Homework # 1 - Complex representations of dihedral groups

For $n \geq 3$ we denote D_{2n} the group of symmetries of n-sided regular polygon (note that $|D_{2n}| = 2n$, in the literature you can find also a different notation).

Looking at the action of D_{2n} on the set of vertices of the regular n-gon we can describe this group as the subgroup of the symmetric group $S(\{0,1,2,\ldots,n-1\})$ with underlying set $\{r_0,r_1,\ldots,r_{n-1},s_0,s_1,\cdots,s_{n-1}\}$, where

$$r_i: x \mapsto x + i \mod n; i \in \{0, 1, \dots, n - 1\}$$

$$s_i: x \mapsto i - x \mod n; i \in \{0, 1, \dots, n - 1\}$$

This group can be also described using generators and relations as

$$D_{2n} = \langle x, y \mid x^n = 1, y^2 = 1, yxy = x^{-1} \rangle$$
.

- 1. Find conjugacy classes in D_{2n} and deduce how many (up to equivalence) different irreducible representations of D_{2n} over \mathbb{C} exists.
- 2. Find $[D_{2n}, D_{2n}]$ and use it to describe all degree one complex representations of D_{2n} .
- 3. Find all irreducible complex representations of D_{2n} up to equivalence and compute their characters. Don't forget to verify that these representations are indeed irreducible.
- 4. Prove or disprove $\mathbb{Q}D_8 \simeq \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times M_2(\mathbb{Q})$ as \mathbb{Q} -algebras.