Homework # 2 - An alternative approach to the decomposition of the regular representation

Let G be a group, \mathbb{F} a field and $\varphi: G \to \operatorname{GL}(d, \mathbb{F})$ a matrix representation of G over \mathbb{F} . Recall that for each $1 \leq i, j \leq d$ there is a function $\varphi_{i,j}: G \to \mathbb{F}$ such that for any $g \in G$ is $\varphi(g) = (\varphi_{i,j}(g))_{1 \leq i,j \leq d}$ (these functions are called coordinate functions of φ).

Let $V = \{f \mid f \colon G \to \mathbb{F}\}$ be the vector space of all \mathbb{F} -valued functions on G, with point-wise \mathbb{F} -linear structure:

$$f_1 + f_2 : g \mapsto f_1(g) + f_2(g), (tf) : g \mapsto tf(g), g \in G, t \in \mathbb{F}, f_1, f_2, f \in V.$$

Given a matrix representation φ we define the space $M(T) \subseteq V$ as the subspace of V generated by the coordinate functions of G, i.e.,

$$M(\varphi) := \langle \{ \varphi_{i,j} \mid 1 \leq i, j \leq d \} \rangle$$
.

- a) Show that if φ and φ' are equivalent representations of G over \mathbb{F} , then $M(\varphi) = M(\varphi')$.
- b) For a given a matrix representation $\varphi: G \to \mathrm{GL}(d, \mathbb{F})$, consider a map $\mu: \mathrm{M}_d(\mathbb{F}) \to V$ given by $\mu(C): g \mapsto \mathrm{Tr}(C\varphi(g)), C \in \mathrm{M}_d(\mathbb{F})$. Show that μ is an \mathbb{F} -linear map with image $M(\varphi)$.

Let us define two representations of $G \times G$ over \mathbb{F} :

- $R: G \times G \to \operatorname{Aut}_{\mathbb{F}}(V)$ given by $[R(g_1, g_2)](f) = (g_1, g_2) * f$, where $(g_1, g_2) \in G \times G$, $f \in V$ and $[(g_1, g_2) * f](g) = f(g_2^{-1}gg_1)$.
- $L: G \times G \to \operatorname{Aut}_{\mathbb{F}}(M_d(\mathbb{F}))$ given by

$$L(g_1, g_2): X \mapsto \varphi(g_1) X \varphi(g_2^{-1}), X \in \mathcal{M}_d(\mathbb{F})$$

Note that the representation L of $G \times G$ is constructed from a representation φ of G.

- c) Verify that R and L are representations of $G \times G$ over \mathbb{F} and that $M(\varphi)$ is an R-invariant subspace.
- d) Let $U = \mathbb{F}^d$ and $\psi : G \to \operatorname{Aut}_{\mathbb{F}}(U)$ a linear representation given by φ , that is, $\psi(g)(u) := \varphi(g) \cdot u$ for $g \in G$ and $u \in U$. Let $U^* = \operatorname{Hom}_{\mathbb{F}}(U, \mathbb{F})$ be the dual space of U and $\psi^* : G \to \operatorname{Aut}_{\mathbb{F}}(U^*)$ the contragradient representation of ψ (see the first problem session). Show that L is equivalent to $\psi \otimes \psi^*$ where $\psi \otimes \psi^* : G \times G \to \operatorname{Aut}_{\mathbb{F}}(V \otimes V^*)$ is a representation of $G \times G$ acting on $V \otimes V^*$ via $\psi \otimes \psi^*(g_1, g_2) = \psi(g_1) \otimes \psi^*(g_2)$.
- e) Show that μ is a homomorphism from L to R, that is $\mu([L(g_1, g_2)](X)) = R(g_1, g_2)(\mu(X))$ for every $g_1, g_2 \in G$ and $X \in M_d(\mathbb{F})$.

- f) Now assume that G is finite, \mathbb{F} algebraically closed and $\operatorname{char}(\mathbb{F})$ does not divide |G|. Show that if φ is irreducible, then L is irreducible and $\dim_{\mathbb{F}}(M(\varphi)) = d^2$.
- g) (do it only if you want) Assume G finite and \mathbb{F} is algebraically closed of characteristic 0. Show that if $\varphi_1, \ldots, \varphi_k$ are pair-wise non-equivalent representations of G over \mathbb{F} then $M(\varphi_1), \ldots, M(\varphi_k)$ are independent subspaces of V.