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Viscosity at large pressure and shear rate

Viscosity and volume variation with pressure for squalane
(“representing a low viscosity paraffinic mineral oil”, S. Bair, Tribology Letters, 2006).
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Viscosity at large pressure and shear rate

Viscosity for SAE 10W/40 reference oil RL 88/1,
(partly) by Hutton, Jones, Bates, SAE, 1983.
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Incompressible fluids with viscosity depending
on pressure and shear rate

Mathematical formulation
inside (0,T )× Ω:

div vvv = 0

∂τvvv + div(vvv ⊗ vvv)− div SSS = −∇π + fff ,

SSS = 2 ν(π, |DDD(vvv)|2) DDD(vvv)

Problem well-posedness—first observations

ν = ν(π)

I M. Renardy, Comm. Part. Diff. Eq., 1986.

I F. Gazzola, Z. Angew. Math. Phys., 1997.

I F. Gazzola, P. Secchi, Navier–Stokes eq.: th. and num. meth. 1998.
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I Cauchy stress tensor TTT = −πIII + 2ν(π, |DDD|2)DDD, tr DDD = 0

I π is the mean normal stress, π = − 1
3 tr TTT ,

I implicitely constituted model

TTT − 1
3 (tr TTT )III − 2ν(− 1

3 tr TTT , |DDD|)DDD = 0

see Rajagopal, J. Fluid Mech., 2006 (and Málek, Rajagopal, 2006, 2007)
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∂τvvv + div(vvv ⊗ vvv)− div SSS = −∇π + fff ,

SSS = 2 ν(π, |DDD(vvv)|2) DDD(vvv)

Viscosity formulas used in applications

ν = ν(π, |DDD(vvv)|2) =

{
∼ exp(απ),

∼ (1 + |DDD(vvv)|2)
p−2

2 , 1 < p < 2
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Challenges

I the lubrication works and is used since before the invention of wheel

I the viscosity–pressure relation is present in the very basis of the theory of
elastohydrodynamic lubrication

I so why should we bother with mathematical theory now?

[Babuška, Strouboulis, 2007 book]:

I It is necessary to realize that the FEM is a numerical method for constructing
approximate solutions of a well defined mathematical problem. A necessary
prerequisite is that the mathematical problem has ’good’ properties: existence of
solutions, possibly uniqueness, continuous dependence on input data.

I Mathematical formulation is a simplification of reality, and the existence of
a physical solution which can be observed in an experiment, does not guarantee
that the solution of the mathematical problem exists and has the expected
properties following from physical intuition.
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elastohydrodynamic lubrication

I so why should we bother with mathematical theory now?

I lubrication is used everywhere (transportation, electricity production)

I any optimization can save energy consumption and prolongate the lifespan

I quantitative predictions are needed !
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lubricants

and it not clear at this time that full numerical solutions can even be obtained for heavily
loaded contacts using accurate models.

One central issue is the validity of Reynolds equation, derived under the isoviscous
assumption. . . ”

I Rajagopal, Szeri, Proc. R. Soc. Lond. A, 2003
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Incompressible fluids with viscosity depending
on pressure and shear rate

Mathematical formulation
inside (0,T )× Ω:

div vvv = 0

∂τvvv + div(vvv ⊗ vvv)− div SSS = −∇π + fff ,

SSS = 2 ν(π, |DDD(vvv)|2) DDD(vvv)

Problem well-posedness—first positive results

∂SSS

∂DDD
∼ (1 + |DDD|2)

p−2
2

∣∣∣∣∂SSS

∂π

∣∣∣∣ ≤ γ0 (1 + |DDD|2)
p−2

4 1 < p < 2

I Málek, Nečas, Rajagopal, Arch. Rational Mech. Anal., 2002.

I Hron, Málek, Nečas, Rajagopal, Math. Comput. Simulation, 2003.

I Málek, Rajagopal, Handbook of mathematical fluid dynamics, 2007.
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Incompressible fluids with viscosity depending
on pressure and shear rate

Mathematical formulation
inside (0,T )× Ω:

div vvv = 0

∂τvvv + div(vvv ⊗ vvv)− div SSS = −∇π + fff ,

SSS = 2 ν(π, |DDD(vvv)|2) DDD(vvv)

on the boundary (0,T )× ∂Ω = ΓD ∪ ΓN ∪ ΓP :
vvv ·nnn = 0 and −TTTnnn = σ vvv on ΓN

vvv = vvvDvvvDvvvD on ΓD if ΓP = ∅,
−TTTnnn = bbb(vvv) on ΓP then

´
Ω0
π dxxx = 0

I Buĺıček, Málek, Rajagopal, Indiana Univ. Math. J., 2007

I Buĺıček, Málek, Rajagopal, SIAM J. Math. Anal., 2009

M. Lanzendörfer (Charles University; ICS CAS) Incompressible piezoviscous fluids March 31, 2012 12 / 18



Incompressible fluids with viscosity depending
on pressure and shear rate

Mathematical formulation
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div vvv = 0

∂τvvv +
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SSS = 2 ν(π, |DDD(vvv)|2) DDD(vvv)

on the boundary ∂Ω = ΓD ∪ ΓN ∪ ΓP :
vvv ·nnn = 0 and −TTTnnn = σ vvv on ΓN

vvv = vvvDvvvDvvvD on ΓD if ΓP = ∅,
−TTTnnn = bbb(vvv) on ΓP then

´
Ω0
π dxxx = 0

I Franta, Málek, Rajagopal, Proc. Royal Soc. A, 2005

I Lanzendörfer, Nonlin. Anal.: Real World App., 2009
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Incompressible fluids with viscosity depending
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Mathematical formulation
inside Ω:

div vvv = 0

∂τvvv +

div(vvv ⊗ vvv)− div SSS = −∇π + fff ,

SSS = 2 ν(π, |DDD(vvv)|2) DDD(vvv)

on the boundary ∂Ω = ΓD ∪ ΓN ∪ ΓP :
vvv ·nnn = 0 and −TTTnnn = σ vvv on ΓN

vvv = vvvDvvvDvvvD on ΓD if ΓP = ∅,
−TTTnnn = bbb(vvv) on ΓP then

´
Ω0
π dxxx = 0

I Stebel & Lanzendörfer, Appl. Mat.–Czech., 2011

I Stebel & Lanzendörfer, Math. Comput. Simulat., 2011

I Hirn, Stebel & Lanzendörfer, IMA J. Num. Anal., 2012 (el.)
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Basic a priori estimates
Weak formulation

(q, div www)Ω = 0

([∇vvv ]vvv ,www)Ω + (SSS(π,DDD(vvv)),DDD(www))Ω − (π, div www)Ω = (fff ,www)Ω − (bbb(vvv),www) ΓP

Inf–sup inequality and the boundedness of ∂πSSS

0 < β ≤ inf
q∈Lp′

b.c.(Ω)

sup
www∈W1,p

b.c.(Ω)

(q, div www)Ω

‖q‖p′‖www‖1,p

Pressure and velocity uniquely determined?

β ‖π1 − π2‖2 ≤ ‖SSS1 − SSS2‖2 ≤ σ1 d(vvv 1,vvv 2) + γ0‖π1 − π2‖2
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([∇vvv ]vvv ,www)Ω +

(SSS(π,DDD(vvv)),DDD(www))Ω − (π, div www)Ω = (fff ,www)Ω − (bbb

(vvv)

,www) ΓP

Test eq. by solution

(SSS(π,DDD(vvv)),DDD(vvv))Ω ∼ |DDD(vvv)|p ± 1

=⇒
‖DDD(vvv)‖p ≤ K =⇒ ‖vvv‖1,p + ‖SSS‖p′ ≤ K
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Basic a priori estimates
Weak formulation

(q, div www)Ω = 0

([∇vvv ]vvv ,www)Ω +

(SSS(π,DDD(vvv)),DDD(www))Ω − (π, div www)Ω = (fff ,www)Ω − (bbb

(vvv)

,www) ΓP

Inf–sup inequality and the boundedness of ∂πSSS

0 < β ≤ inf
q∈Lp′

b.c.(Ω)

sup
www∈W1,p

b.c.(Ω)

(q, div www)Ω

‖q‖p′‖www‖1,p

Pressure uniquely determined by velocity?

β ‖π1 − π2‖p′ ≤ ‖SSS(π1,DDD(vvv))− SSS(π2,DDD(vvv))‖p′ ≤

∥∥∥∥∥
ˆ π2

π1

∂SSS(π,DDD(vvv))

∂π
dπ

∥∥∥∥∥
p′

≤ γ0 ‖π1 − π2‖p′ where

∣∣∣∣∂SSS

∂π

∣∣∣∣ ≤ γ0
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Motivation: hydrodynamic lubrication

Flow in a converging channel
Newtonian model ν = const
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Barus model ν = exp(απ), α = 0.306
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Motivation: hydrodynamic lubrication

Flow in a converging channel
Barus model ν = exp(απ), α = 0.3061
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Sensitivity on boundary data
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Conclusion

I mathematical theory being build succesfully for

∂SSS

∂DDD
∼ (1 + |DDD|2)

p−2
2

∣∣∣∣∂SSS

∂π

∣∣∣∣ ≤ γ0 (1 + |DDD|2)
p−2

4 1 < p < 2

I for |∂SSS/∂π| > 1 both the theory and the standard numerical approach fails

I is the model well-posed?

Thank you for your attention

M. Lanzendörfer (Charles University; ICS CAS) Incompressible piezoviscous fluids March 31, 2012 16 / 18
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Poiseuille flow

the pressure π the viscosity ν(p)

the velocity component vvv ·eeex the velocity component vvv ·eeey
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