- 1. (Krull-Schmidt theorem for matrix representations) Let G be a group, \mathbb{F} a field. Recall that if $\psi_1: G \to \mathrm{GL}(m, \mathbb{F})$ and $\psi_2: G \to \mathrm{GL}(n, \mathbb{F})$, then $\mathrm{Hom}(\psi_1, \psi_2)$ is the set of all $n \times m$ matrices X for which $X\psi_1(g) = \psi_2(g)X, g \in G$.
 - a) Show that $\operatorname{Hom}(\psi_1, \psi_2)$ is a finite dimensional subspace of $\operatorname{M}_{n,m}(\mathbb{F})$.
 - b) Show that $\operatorname{Hom}(\psi_1, \psi_2)$ and $\operatorname{Hom}(\psi_1', \psi_2')$ are isomorphic if ψ_1 is equivalent to ψ'_1 and ψ_2 is equivalent to ψ'_2 .
 - c) Use Schur's lemma for irreducible matrix representations to show that if $\psi_1, \psi_2, \dots, \psi_k$ and $\psi'_1, \psi'_2, \dots, \psi'_\ell$ are irreducible representations of G over \mathbb{F} then $\psi_1 \oplus \cdots \oplus \psi_k$ and $\psi_1' \oplus \cdots \oplus \psi_\ell'$ are equivalent if and only if $k = \ell$ and there exists a permutation $\sigma \in S_k$ such that ψ_i and $\psi'_{\sigma(i)}$ are equivalent for every $i \in \{1, \dots, k\}$.

Solution: a) Let $X, Y \in \mathcal{M}_{n,m}(\mathbb{F})$ be such that $X\psi_1(g) = \psi_2(g)X$ and $Y\psi_1(g) = \psi_2(g)X$ $\psi_2(g)Y$ for every $g \in G$. Then $(X+Y)\psi_1(g) = \psi_2(g)(X+Y)$ for every $g \in G$. Similarly if $t \in \mathbb{F}$, then $(tX)\psi_1(g) = \psi_2(g)(tX)$. So $\operatorname{Hom}(\psi_1, \psi_2)$ is a subspace of $M_{n,m}(\mathbb{F})$. In particular, the dimension $Hom(\psi_1,\psi_2)$ is at most mn.

b) Let $X_1 \in GL(m,\mathbb{F})$ be a witness of the equivalence of ψ_1 and ψ'_1 and similarly let $X_2 \in GL(n,\mathbb{F})$ be a witness of the equivalence of ψ_2 and ψ_2' . In other words, $\psi_1(g)X_1 = X_1\psi_1'(g)$ and $\psi_2(g)X_2 = X_2\psi_2'(g)$ for every $g \in G$. Note that if $X \in \text{Hom}(\psi_1, \psi_2)$, then $X_2^{-1}XX_1 \in \text{Hom}(\psi_1', \psi_2')$:

$$X_2^{-1}XX_1\psi_1'(g) = X_2^{-1}X\psi_1(g)X_1 = X_2^{-1}\psi_2(g)XX_1 = \psi_2'(g)X_2^{-1}XX_1.$$

Similarly, if $X' \in \operatorname{Hom}(\psi_1', \psi_2')$ then $X_2 X' X_1^{-1} \in \operatorname{Hom}(\psi_1, \psi_2)$. Therefore assignments $X \mapsto X_2^{-1} X X_1$ and $X' \mapsto X_2 X' X_1^{-1}$ are mutually inverse isomorphisms between $\operatorname{Hom}(\psi_1, \psi_2)$ and $\operatorname{Hom}(\psi_1', \psi_2')$.

c) Fix an irreducible representation $\psi: G \to \mathrm{GL}(d,\mathbb{F})$. If $\psi': G \to \mathrm{GL}(d',\mathbb{F})$ is another irreducible matrix representation of G over \mathbb{F} , then $\operatorname{Hom}(\psi,\psi')=0$ if ψ and ψ' are not equivalent (Schur's lemma) and $\operatorname{Hom}(\psi,\psi')\neq 0$ if ψ and ψ' are equivalent (note that the matrix witnessing the equivalence is in $\operatorname{Hom}(\psi,\psi')$). Let e be the dimension of this space.

Assume that $\alpha := \psi_1 \oplus \cdots \oplus \psi_k$ and $\beta := \psi_1' \oplus \cdots \oplus \psi_\ell'$ are equivalent representations. Let d_i be a degree of ψ_i , $u := d_1 + \cdots + d_k$. Consider a matrix $X \in \mathcal{M}_{u,d}(\mathbb{F})$ as a column of k blocks, the i-th block is of size $d_i \times d$. Let X_1, \ldots, X_k denote these blocks, i.e., $X = (X_1, X_2, \ldots, X_k)^T$. Then $X \in$ $\operatorname{Hom}(\psi,\alpha)$ if and only if $X_i \in \operatorname{Hom}(\psi,\psi_i)$ for every $1 \leq i \leq k$. It follows that the space $\operatorname{Hom}(\psi, \alpha)$ is isomorphic to $\bigoplus_{i=1}^k \operatorname{Hom}(\psi, \psi_i)$. Therefore the dimension of $\operatorname{Hom}(\psi, \alpha)$ is e times the multiplicity of ψ in α .

Similarly $\operatorname{Hom}(\psi,\beta)$ is isomorphic to e times the multiplicity of ψ in β . Since α and β are equivalent, $\operatorname{Hom}(\psi,\alpha)$ and $\operatorname{Hom}(\psi,\beta)$ have equal dimensions (part b)), we conclude that the multiplicity of ψ in α is the same as the multiplicity of ψ in β . Since this holds for every irreducible representation of G over \mathbb{F} , $k=\ell$ and there exists a bijection $\sigma \in S_k$ such that ψ_i is equivalent to $\psi'_{\sigma(i)}$ for every

i (σ can be constructed considering sets $\{i \in \{1, \ldots, k\} \mid \psi_i \text{ is equivalent to } \psi\}$ and $\{i \in \{1, \ldots, \ell\} \mid \psi_i' \text{ is equivalent to } \psi\}$ for a fixed irreducible representation ψ ; since these sets are of the same size we can use some bijection between these sets to define σ on $\{i \in \{1, \ldots, k\} \mid \psi_i \text{ is equivalent to } \psi\}$, cf. also the next exercise).

Conversely, assume that $k = \ell$ and ψ_i equivalent to ψ_i' for every $1 \le i \le k$. Let $X_i \in \operatorname{GL}(d_i, \mathbb{F})$ be such that $X_i \psi_i(g) = \psi_i'(g) X_i$ for every $g \in G$. Let $X := \operatorname{diag}(X_1, X_2, \ldots, X_k)$ be a block diagonal matrix of size $d_1 + d_2 + \cdots + d_k$. Then $X\alpha(g) = \beta(g)X$ for every $g \in G$, where $\alpha = \psi_1 \oplus \cdots \oplus \psi_k$ and $\beta = \psi_1' \oplus \cdots \oplus \psi_k'$.

- 2. (Krull-Schmidt theorem for semisimple modules) Assume that R is a finite dimensional \mathbb{F} -algebra, \mathbb{F} algebraically closed. Let $S_1, S_2, \ldots, S_n, T_1, T_2, \ldots, T_m$ be simple (right) R-modules such that $S := S_1 \oplus S_2 \oplus \cdots \oplus S_n \simeq T_1 \oplus T_2 \oplus \cdots \oplus T_m =: T$. Let X be a simple right R-module.
 - a) Look at dimensions of $\operatorname{Hom}_R(X,S)$ and $\operatorname{Hom}_R(X,T)$ and show that $\{1 \leq i \leq n \mid S_i \simeq X\}$ and $\{1 \leq i \leq m \mid T_i \simeq X\}$ have equal cardinalities.
 - b) Show that n=m and there exists a permutation σ of $\{1,\ldots,n\}$ such that $S_i \simeq T_{\sigma(i)}$ for every $1 \le i \le n$.

Solution: If $f: S \to T$ is an isomorphism, then the assignment $\operatorname{Hom}_R(X,f)$: $\operatorname{Hom}_R(X,S) \to \operatorname{Hom}_R(X,T)$

$$\operatorname{Hom}_{R}(X, f): q \mapsto fq$$

is not only a homomorphism of abelian groups but also of \mathbb{F} -spaces (recall since R is an \mathbb{F} -algebra, $\operatorname{Hom}_R(X,T), \operatorname{Hom}_R(X,S)$ have defined structure of an \mathbb{F} -space and if $t \in \mathbb{F}$, then t(fg) and f(tg) both send $x \in X$ to t.[fg(x)]). Similarly if $\pi_i \colon S \to S_i$ is the projection to the i-th component of the direct sum, then $\operatorname{Hom}_R(X,\pi_i)\colon \operatorname{Hom}_R(X,S) \to \operatorname{Hom}_R(X,S_i)$ is \mathbb{F} -linear. The isomorphism of $\operatorname{Hom}_R(X,S) \to \oplus_{i=1}^n \operatorname{Hom}_R(X,S_i)$ given by

$$f \in \operatorname{Hom}_R(X, S) \mapsto (\pi_1 f, \pi_2 f, \dots, \pi_n f) \in \bigoplus_{i=1}^n \operatorname{Hom}_R(X, S_i)$$

is an isomorphism of vector spaces.

Now it is the time for Schur's lemma (for modules). If X and S_i are not isomorphic modules, $\operatorname{Hom}_R(X,S_i)=0$. If X and S_i are isomorphic, then $\operatorname{Hom}_R(X,S_i)$ has over $\mathbb F$ dimension 1. Therefore $\dim_{\mathbb F}(\operatorname{Hom}_R(X,S))=|\{1\leq i\leq n\mid X\simeq S_i\}|$.

Similarly we show $\dim_{\mathbb{F}}(\operatorname{Hom}_R(X,T)) = |\{1 \leq i \leq m \mid X \simeq T_i\}|$. Now a) follows from $\operatorname{Hom}_R(X,S) \simeq \operatorname{Hom}_R(X,T)$.

b) follows from a): Set $I = \{1, ..., n\}$, $J = \{1, ..., m\}$. We consider I as a set indexing $S_1, ..., S_n$ and J as a set indexing $T_1, ..., T_m$. Consider an equivalence relation \simeq on $I \dot{\cup} J$: Indices from this set are equivalent if the simple modules indexed by this indices are isomorphic. Apply a) to see that for each

equivalence class C of \sim is $|C \cap I| = |C \cap J|$. Then n = m and there is a bijection $\sigma: I \to J$ such that $i \sim \sigma(i)$ for every $i \in I$.

Remark: This proof of b) can be extended to (even infinite) direct sums of modules with local endomorphism rings, but it is rather categorical.

3. Assume that \mathbb{F} is algebraically closed G a finite group such that char \mathbb{F} does not divide |G|. Then we know that \mathbb{F} -algebras $\mathbb{F}G$ and $\mathrm{M}_{n_1}(\mathbb{F}) \times \cdots \times \mathrm{M}_{n_k}(\mathbb{F})$ are isomorphic for some $k, n_1, \ldots, n_k \in \mathbb{N}$. Observe that if we know such an isomorphism we also know all irreducible representations of G over \mathbb{F} .

Show that the converse is true: Assume that ψ_1, \ldots, ψ_k are all different irreducible matrix representations of G over \mathbb{F} up to equivalence, say $\psi_i \colon G \to \operatorname{GL}(n_i, \mathbb{F})$. Then the \mathbb{F} -linear map $\varphi \colon \mathbb{F}G \to \operatorname{M}_{n_1}(\mathbb{F}) \times \cdots \times \operatorname{M}_{n_k}(\mathbb{F})$ defined by

$$\varphi(\delta_q) = (\psi_1(g), \psi_2(g), \dots, \psi_k(g)), g \in G$$

is an isomorphism of \mathbb{F} -algebras.

Solution: Let $R := \mathrm{M}_{n_1}(\mathbb{F}) \times \cdots \times \mathrm{M}_{n_k}(\mathbb{F})$. Since φ is \mathbb{F} -linear, $\varphi(\delta_1) = 1_R$, $\varphi(\delta_g * \delta_h) = \varphi(\delta_g) \varphi(\delta_h), g, h \in G, \varphi$ is a homomorphism of \mathbb{F} -algebras. Note that $\dim_{\mathbb{F}}(R) = n_1^2 + \cdots + n_k^2 = |G|$, because ψ_1, \ldots, ψ_k is the list of all irreducible representations up to equivalence.

Since $\dim_{\mathbb{F}}(\mathbb{F}G) = |G| = \dim_{\mathbb{F}}R$, it is sufficient to prove that φ is a monomorphism. Asume, that $\varphi(\sum_{g \in G} t_g \delta_g) = 0$. This literally means that $\sum_{g \in G} t_g \psi_i(g) = 0$ for every $1 \leq i \leq k$. Every irreducible matrix representation of G over \mathbb{F} is equivalent to exactly one ψ_i . So we can conclude that for every irreducible representation $\omega: G \to \operatorname{Aut}_{\mathbb{F}}(V)$ of G over \mathbb{F} the relation $\sum_{g \in G} t_g \omega(g) = 0$ holds in $\operatorname{End}_{\mathbb{F}}(V)$. By the theorem of Maschke, every representation is equivalent to a direct sum of irreducible representations, so $\sum_{g \in G} t_g \theta(g) = 0$ is true for every $\theta \in \operatorname{Rep}_{\mathbb{F}}(G)$. Apply this observation to the regular representation of G over \mathbb{F} , that is, the representation $\operatorname{reg}: G \to \operatorname{Aut}_{\mathbb{F}}(\mathbb{F}G)$ corresponding to the module $\mathbb{F}G$. Recall $\operatorname{reg}(g): v \mapsto \delta_g * v$ for every $v \in \mathbb{F}G$. Therefore $(\sum_{g \in G} t_g \delta_g) * v = 0$ for every $v \in \mathbb{F}G$. Substitute $v = \delta_{1_G}$ and conclude $\sum_{g \in G} t_g \delta_g = 0$, therefore φ is indeed mono.