms of the balance of energy
- The role of boundary conditions at tangent directions to the boundary

Concluding remarks/2

Methods to take the limit in nonlinearities (three groups)

- Convective terms: products of weakly and strongly converging sequences, Aubin-Lions compactness lemma for **v** and *e*
- Material nonlinearities: monotone operator theory, L[∞]-truncation and Lipschitz truncation method, perturbations of strictly monotone operators
- Term representing the dissipation energy: energy equality method (if v is admissible test function in BLM), otherwise use a primary form of energy balance
- Entropy, renormalized, suitable, dissipative solutions: use maximum information that is in place

Open problems

- ν(p, e) or ν(p)
- BC's: no-slip, inflow, outflow
- Qualitative theory: uniqueness, regularity
- More complicated constitutive relations (stress relaxation, normal stress differences, nonlinear creep), discontinuous (fully implicit) relationships