Vít Průša
Academic and personal data
Links
List of publications
- Gazca-Orozco, P. A., Průša, V., and Tůma, K.: Numerical
approximation of a thermodynamically complete rate-type model for the
elastic--perfectly plastic response.
Z. Angew. Math. Mech., 104(2):e202300030, 2024.
10.1002/zamm.202300030.
- Cichra, D., Gazca-Orozco, P. A., Průša, V., and Tůma, K.: A
thermodynamic framework for non-isothermal phenomenological models of
isotropic Mullins effect.
Proc. R. Soc. A Math. Phys. Eng. Sci., 479(2272):20220614, 2023.
10.1098/rspa.2022.0614.
- Průša, V. and Trnka, L.: Mechanical response of elastic materials
with density dependent Young modulus.
Appl. Eng. Sci., 14:100126, 2023.
10.1016/j.apples.2023.100126.
- Průša, V., Rajagopal, K. R., and Wineman, A.: Pure bending of an
elastic prismatic beam made of a material with density-dependent material
parameters.
Math. Mech. Solids, 28(8):1546--1558, 2022.
10.1177/10812865221081519.
- Dostalík, M. and Průša, V.: Non-linear stability and
non-equilibrium thermodynamics--there and back again.
J. Non-Equilib. Thermodyn., 47(2):205--215, 2022.
10.1515/jnet-2021-0076.
- Pražák, D., Průša, V., and Tůma, K.: A note on parametric
resonance induced by a singular parameter modulation.
Int. J. Non-Linear Mech., 139:103893, 2022.
10.1016/j.ijnonlinmec.2021.103893.
- Dostalík, M., Průša, V., and Rajagopal, K. R.: Unconditional
finite amplitude stability of a fluid in a mechanically isolated vessel with
spatially non-uniform wall temperature.
Contin. Mech. Thermodyn., 33:515--543, 2021.
10.1007/s00161-020-00925-w.
- Dostalík, M., Průša, V., and Stein, J.: Unconditional finite
amplitude stability of a viscoelastic fluid in a mechanically isolated vessel
with spatially non-uniform wall temperature.
Math. Comput. Simulat., 189:5--20, 2021.
10.1016/j.matcom.2020.05.009.
- Bulíček, M., Málek, J, Průša, V., and Süli, E.: On
incompressible heat-conducting viscoelastic rate-type fluids with
stress-diffusion and purely spherical elastic response.
SIAM J. Math. Anal., 53(4):3985--4030, 2021.
10.1137/20M1384452.
- Dostalík, M., Matyska, C., and Průša, V.: Weakly nonlinear
analysis of Rayleigh--Bénard convection problem in extended
Boussinesq approximation.
Appl. Math. Comput., 408:126374, 2021.
10.1016/j.amc.2021.126374.
- Průša, V. and Tůma, K.: Temperature field and heat generation
at the tip of a cutout in a viscoelastic solid body undergoing loading.
Appl. Eng. Sci., 6:100054, 2021.
10.1016/j.apples.2021.100054.
- Průša, V. and Rajagopal, K. R.: Implicit type constitutive
relations for elastic solids and their use in the development of mathematical
models for viscoelastic fluids.
Fluids, 6(3), 2021.
10.3390/fluids6030131.
- Dostalík, M., Málek, J., Průša, V., and Süli, E.: A
simple construction of a thermodynamically consistent mathematical model for
non-isothermal flows of dilute compressible polymeric fluids.
Fluids, 5(3):133, 2020.
10.3390/fluids5030133.
- Cichra, D. and Průša, V.: A thermodynamic basis for implicit
rate-type constitutive relations describing the inelastic response of solids
undergoing finite deformation.
Math. Mech. Solids, 25(12):1081286520932205, 2020.
10.1177/1081286520932205.
- Cehula, J. and Průša, V.: Computer modelling of origami-like
structures made of light activated shape memory polymers.
Int. J. Eng. Sci., 150:103235, 2020.
10.1016/j.ijengsci.2020.103235.
- Průša, V., Rajagopal, K. R., and Tůma, K.: Gibbs free energy
based representation formula within the context of implicit constitutive
relations for elastic solids.
Int. J. Non-Linear Mech., 121:103433, 2020.
10.1016/j.ijnonlinmec.2020.103433.
- Dostalík, M., Průša, V., and Tůma, K.: Finite amplitude
stability of internal steady flows of the Giesekus viscoelastic rate-type
fluid.
Entropy, 21(12), 2019.
10.3390/e21121219.
- Bulíček, M., Málek, J., and Průša, V.: Thermodynamics
and stability of non-equilibrium steady states in open systems.
Entropy, 21(7), 2019.
10.3390/e21070704.
- Janečka, A., Málek, J., Průša, V., and Tierra, G.:
Numerical scheme for simulation of transient flows of non-newtonian fluids
characterised by a non-monotone relation between the symmetric part of the
velocity gradient and the Cauchy stress tensor.
Acta Mech., 230(3):729--747, 2019.
10.1007/s00707-019-2372-y.
- Tůma, K., Stein, J., Průša, V., and Friedmann, E.: Motion of
the vitreous humour in a deforming eye--fluid-structure interaction between a
nonlinear elastic solid and viscoleastic fluid.
Appl. Math. Comput., 335:50--64, 2018.
10.1016/j.amc.2018.04.030.
- Málek, J., Průša, V., Skřivan, T., and Süli, E.:
Thermodynamics of viscoelastic rate-type fluids with stress diffusion.
Phys. Fluids, 30(2):023101, 2018.
10.1063/1.5018172.
- Hron, J., Miloš, V., Průša, V., Souček, O., and Tůma,
K.: On thermodynamics of viscoelastic rate type fluids with temperature
dependent material coefficients.
Int. J. Non-Linear Mech., 95:193--208, 2017.
10.1016/j.ijnonlinmec.2017.06.011.
- Průša, V., Řehoř, M., and Tůma, K.: Colombeau
algebra as a mathematical tool for investigating step load and step
deformation of systems of nonlinear springs and dashpots.
Z. angew. Math. Phys., 68(1):1--13, 2017.
10.1007/s00033-017-0768-x.
- Řehoř, M., Průša, V., and Tůma, K.: On the response of
nonlinear viscoelastic materials in creep and stress relaxation experiments
in the lubricated squeeze flow setting.
Phys. Fluids, 28(10):103102, 2016.
10.1063/1.4964662.
- Janečka, A., Průša, V., and Rajagopal, K. R.:
Euler--Bernoulli type beam theory for elastic bodies with nonlinear
response in the small strain range.
Arch. Mech., 68:3--25, 2016.
- Průša, V. and Rajagopal, K. R.: On the response of physical systems
governed by nonlinear ordinary differential equations to step input.
Int. J. Non-Linear Mech., 81:207--221, 2016.
10.1016/j.ijnonlinmec.2015.10.013.
- Řehoř, M. and Průša, V.: Squeeze flow of a piezoviscous
fluid.
Appl. Math. Comput., 274(C):414--429, 2016.
10.1016/j.amc.2015.11.008.
- Yuan, Z., Průša, V., Rajagopal, K. R., and Srinivasa, A.:
Vibrations of a lumped parameter mass–spring–dashpot system wherein the
spring is described by a non-invertible elongation-force constitutive
function.
Int. J. Non-Linear Mech., 76:154--163, 2015.
10.1016/j.ijnonlinmec.2015.06.009.
- Perlácová, T. and Průša, V.: Tensorial implicit constitutive
relations in mechanics of incompressible non-Newtonian fluids.
J. Non-Newton. Fluid Mech., 216:13--21, 2015.
10.1016/j.jnnfm.2014.12.006.
- Souček, O., Průša, V., Málek, J., and Rajagopal, K. R.: On
the natural structure of thermodynamic potentials and fluxes in the theory of
chemically non-reacting binary mixtures.
Acta Mech., 225(11):3157--3186, 2014.
10.1007/s00707-013-1038-4.
- Janečka, A. and Průša, V.: The motion of a piezoviscous fluid
under a surface load.
Int. J. Non-Linear Mech., 60:23--32, 2014.
10.1016/j.ijnonlinmec.2013.12.006.
- Průša, V. and Rajagopal, K. R.: On models for viscoelastic
materials that are mechanically incompressible and thermally compressible or
expansible and their Oberbeck--Boussinesq type approximations.
Math. Models Meth. Appl. Sci., 23(10):1761--1794, 2013.
10.1142/S0218202513500516.
- Průša, V., Rajagopal, K. R., and Saravanan, U.: Fidelity of the
estimation of the deformation gradient from data deduced from the motion of
markers placed on a body that is subject to an inhomogeneous deformation
field.
J. Biomech. Eng., 135(8):081004, 2013.
10.1115/1.4023629.
- Průša, V. and Rajagopal, K. R.: A note on the modelling of
incompressible fluids with material moduli dependent on the mean normal
stress.
Int. J. Non-Linear Mech., 52:41--45, 2013.
10.1016/j.ijnonlinmec.2013.01.003.
- Průša, V. and Rajagopal, K. R.: On implicit constitutive relations
for materials with fading memory.
J. Non-Newton. Fluid Mech., 181--182:22--29, 2012.
10.1016/j.jnnfm.2012.06.004.
- Průša, V., Rajagopal, K. R., and Srinivasan, S.: Role of pressure
dependent viscosity in measurements with falling cylinder viscometer.
Int. J. Non-Linear Mech., 47(7):743--750, 2012.
10.1016/j.ijnonlinmec.2012.02.001.
- Průša, V. and Rajagopal, K. R.: Flow of an electrorheological fluid
between eccentric rotating cylinders.
Theor. Comput. Fluid Dyn., 26:1--21, 2012.
10.1007/s00162-011-0224-z.
- Průša, V. and Rajagopal, K. R.: A note on the decay of vortices in
a viscous fluid.
Meccanica, 46(4):875--880, 2011.
10.1007/s11012-010-9347-3.
- Průša, V. and Rajagopal, K. R.: Jump conditions in stress
relaxation and creep experiments of Burgers type fluids: A study in the
application of Colombeau algebra of generalized functions.
Z. angew. Math. Phys., 62(4):707--740, 2011.
10.1007/s00033-010-0109-9.
- Karra, S., Průša, V., and Rajagopal, K. R.: On Maxwell fluids
with relaxation time and viscosity depending on the pressure.
Int. J. Non-Linear Mech., 46(6):819--827, 2011.
10.1016/j.ijnonlinmec.2011.02.013.
- Hron, J., Málek, J., Průša, V., and Rajagopal, K. R.: Further
remarks on simple flows of fluids with pressure-dependent viscosities.
Nonlinear Anal.-Real World Appl., 12(1):394--402, 2011.
10.1016/j.nonrwa.2010.06.025.
- Málek, J., Průša, V., and Rajagopal, K. R.: Generalizations of
the Navier--Stokes fluid from a new perspective.
Int. J. Eng. Sci., 48(12):1907--1924, 2010.
10.1016/j.ijengsci.2010.06.013.
- Průša, V.: Revisiting Stokes first and second problems for fluids
with pressure dependent viscosities.
Int. J. Eng. Sci., 48(12):2054--2065, 2010.
10.1016/j.ijengsci.2010.04.009.
- Průša, V.: On the influence of boundary condition on stability of
Hagen--Poiseuille flow.
Comput. Math. Appl., 57(5):763--771, 2009.
10.1016/j.camwa.2008.09.043.
- Průša, V.: Sufficient conditions for monotone linear stability of
steady and oscillatory Hagen--Poiseuille flow.
SIAM J. Appl. Math., 67(2):354--363, 2007.
10.1137/060652506.
email: prusv@karlin.mff.cuni.cz
Mathematical Institute, Charles University
Sokolovská 83
Prague
CZ 186 75
Czech republic
Last modified: 4 April 2024