# Mathematical analysis in thermodynamics of incompressible fluids

#### Josef Málek

Mathematical institute of Charles University in Prague, Faculty of Mathematics and Physics Sokolovská 83, 186 75 Prague 8

June 16, 2008



J. Málek (MFF UK)

Analysis for incompressible fluid flows

June 16, 2008 1 / 36

Mathematically self-consistent models of classical mechanics - models for the system Spring - Weight

2 Thermodynamics of incompressible fluids

3 Constitutive equations

J. Málek (MFF UK)



#### Part #1

# Mathematically self-consistent models of classical mechanics - models for the system **Spring - Weight**

### System Spring - Weight/Description and assumptions



- Bodies (weights) modeled as mass-points
- Three Newton's postulates:

4

•  $\mathbf{F} = \mathbf{0} \implies$  straight-line motion

$$\mathbf{F} = \frac{d}{dt}(m\mathbf{v}) = m\frac{d\mathbf{v}}{dt} = m\frac{d^2\mathbf{x}}{dt^2}$$
$$\mathbf{v} = (v_1, v_2, v_3)$$
$$\mathbf{x} = (x_1, x_2, x_3)$$

- Any  ${\bf F}$  exerts reaction  $-{\bf F}$
- Motion allowed only in the vertical direction
- Mass of the spring is neglected



• Linear Spring:

$$F_2 = (0, -k(y+a), 0) \quad (k > 0)$$

• Resistance due to environment is neglected

$$\begin{vmatrix} \frac{d^2y}{dt^2} + \frac{k}{m}y = 0 & y(0) = y_0 \\ \frac{dy}{dt}(0) = y_1 \end{vmatrix}$$



• Linear Spring:

$$F_2 = (0, -k(y+a), 0) \quad (k > 0)$$

• Resistance proportional to the velocity:  $\mathbf{F}_3 = (0, -b \frac{dy}{dt}, 0)$  (b > 0)

$$\begin{vmatrix} \frac{d^2y}{dt^2} + \frac{b}{m}\frac{dy}{dt} + \frac{k}{m}y = 0 & y(0) = y_0 \\ \frac{dy}{dt}(0) = y_1 \end{vmatrix}$$



- Linear Spring:
   F<sub>2</sub> = (0, -k(y + a), 0) (k > 0)
- Resistance force due to environment depends on the velocity non-linearly:  $\mathbf{F}_3 = (0, h\left(\frac{dy}{dt}\right), 0)$

$$\boxed{m\frac{d^2y}{dt^2} + h\left(\frac{dy}{dt}\right) + ky = 0 \quad \begin{array}{c} y(0) = y_0 \\ \frac{dy}{dt}(0) = y_1 \end{array}}$$



- Non-linear Spring:  $\mathbf{F}_2 = (0, g(y + a), 0)$
- Environment resistance neglected, linear, or non-linear

$$\frac{d^2y}{dt^2} + h(\frac{dy}{dt}) + g(y) = 0$$

$$\frac{d^2y}{dt^2} = f(y, \frac{dy}{dt})$$

• Free fall due to gravity: 
$$\mathbf{F}_2 = (0, 0, 0)$$
  
 $\frac{d^2y}{dt^2} + h(\frac{dy}{dt}) = 0 \iff \frac{dv}{dt} + h(v) = 0$ 

$$\frac{dv}{dt} = f(v) \qquad v(0) = v_0$$

# System **Spring** - **Weight**/Mathematically self-consistent models

- Simplifying assumptions  $\implies$  very crude approximation of the reality
- Independently how accurate are models we are interested in **mathematical self-consistency of the models**: notion of solution
  - existence for arbitrary set of data (T,  $v_0$  (or  $y_0$  and  $y_1$ ), m, ....)
  - uniqueness
  - continuous dependence of solution on data
  - boundedness of the velocity
  - long time behavior of solutions.
- Mathematical self-consistency of models of incompressible fluid thermodynamics
- Derivation of fluid thermodynamics models stems from the principles of classical mechanics

- Free fall due to gravity: first order equation for the velocity
- Mathematical self-consistency of the equation of a "slightly" generalized form  $\frac{dv}{dt} = f(v)$ ,  $v(0) = v_0$ . Counterexamples:
  - existence/boundedness for any time interval  $f(v) = v^2$

• uniqueness - 
$$f(v) = v^{2/2}$$

• 
$$m\frac{dv}{dt} + bv = f \implies \frac{m}{2}\frac{d}{dt}|v|^2 + \frac{b}{m}|v|^2 = fv \implies$$

$$|v(t)|^2 \le |v_0|^2 e^{-\frac{b}{m}t} + \frac{f^2}{b^2}(1 - e^{-\frac{b}{m}t}) \qquad \text{pro } t > 0$$

• Derived models have a limited region where they can be useful

#### Part #2

#### Thermodynamics of incompressible fluids

J. Málek (MFF UK)

Analysis for incompressible fluid flows

June 16, 2008 11 / 36

#### Definition

Fluid is a body that, in time scale of observation of interest, undergoes discernible deformation due to the application of a sufficiently small shear stress



### Long-lasting physical experiment

In 1927 at University of Queensland: liquid asphalt put inside the closed vessel, after three years the vessel was open and the asphalt has started to drop slowly.

| Year          | Event            |
|---------------|------------------|
| 1930          | Plug trimmed off |
| 1938 (Dec)    | 1st drop         |
| 1947 (Feb)    | 2nd drop         |
| 1954 (Apr)    | 3rd drop         |
| 1962 (May)    | 4th drop         |
| 1970 (Aug)    | 5th drop         |
| 1979 (Apr)    | 6th drop         |
| 1988 (Jul)    | 7th drop         |
| 2000 (28 Nov) | 8th drop         |





#### Balance equations of continuum physics

Balance of mass, linear and angular momentum, balance of energy and the second law of thermodynamics

$$\begin{split} \varrho_{,t} + \operatorname{div}(\varrho \mathbf{v}) &= 0\\ (\varrho \mathbf{v})_{,t} + \operatorname{div}(\varrho \mathbf{v} \otimes \mathbf{v}) - \operatorname{div} \mathbf{T} &= \mathbf{0}\\ \mathbf{T}^{T} &= \mathbf{T}\\ (\varrho(e + |\mathbf{v}|^{2}/2))_{,t} + \operatorname{div}(\varrho(e + |\mathbf{v}|^{2}/2)\mathbf{v}) + \operatorname{div} \mathbf{q} &= \operatorname{div}(\mathbf{T}\mathbf{v}) \end{split}$$

#### Balance equations of continuum physics

Balance of mass, linear and angular momentum, balance of energy and the second law of thermodynamics

$$\begin{split} \varrho_{,t} + \operatorname{div}(\varrho \mathbf{v}) &= 0\\ (\varrho \mathbf{v})_{,t} + \operatorname{div}(\varrho \mathbf{v} \otimes \mathbf{v}) - \operatorname{div} \mathbf{T} &= \mathbf{0}\\ \mathbf{T}^{T} &= \mathbf{T} \end{split}$$

$$\left(\varrho(e+|\mathbf{v}|^2/2)\right)_{,t} + \operatorname{div}(\varrho(e+|\mathbf{v}|^2/2)\mathbf{v}) + \operatorname{div}\mathbf{q} = \operatorname{div}(\mathbf{T}\mathbf{v})$$

- *ρ*... density
- **v** . . . velocity
- e... internal energy
- T . . . the Cauchy stress
- q . . . heat flux

#### Balance equations of continuum physics

Balance of mass, linear and angular momentum, balance of energy and the second law of thermodynamics

$$egin{aligned} arrho_{,t} + \operatorname{div}(arrho \mathbf{v}) &= 0 \ (arrho \mathbf{v})_{,t} + \operatorname{div}(arrho \mathbf{v} \otimes \mathbf{v}) - \operatorname{div} \mathbf{T} &= \mathbf{0} \ \mathbf{T}^T &= \mathbf{T} \end{aligned}$$

$$\left(\varrho(e+|\mathbf{v}|^2/2)\right)_{,t} + \operatorname{div}(\varrho(e+|\mathbf{v}|^2/2)\mathbf{v}) + \operatorname{div}\mathbf{q} = \operatorname{div}(\mathbf{T}\mathbf{v})$$

- *ρ*... density
- **v** . . . velocity
- e... internal energy
- T . . . the Cauchy stress
- q . . . heat flux

Eulerian description - flows of fluid-like bodies

No external sources - for simplicity

J. Málek (MFF UK)

#### Balance equations of continuum physics/2

 $B \subset \Omega$  fix for all  $t \geq 0$ :

$$\frac{d}{dt} \int_{B} \varrho \, dx = -\int_{\partial B} \varrho \mathbf{v} \cdot \mathbf{n} \, dS \implies \text{FVM}$$
$$= -\int_{B} \operatorname{div}(\varrho \mathbf{v}) \, dx \implies \varrho_{t} + \operatorname{div} \varrho \mathbf{v} = 0$$

#### Balance equations of continuum physics/2

 $B \subset \Omega$  fix for all  $t \geq 0$ :

$$\frac{d}{dt} \int_{B} \varrho \, dx = -\int_{\partial B} \varrho \mathbf{v} \cdot \mathbf{n} \, dS \implies \text{FVM}$$
$$= -\int_{B} \operatorname{div}(\varrho \mathbf{v}) \, dx \implies \varrho_{t} + \operatorname{div} \varrho \mathbf{v} = 0$$

Choice  $B = \{x \in \Omega; \eta(x) > r\}$ , where  $r \in (0, \infty)$  and  $\eta \in \mathcal{D}(\Omega)$ 

 $\frac{d}{dt} \int_{B} \varrho \eta \, dx - \int_{B} \varrho \mathbf{v} \cdot \nabla \eta \, dx = 0 \implies \text{ weak solution, FEM}$ 

Oseen, Leray, ..., Chen, Torres, Ziemer, ... Feireisl:

- weak formulation of balance equations the primary setting
- classical formulation of balance equations the secondary setting

J. Málek (MFF UK)

#### "Equivalent" formulation of the balance of energy

$$\begin{split} \varrho_{,t} + \operatorname{div}(\varrho \mathbf{v}) &= 0\\ (\varrho \mathbf{v})_{,t} + \operatorname{div}(\varrho \mathbf{v} \otimes \mathbf{v}) - \operatorname{div} \mathbf{T} &= \mathbf{0} \quad (\text{BLM})\\ \mathbf{T}^{T} &= \mathbf{T}\\ (\varrho(e + |\mathbf{v}|^2/2))_{,t} + \operatorname{div}(\varrho(e + |\mathbf{v}|^2/2)\mathbf{v}) + \operatorname{div} \mathbf{q} &= \operatorname{div}(\mathbf{T}\mathbf{v}) \end{split}$$

is equivalent, provided that  $\boldsymbol{v}$  is admissible test function in (BLM), to

$$\begin{split} \varrho_{,t} + \operatorname{div}(\varrho \mathbf{v}) &= 0\\ (\varrho \mathbf{v})_{,t} + \operatorname{div}(\varrho \mathbf{v} \otimes \mathbf{v}) - \operatorname{div} \mathbf{T} &= \mathbf{0}\\ \mathbf{T}^{\mathcal{T}} &= \mathbf{T}\\ (\varrho e)_{,t} + \operatorname{div}(\varrho e \mathbf{v}) + \operatorname{div} \mathbf{q} &= \mathbf{T} \cdot \nabla \mathbf{v} \end{split}$$

#### "Equivalent" formulation of the balance of energy

$$\begin{split} \varrho_{,t} + \operatorname{div}(\varrho \mathbf{v}) &= 0\\ (\varrho \mathbf{v})_{,t} + \operatorname{div}(\varrho \mathbf{v} \otimes \mathbf{v}) - \operatorname{div} \mathbf{T} &= \mathbf{0} \quad (\text{BLM})\\ \mathbf{T}^{T} &= \mathbf{T}\\ (\varrho(e + |\mathbf{v}|^{2}/2))_{,t} + \operatorname{div}(\varrho(e + |\mathbf{v}|^{2}/2)\mathbf{v}) + \operatorname{div} \mathbf{q} &= \operatorname{div}(\mathbf{T}\mathbf{v}) \end{split}$$

is equivalent, provided that  $\boldsymbol{v}$  is admissible test function in (BLM), to

$$\begin{split} \varrho_{,t} + \operatorname{div}(\varrho \mathbf{v}) &= 0\\ (\varrho \mathbf{v})_{,t} + \operatorname{div}(\varrho \mathbf{v} \otimes \mathbf{v}) - \operatorname{div} \mathbf{T} &= \mathbf{0}\\ \mathbf{T}^{\mathcal{T}} &= \mathbf{T}\\ (\varrho e)_{,t} + \operatorname{div}(\varrho e \mathbf{v}) + \operatorname{div} \mathbf{q} &= \mathbf{T} \cdot \nabla \mathbf{v} \end{split}$$

Note that  $\mathbf{T} \cdot \nabla \mathbf{v} = \mathbf{T} \cdot \mathbf{D}$  where  $\mathbf{D} := \mathbf{D}(\mathbf{v})$  is the symmetric part of the velocity gradient

J. Málek (MFF UK)

June 16, 2008 16 / 36



$$(\varrho e)_{,t} + \operatorname{div}(\varrho e \mathbf{v}) + \operatorname{div} \mathbf{q} = \mathbf{T} \cdot \nabla \mathbf{v}$$
(1)

**Continuum thermodynamics (Callen 1985)**: there is  $\eta$  (specific entropy density) being a function of state variables, here  $\eta = \tilde{\eta}(e)$ , fulfilling:

#### Entropy

$$(\varrho e)_{,t} + \operatorname{div}(\varrho e \mathbf{v}) + \operatorname{div} \mathbf{q} = \mathbf{T} \cdot \nabla \mathbf{v}$$
(1)

**Continuum thermodynamics (Callen 1985)**: there is  $\eta$  (specific entropy density) being a function of state variables, here  $\eta = \tilde{\eta}(e)$ , fulfilling:

•  $\tilde{\eta}$  is increasing function of  $e \implies \frac{1}{\theta} =: \frac{\partial \tilde{\eta}}{\partial e}$  or  $e = \tilde{e}(\eta) \implies \theta = \frac{\partial \tilde{e}}{\partial \eta}$ 

• 
$$\eta \rightarrow 0+$$
 as  $\theta \rightarrow 0+$ 

•  $S(t) := \int_{\Omega} \varrho^* \eta(t, \cdot) dx$  goes to its maximum as  $t \to \infty$  provided that the body is thermally and mechanically isolated

#### Entropy

$$(\varrho e)_{,t} + \operatorname{div}(\varrho e \mathbf{v}) + \operatorname{div} \mathbf{q} = \mathbf{T} \cdot \nabla \mathbf{v}$$
(1)

**Continuum thermodynamics (Callen 1985)**: there is  $\eta$  (specific entropy density) being a function of state variables, here  $\eta = \tilde{\eta}(e)$ , fulfilling:

•  $\tilde{\eta}$  is increasing function of  $e \implies \frac{1}{\theta} =: \frac{\partial \tilde{\eta}}{\partial e}$  or  $e = \tilde{e}(\eta) \implies \theta = \frac{\partial \tilde{e}}{\partial \eta}$ 

• 
$$\eta \rightarrow 0+$$
 as  $\theta \rightarrow 0+$ 

- S(t) := ∫<sub>Ω</sub> ρ<sup>\*</sup>η(t, ·)dx goes to its maximum as t → ∞ provided that the body is thermally and mechanically isolated
- (1) is equivalent to

$$\begin{split} \frac{\partial \tilde{\eta}}{\partial e} \Big( \varrho \big[ e_{,t} + \mathbf{v} \cdot \nabla e \big] \Big) + \frac{\operatorname{div} \mathbf{q}}{\theta} &= \frac{\mathbf{T} \cdot \mathbf{D}(\mathbf{v})}{\theta} \\ \varrho \Big[ \eta_{,t} + \eta \cdot \nabla \mathbf{v} \Big] + \operatorname{div} \big( \frac{\mathbf{q}}{\theta} \big) &= \frac{1}{\theta} \Big[ \mathbf{T} \cdot \mathbf{D}(\mathbf{v}) \Big] - \frac{\mathbf{q} \cdot \nabla \theta}{\theta^2} \end{split}$$

$$(\varrho\eta)_{,t} + \operatorname{div}(\varrho\eta\mathbf{v}) + \operatorname{div}\left(\frac{\mathbf{q}}{\theta}\right) = \xi \quad \text{with } \theta\xi := \mathbf{T} \cdot \mathbf{D}(\mathbf{v}) - \frac{\mathbf{q} \cdot \nabla\theta}{\theta} \quad (2)$$

Second law of thermodynamics:  $\left| \xi \ge 0 \right|$ 

Stronger requirement:  $\mathbf{T} \cdot \mathbf{D}(\mathbf{v}) \geq 0$  (entropy production due to work being converted into heat) and  $-\frac{\mathbf{q} \cdot \nabla \theta}{\theta} \geq 0$  (entropy production due to heat conduction)

We shall use the constitutive equations that automatically meet these requirements

Minimum principle for *e* 

```
if e_0 \geq C^* in \Omega then e(t, \cdot) \geq C^* in \Omega for all t
```

$$(\varrho\eta)_{,t} + \operatorname{div}(\varrho\eta\mathbf{v}) + \operatorname{div}\left(\frac{\mathbf{q}}{\theta}\right) = \xi \quad \text{with } \theta\xi \ge \mathbf{T} \cdot \mathbf{D}(\mathbf{v}) - \frac{\mathbf{q} \cdot \nabla\theta}{\theta}$$

In terms of the internal energy  $\eta = \tilde{\eta}(e)$ 

$$\mathbf{e}_{,t} + \operatorname{div}(e\mathbf{v}) + \operatorname{div} \mathbf{q} \geq \mathbf{T} \cdot \mathbf{D}(\mathbf{v})$$

or, using the balance of energy,

$$\left(|\mathbf{v}|^2\right)_{,t} - 2\,\operatorname{div}(\mathbf{T}\mathbf{v}) + \operatorname{div}\left(\mathbf{v}|\mathbf{v}|^2\right) \leq 0$$

**Suitable weak solution** (in the sense of Caffarelli, Kohn, Nirenberg): In addition to equations representing balance of mass, linear momentum and energy we require that solution satisfies one of the formulations of the second law of thermodynamics

#### Definition

Volume of any chosen subset (at initial time t = 0) remains constant during the motion.

for all 
$$t$$
:  $|\mathcal{V}_t| = |\mathcal{V}_0| \iff \det \mathbf{F}_{\chi} = 1$ 

Taking the derivative w.r.t. time and using the identity

$$rac{\mathrm{d}}{\mathrm{d}t} \det \mathbf{F}_{oldsymbol{\chi}} = \operatorname{div} \mathbf{v} \det \mathbf{F}_{oldsymbol{\chi}}$$

we conclude that

$$\operatorname{div} \mathbf{v} = 0$$

#### Balance equations for Inhomogeneous incompressible fluids

Balance equations

$$\begin{split} \varrho_{,t} + \operatorname{div}(\varrho \mathbf{v}) &= 0\\ (\varrho \mathbf{v})_{,t} + \operatorname{div}(\varrho \mathbf{v} \otimes \mathbf{v}) - \operatorname{div} \mathbf{T} &= \mathbf{0} \quad (\mathrm{BLM})\\ (\varrho(e + |\mathbf{v}|^2/2))_{,t} + \operatorname{div}(\varrho(e + |\mathbf{v}|^2/2)\mathbf{v}) + \operatorname{div} \mathbf{q} &= \operatorname{div}(\mathbf{T}\mathbf{v}) \end{split}$$

Consequences of incompressibility

div 
$$\mathbf{v} = \mathbf{0}$$
 and  $\mathbf{T} = -p\mathbf{I} + \mathbf{S}$ 

$$\begin{aligned} \operatorname{div} \mathbf{v} &= 0\\ \varrho_t + \mathbf{v} \cdot \nabla \varrho &= 0\\ (\varrho \mathbf{v})_t + \operatorname{div}(\varrho \mathbf{v} \otimes \mathbf{v}) - \operatorname{div} \mathbf{S} &= -\nabla p\\ (\varrho (e + |\mathbf{v}|^2/2))_{,t} + \operatorname{div}(\varrho (e + |\mathbf{v}|^2/2 + p)\mathbf{v}) + \operatorname{div} \mathbf{q} &= \operatorname{div} (\mathbf{S}\mathbf{v}) \end{aligned}$$

June 16, 2008 21 / 36

#### Balance equations for Inhomogeneous incompressible fluids

Balance equations

$$\begin{split} \varrho_{,t} + \operatorname{div}(\varrho \mathbf{v}) &= 0\\ (\varrho \mathbf{v})_{,t} + \operatorname{div}(\varrho \mathbf{v} \otimes \mathbf{v}) - \operatorname{div} \mathbf{T} &= \mathbf{0} \quad (\text{BLM})\\ (\varrho(e + |\mathbf{v}|^2/2))_{,t} + \operatorname{div}(\varrho(e + |\mathbf{v}|^2/2)\mathbf{v}) + \operatorname{div} \mathbf{q} &= \operatorname{div}(\mathbf{T}\mathbf{v}) \end{split}$$

Consequences of incompressibility

div 
$$\mathbf{v} = \mathbf{0}$$
 and  $\mathbf{T} = -p\mathbf{I} + \mathbf{S}$ 

$$\begin{aligned} \operatorname{div} \mathbf{v} &= 0\\ \varrho_t + \mathbf{v} \cdot \nabla \varrho &= 0\\ (\varrho \mathbf{v})_t + \operatorname{div}(\varrho \mathbf{v} \otimes \mathbf{v}) - \operatorname{div} \mathbf{S} &= -\nabla p\\ (\varrho (e + |\mathbf{v}|^2/2))_{,t} + \operatorname{div}(\varrho (e + |\mathbf{v}|^2/2 + p)\mathbf{v}) + \operatorname{div} \mathbf{q} &= \operatorname{div} (\mathbf{S}\mathbf{v}) \end{aligned}$$

 $\boldsymbol{S}$  and  $\boldsymbol{q}:$  additional (the so-called) constitutive equations

#### Balance equations for Inhomogeneous incompressible fluids

Balance equations

$$\begin{split} \varrho_{,t} + \operatorname{div}(\varrho \mathbf{v}) &= 0\\ (\varrho \mathbf{v})_{,t} + \operatorname{div}(\varrho \mathbf{v} \otimes \mathbf{v}) - \operatorname{div} \mathbf{T} &= \mathbf{0} \quad (\mathrm{BLM})\\ \left(\varrho(e + |\mathbf{v}|^2/2)\right)_{,t} + \operatorname{div}(\varrho(e + |\mathbf{v}|^2/2)\mathbf{v}) + \operatorname{div} \mathbf{q} &= \operatorname{div}(\mathbf{T}\mathbf{v}) \end{split}$$

Consequences of incompressibility

div 
$$\mathbf{v} = \mathbf{0}$$
 and  $\mathbf{T} = -p\mathbf{I} + \mathbf{S}$ 

$$\begin{aligned} \operatorname{div} \mathbf{v} &= 0\\ \varrho_t + \mathbf{v} \cdot \nabla \varrho &= 0\\ (\varrho \mathbf{v})_t + \operatorname{div}(\varrho \mathbf{v} \otimes \mathbf{v}) - \operatorname{div} \mathbf{S} &= -\nabla p\\ (\varrho (e + |\mathbf{v}|^2/2))_{,t} + \operatorname{div}(\varrho (e + |\mathbf{v}|^2/2 + p)\mathbf{v}) + \operatorname{div} \mathbf{q} &= \operatorname{div} (\mathbf{S}\mathbf{v}) \end{aligned}$$

S and q: additional (the so-called) constitutive equations

Homogeneous fluids: the density is constant

J. Málek (MFF UK)

$$\operatorname{div} \mathbf{v} = 0 \tag{3}$$

$$\mathbf{v}_{,t} + \operatorname{div}(\mathbf{v} \otimes \mathbf{v}) - \operatorname{div} \mathbf{S} = -\nabla p$$
 (4)

$$(e+|\mathbf{v}|^2/2)_{,t}+\operatorname{div}((e+|\mathbf{v}|^2/2+p)\mathbf{v})+\operatorname{div}\mathbf{q}=\operatorname{div}(\mathbf{S}\mathbf{v})$$
(5)

$$e_{t} + \operatorname{div}(e\mathbf{v}) + \operatorname{div}\mathbf{q} \ge \mathbf{S} \cdot \mathbf{D}(\mathbf{v})$$
 (6)

- Constitutive equations for **S** and **q** (next section)
- Boundary conditions (internal flows)
- Initial data

$$\begin{aligned} \operatorname{div} \mathbf{v} &= 0\\ \mathbf{v}_{,t} + \operatorname{div}(\mathbf{v} \otimes \mathbf{v}) - \operatorname{div} \mathbf{S} &= -\nabla p\\ (e + |\mathbf{v}|^2/2)_{,t} + \operatorname{div}((e + |\mathbf{v}|^2/2 + p)\mathbf{v}) + \operatorname{div} \mathbf{q} &= \operatorname{div}(\mathbf{S}\mathbf{v}) \end{aligned}$$

э.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

$$\begin{aligned} \operatorname{div} \mathbf{v} &= 0\\ \mathbf{v}_{,t} + \operatorname{div}(\mathbf{v} \otimes \mathbf{v}) - \operatorname{div} \mathbf{S} &= -\nabla p\\ (e + |\mathbf{v}|^2/2)_{,t} + \operatorname{div}((e + |\mathbf{v}|^2/2 + p)\mathbf{v}) + \operatorname{div} \mathbf{q} &= \operatorname{div}(\mathbf{S}\mathbf{v}) \end{aligned}$$

•  $\Omega \subset \mathbb{R}^3$  bounded open connected container,  $\mathcal{T} \in (0,\infty)$  length of time interval

• 
$$\mathbf{v}(0,\cdot)=\mathbf{v}_0$$
,  $e(0,\cdot)=e_0$  in  $\Omega$ 

•  $\alpha$  that appears in boundary conditions (thermally and mechanically or energetically isolated body)

$$\begin{aligned} \operatorname{div} \mathbf{v} &= 0\\ \mathbf{v}_{,t} + \operatorname{div}(\mathbf{v} \otimes \mathbf{v}) - \operatorname{div} \mathbf{S} &= -\nabla p\\ (e + |\mathbf{v}|^2/2)_{,t} + \operatorname{div}((e + |\mathbf{v}|^2/2 + p)\mathbf{v}) + \operatorname{div} \mathbf{q} &= \operatorname{div}(\mathbf{S}\mathbf{v}) \end{aligned}$$

•  $\Omega \subset \mathbb{R}^3$  bounded open connected container,  $\mathcal{T} \in (0,\infty)$  length of time interval

• 
$$\mathbf{v}(0,\cdot)=\mathbf{v}_0$$
,  $e(0,\cdot)=e_0$  in  $\Omega$ 

•  $\alpha$  that appears in boundary conditions (thermally and mechanically or energetically isolated body)

**Task** Mathematical Consistency of a Model - for any set of data to find uniquely defined, smooth, solution (*notion of solution, its existence, uniqueness, regularity*)

$$\begin{aligned} \operatorname{div} \mathbf{v} &= 0\\ \mathbf{v}_{,t} + \operatorname{div}(\mathbf{v} \otimes \mathbf{v}) - \operatorname{div} \mathbf{S} &= -\nabla p\\ (e + |\mathbf{v}|^2/2)_{,t} + \operatorname{div}((e + |\mathbf{v}|^2/2 + p)\mathbf{v}) + \operatorname{div} \mathbf{q} &= \operatorname{div}(\mathbf{S}\mathbf{v}) \end{aligned}$$

- $\Omega \subset \mathbb{R}^3$  bounded open connected container,  $\mathcal{T} \in (0,\infty)$  length of time interval
- $\mathbf{v}(0,\cdot) = \mathbf{v}_0$ ,  $e(0,\cdot) = e_0$  in  $\Omega$
- $\alpha$  that appears in boundary conditions (thermally and mechanically or energetically isolated body)

**Task** Mathematical Consistency of a Model - for any set of data to find uniquely defined, smooth, solution (*notion of solution, its existence, uniqueness, regularity*) Weak solution - solution dealing with averages

$$(e + |\mathbf{v}|^2/2)_{,t} + \operatorname{div}((e + |\mathbf{v}|^2/2 + p)\mathbf{v}) + \operatorname{div}\mathbf{q} - \operatorname{div}(\mathbf{S}\mathbf{v}) = 0$$
  
$$\frac{d}{dt}\left(\int_{\Omega} E(t, x) \, dx\right) + \int_{\partial\Omega} \left[(E + p)\mathbf{v} \cdot \mathbf{n} + \mathbf{q} \cdot \mathbf{n} - \mathbf{S}\mathbf{v} \cdot \mathbf{n}\right] \, dS = 0$$

э

$$(e + |\mathbf{v}|^2/2)_{,t} + \operatorname{div}((e + |\mathbf{v}|^2/2 + p)\mathbf{v}) + \operatorname{div}\mathbf{q} - \operatorname{div}(\mathbf{S}\mathbf{v}) = 0$$
  
$$\frac{d}{dt}\left(\int_{\Omega} E(t, x) \, dx\right) + \int_{\partial\Omega} \left[(E + p)\mathbf{v} \cdot \mathbf{n} + \mathbf{q} \cdot \mathbf{n} - \mathbf{S}\mathbf{v} \cdot \mathbf{n}\right] \, dS = 0$$

• 
$$\mathbf{v} \cdot \mathbf{n} = 0$$
  $\mathbf{q} \cdot \mathbf{n} = 0$   
•  $\lambda(\mathbf{Sn})_{\tau} + (1 - \lambda)\mathbf{v}_{\tau} = \mathbf{0}$  for  $\lambda \in (0, 1)$   $\mathbf{u}_{\tau} := \mathbf{u} - (\mathbf{u} \cdot \mathbf{n})\mathbf{n}$   
•  $\lambda = 0 \implies \text{no-slip}$   $\lambda = 1 \implies \text{slip}$ 

$$(e + |\mathbf{v}|^2/2)_{,t} + \operatorname{div}((e + |\mathbf{v}|^2/2 + p)\mathbf{v}) + \operatorname{div}\mathbf{q} - \operatorname{div}(\mathbf{S}\mathbf{v}) = 0$$
  
$$\frac{d}{dt}\left(\int_{\Omega} E(t, x) \, dx\right) + \int_{\partial\Omega} \left[(E + p)\mathbf{v} \cdot \mathbf{n} + \mathbf{q} \cdot \mathbf{n} - \mathbf{S}\mathbf{v} \cdot \mathbf{n}\right] \, dS = 0$$

• 
$$\mathbf{v} \cdot \mathbf{n} = 0$$
  $\mathbf{q} \cdot \mathbf{n} = 0$   
•  $\lambda(\mathbf{Sn})_{\tau} + (1 - \lambda)\mathbf{v}_{\tau} = \mathbf{0}$  for  $\lambda \in (0, 1)$   $\mathbf{u}_{\tau} := \mathbf{u} - (\mathbf{u} \cdot \mathbf{n})\mathbf{n}$   
•  $\lambda = 0 \implies \text{no-slip}$   $\lambda = 1 \implies \text{slip}$ 

Energetically isolated body, Navier's slip on  $[0, T] \times \Omega$ :

$$(e + |\mathbf{v}|^2/2)_{,t} + \operatorname{div}((e + |\mathbf{v}|^2/2 + p)\mathbf{v}) + \operatorname{div}\mathbf{q} - \operatorname{div}(\mathbf{S}\mathbf{v}) = 0$$
  
$$\frac{d}{dt}\left(\int_{\Omega} E(t, x) \, dx\right) + \int_{\partial\Omega} \left[(E + p)\mathbf{v} \cdot \mathbf{n} + \mathbf{q} \cdot \mathbf{n} - \mathbf{S}\mathbf{v} \cdot \mathbf{n}\right] \, dS = 0$$

• 
$$\mathbf{v} \cdot \mathbf{n} = 0$$
  $\mathbf{q} \cdot \mathbf{n} = 0$   
•  $\lambda(\mathbf{Sn})_{\tau} + (1 - \lambda)\mathbf{v}_{\tau} = \mathbf{0}$  for  $\lambda \in (0, 1)$   $\mathbf{u}_{\tau} := \mathbf{u} - (\mathbf{u} \cdot \mathbf{n})\mathbf{n}$   
•  $\lambda = 0 \implies \text{no-slip}$   $\lambda = 1 \implies \text{slip}$ 

Energetically isolated body, Navier's slip on  $[0, T] \times \Omega$ :

• 
$$\mathbf{v} \cdot \mathbf{n} = 0$$
  $\mathbf{q} \cdot \mathbf{n} = -\alpha |\mathbf{v}_{\tau}|^2$ 

• 
$$(\mathbf{Sn})_{\tau} + \alpha \mathbf{v}_{\tau} = \mathbf{0}$$
  $\alpha := (1 - \lambda)/\lambda$ 

### "Equivalent" formulation of the balance of energy/1 $\,$

$$\begin{aligned} \operatorname{div} \mathbf{v} &= 0\\ \mathbf{v}_{,t} + \operatorname{div}(\mathbf{v} \otimes \mathbf{v}) - \operatorname{div} \mathbf{S} &= -\nabla p\\ (e + |\mathbf{v}|^2/2)_{,t} + \operatorname{div}((e + |\mathbf{v}|^2/2 + p)\mathbf{v}) + \operatorname{div} \mathbf{q} &= \operatorname{div}(\mathbf{S}\mathbf{v}) \end{aligned}$$

is equivalent (if  $\mathbf{v}$  is admissible test function in BM) to

$$\begin{aligned} &\operatorname{div} \mathbf{v} = 0\\ \mathbf{v}_{,t} + \operatorname{div}(\mathbf{v} \otimes \mathbf{v}) - \operatorname{div} \mathbf{S} = -\nabla p\\ &e_{,t} + \operatorname{div}(e\mathbf{v}) + \operatorname{div} \mathbf{q} = \mathbf{S} \cdot \mathbf{D}(\mathbf{v}) \end{aligned}$$

 $\begin{array}{l} \mbox{Helmholtz decomposition } \textbf{u} = \textbf{u}_{div} + \nabla g^{\textbf{v}} \\ \mbox{Leray's projector } \mathbb{P}: \textbf{u} \mapsto \textbf{u}_{div} \end{array}$ 

### "Equivalent" formulation of the balance of energy/2

$$\begin{aligned} \operatorname{div} \mathbf{v} &= 0\\ \mathbf{v}_{,t} + \operatorname{div}(\mathbf{v} \otimes \mathbf{v}) - \operatorname{div} \mathbf{S} &= -\nabla p\\ (e + |\mathbf{v}|^2/2)_{,t} + \operatorname{div}((e + |\mathbf{v}|^2/2 + p)\mathbf{v}) + \operatorname{div} \mathbf{q} &= \operatorname{div}(\mathbf{S}\mathbf{v}) \end{aligned}$$

is equivalent (if  $\mathbf{v}$  is admissible test function in BM) to

$$\begin{aligned} &\operatorname{div} \mathbf{v} = 0\\ \mathbf{v}_{,t} + \mathbb{P}\operatorname{div}(\mathbf{v}\otimes\mathbf{v}) - \mathbb{P}\operatorname{div}\mathbf{S} = \mathbf{0}\\ &e_{,t} + \operatorname{div}(e\mathbf{v}) + \operatorname{div}\mathbf{q} = \mathbf{S} \cdot \mathbf{D}(\mathbf{v}) \end{aligned}$$

Advantages/Disadvantages

### "Equivalent" formulation of the balance of energy/2

$$\begin{aligned} \operatorname{div} \mathbf{v} &= 0\\ \mathbf{v}_{,t} + \operatorname{div}(\mathbf{v} \otimes \mathbf{v}) - \operatorname{div} \mathbf{S} &= -\nabla p\\ (e + |\mathbf{v}|^2/2)_{,t} + \operatorname{div}((e + |\mathbf{v}|^2/2 + p)\mathbf{v}) + \operatorname{div} \mathbf{q} &= \operatorname{div}(\mathbf{S}\mathbf{v}) \end{aligned}$$

is equivalent (if  $\mathbf{v}$  is admissible test function in BM) to

$$\begin{aligned} &\operatorname{div} \mathbf{v} = \mathbf{0} \\ \mathbf{v}_{,t} + \mathbb{P}\operatorname{div}(\mathbf{v} \otimes \mathbf{v}) - \mathbb{P}\operatorname{div} \mathbf{S} = \mathbf{0} \\ &e_{,t} + \operatorname{div}(e\mathbf{v}) + \operatorname{div} \mathbf{q} = \mathbf{S} \cdot \mathbf{D}(\mathbf{v}) \end{aligned}$$

Advantages/Disadvantages

- + pressure is not included into the 2nd formulation
- + minimum principle for e if  $\mathbf{S} \cdot \mathbf{D}(\mathbf{v}) \geq 0$
- $\mathbf{S} \cdot \mathbf{D}(\mathbf{v}) \in L^1$  while  $\mathbf{Sv} \in L^q$  with q > 1

#### Part #3

#### Constitutive equations

J. Málek (MFF UK)

Analysis for incompressible fluid flows

June 16, 2008 27 / 36

#### Definition

The viscosity: the coefficient of the proportionality between the shear rate and the shear stress.

Simple shear flow:  $\mathbf{v}(x, y, z) = (v(y), 0, 0)$ 



Newton: The resistance arising from the want of lubricity in parts of the fluid, **other things being equal**, is proportional to the velocity with which the parts are separated from one another.

$$\mathbf{T}_{xy} = \nu v'(y) \qquad \qquad g(\mathbf{T}_{xy}, v'(y)) = 0$$

#### Generalized Newtonian fluids

Experimental data show that the viscosity may depend on the pressure, shear rate, temperature, concentration, ..., density (if fluid is inhomogeneous)

$$\mathbf{T}_{xy} = \nu v'(y) \qquad \qquad \nu = \nu(p, \theta, |v'(y)|) \qquad \qquad \mathbf{S} = \nu(p, \theta, |\mathbf{D}(\mathbf{v})|^2)\mathbf{D}$$

Examples:

• 
$$\mathbf{T} = -p\mathbf{I} + 2\mu_0 \mathbf{D}$$
, tr  $\mathbf{D} = 0$   
•  $\mathbf{T} = -p\mathbf{I} + 2\mu_0 |\mathbf{D}|^{r-2}\mathbf{D}$   $r \in [1, \infty)$   
•  $\mathbf{T} = -p\mathbf{I} + 2\mu_0 (1 + |\mathbf{D}|^2)^{\frac{r-2}{2}} \mathbf{D}$   
•  $\mathbf{T} = -p\mathbf{I} + 2\mu_0 \exp(\alpha p)\mathbf{D}$  or  $\mathbf{T} = -p\mathbf{I} + (1 + \alpha\mu(p, \theta) + |\mathbf{D}|^2)^{\frac{r-2}{2}} \mathbf{D}$   
•  $\mathbf{T} = -p\mathbf{I} + 2\nu(p, \varrho, \theta)\mathbf{D} = -p\mathbf{I} + A\sqrt{\varrho}\exp\left(\frac{B(p+D\varrho^2)}{\theta}\right)\mathbf{D}$   
•  $\mathbf{T} = -p\mathbf{I} + 2\mu_0\exp(1/\theta - 1/\theta_0)\left(1 + \alpha\mu(p, \theta) + |\mathbf{D}|^2\right)^{\frac{r-2}{2}}\mathbf{D}$ 

More general implicit relations

$$G(\mathbf{T}_{xy}, v'(y)) = 0 \quad \text{or } G(p, \theta, \mathbf{T}_{xy}, v'(y)) = 0 \qquad \qquad \mathbf{G}(p, \theta, \mathbf{S}, \mathbf{D}) = \mathbf{0}$$

have the ability to capture complicated responses of materials without any need to introduce (non-physical) internal variable constitutive theories, etc. Implicit relations

- algebraic
- rate type
- integral

Incompressible Newtonian fluid

$$\mathbf{T} = -\rho \mathbf{I} + 2\mu \mathbf{D}, \qquad \text{tr} \, \mathbf{D} = \mathbf{0}$$

Departures from Newtonian behavior (at a simple shear flow)

- Dependence of the viscosity on the shear rate
- Dependence of the viscosity on the pressure
- The presence of the yield stress (or other activation or deactivation criteria)
- The presence of the normal stress differences
- Stress relaxation
- Nonlinear creep

#### Definition

The heat conductivity: the coefficient of the proportionality between the heat flux **q** and the temperature gradient  $\nabla \theta$ .

Landau, Lifschitz: The heat flux is **related** to the variation of temperature through the fluid. ... We can then expand **q** as a series of powers of temperature gradient, taking only the first terms of the expansion. The constant term is evidently zero since **q** must vanish when  $\nabla \theta$  does so. Thus we have

$$\mathbf{q} = -\kappa \nabla \theta$$

The coefficient  $\kappa$  is in general a function of temperature and pressure. Examples:

- $\mathbf{q} = -\kappa \nabla \theta$
- $\mathbf{q} = -\kappa(\theta, p) \nabla \theta$
- $\mathbf{q}(\nabla \theta) = \mathbf{q}(\mathbf{0}) + \partial_{\mathbf{z}}(\mathbf{0})\nabla \theta + 1/2\partial_{\mathbf{z}}^{(2)}(\mathbf{0})\nabla \theta \otimes \nabla \theta$

More general implicit relations

$$\mathbf{r}(\mathbf{q}, \nabla \theta) = \mathbf{0}$$
  $\mathbf{r}(\mathbf{q}, p, \theta, \nabla \theta, \mathbf{D}) = \mathbf{0}$ 

Implicit relations

- algebraic
- rate type

J. Málek (MFF UK)

integral

### Part #4

#### References

J. Málek (MFF UK)

Analysis for incompressible fluid flows

June 16, 2008 34 / 36

э

- **E. Feireisl**, J. Málek: On the Navier-Stokes Equations with temperature-dependent transport coefficients, Differ. Equ. Nonlinear Mech., pp. Art. ID 90916, 14p., 2006
- M. Bulíček, E. Feireisl, J. Málek: Navier-Stokes-Fourier system for incompressible fluids with temperature dependent material coefficients, to appear in Nonlinear Analysis and Real World Applications, 2008
- M. Bulíček, J. Málek, K. R. Rajagopal: Navier's slip and Evolutionary Navier-Stokes-Like systems with Pressure and Shear-Rate Dependent Viscosity, Indiana University Math. J. 56, 51–85, 2007
- M. Bulíček, J. Málek, K. R. Rajagopal: Mathematical analysis of unsteady flows of fluids with pressure, shear-rate and temperature dependent material moduli, that slip at solid boundaries, revised version considered in SIAM J. Math. Anal., 2008
- M. Bulíček, L. Consiglieri, J. Málek: Slip boundary effects on unsteady flows of incompressible viscous heat conducting fluids with a nonlinear internal energy-temperature relationship, to appear as the preprint at http://ncmm.karlin.mff.cuni.cz, 2008
- M. Bulíček, L. Consiglieri, J. Málek: On Solvability of a non-linear heat equation with a non-integrable convective term and the right-hand side involving measures, to appear as the preprint at http://ncmm.karlin.mff.cuni.cz, 2008

イロト イ理ト イヨト イヨト

#### References/2

- J. Málek and K.R. Rajagopal: Mathematical Issues Concerning the Navier-Stokes Equations and Some of Its Generalizations, in: Handbook of Differential Equations, Evolutionary Equations, volume 2, 371-459, 2005
- J. Frehse, J. Málek and M. Steinhauer: On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method, SIAM J. Math. Anal. 34, 1064-1083, 2003
- 3 L. Diening, J. Málek and M. Steinhauer: On Lipschitz truncations of Sobolev functions (with variable exponent) and their selected applications, accepted to ESAIM: Control, Optimization and Calculus of Variations, published online, 2007
- J. Hron, J. Málek and K.R. Rajagopal: Simple Flows of Fluids with Pressure Dependent Viscosities, Proc. London Royal Soc.: Math. Phys. Engnr. Sci. 457, 1603–1622, 2001
- M. Franta, J. Málek and K.R. Rajagopal: Existence of Weak Solutions for the Dirichlet Problem for the Steady Flows of Fluids with Shear Dependent Viscosities, Proc. London Royal Soc. A: Math. Phys. Engnr. Sci. 461, 651–670, 2005
- J. Málek, M. Růžička and V.V. Shelukhin: Herschel-Bulkley Fluids: Existence and regularity of steady flows, Mathematical Models and Methods in Applied Sciences, 15, 1845–1861, 2005
- P. Gwiazda, J. Málek and A. Świerczewska: On flows of an incompressible fluid with a discontinuous power-law-like rheology, Computers & Mathematics with Applications, 53, 531–546, 2007
- 8 M. Bulíček, P. Gwiazda, J. Málek and A. Świerczewska-Gwiazda: On steady flows of an incompressible fluids with implicit power-law-like rheology, accepted to Adv. Calculus of Variations 2008