- 1. Let G be a finite group, $g \in G$. Show that $\chi_{\varphi}(g) \in \mathbb{R}$ for every $\varphi \in \text{Rep}_{\mathbb{C}}(G)$ of finite degree if and only if g and g^{-1} are conjugated.
- 2. A conjugacy class C is called self-inversive if $C=C^{-1}$. Show that the number of self-inversive conjugacy classes of G equals to the number of real valued rows in the character table of G over \mathbb{C} . (Hint: Let N be a 'normalized' character table of G over \mathbb{C} columns of the character table introduced in the lecture are scaled to have norm 1 in the standard Euclidean norm. Compute the trace of NN^T and also of N^TN .)
- 3. Let G be a finite group of odd order. Show that every irreducible representation of G over \mathbb{C} with real valued character is trivial (so the trivial representation is the only irreducible complex representation of G defined over \mathbb{R}).
- 4. (Burnside) Let G be a group of odd order, let k be a number of conjugacy classes in G. Show that $|G| \equiv k \pmod{16}$ (Hint: consider degrees of irreducible representations modulo 8.)

Remark: The character theory can be used to decide whether an irreducible complex representation of a finite group G is defined over \mathbb{R} . If $\psi \colon G \to \operatorname{GL}(d,\mathbb{C})$ is an irreducible matrix representation of G over \mathbb{C} , its Frobenius-Schur indicator is defined as $\operatorname{fs}(\psi) := \frac{1}{|G|} \sum_{g \in G} \chi_{\psi}(g^2)$. Its value is always 0,1 or -1. If χ_{ψ} is not real-valued, then $\operatorname{fs}(\psi) = 0$ and,of course, ψ cannot be defined over \mathbb{R} . If χ_{ψ} is real-valued, then $\operatorname{fs}(\psi) \in \{1, -1\}$ and $\operatorname{fs}(\psi) = 1$ if and only if ψ is defined over \mathbb{R} . The proof of this result is more involved than the homework problems listed on this page.