Let $n \in \mathbb{N}$, $\lambda \vdash n$.

(1) Recall the definition of polytabloid associated to a tableau $t \in X^{\lambda}$.

$$e_t = \sum_{\pi \in C_t} \operatorname{sgn}(\pi)[\pi * t].$$

Show that all the tabloids in the sum are mutually different, i.e., if $\pi \neq \sigma \in C_t$ then $[\pi * t] \neq [\sigma * t]$.

(2) Let M^{λ} be a \mathbb{C} -space with basis T^{λ} , where T^{λ} is the set of all tabloids of shape λ . Recall the representation φ^{λ} of S_n acting of M^{λ} via

$$\varphi^{\lambda}(\pi) = \varphi^{\lambda}_{\pi} : [t] \mapsto [\pi * t], [t] \in T^{\lambda}.$$

Further let $\langle -, - \rangle$ be the scalar product on M^{λ} such that $\langle [t], [s] \rangle = \delta_{[t], [s]}$ for $[s], [t] \in T^{\lambda}$. For a λ -tableau $t \in X^{\lambda}$ consider the operator

$$A_t := \sum_{\pi \in C_t} \operatorname{sgn}(\pi) \varphi_{\pi}^{\lambda} \in \operatorname{End}_{\mathbb{C}}(M^{\lambda}).$$

Show that for every $u, v \in M^{\lambda}$ is $\langle A_t(u), v \rangle = \langle u, A_t(v) \rangle$.

(3) Let $\mu \vdash n$ and let $\psi^{\mu}: S_n \to \operatorname{Aut}_{\mathbb{C}}(S^{\lambda})$ be the Specht's representation of S_n associated to μ . Show that if the multiplicity of ψ^{μ} in φ^{λ} is nonzero, then $\mu \trianglerighteq \lambda$.

For practical computations with Specht's representations the following result can be useful:

Definition: A λ -tableau is called *standard* if the sequence of numbers in any row and in any column of t is increasing. For example, if n=4 and $\lambda=(2,2)$ there are only two standard tableaux of shape λ , namely

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$

Theorem: Let $n \in \mathbb{N}$, $\lambda \vdash n$. Let $Y^{\lambda} \subseteq X^{\lambda}$ be the set of all standard tableaux of shape λ . The space S^{λ} , i.e. the subspace of M^{λ} generated by all polytabloids associated to elements of X^{λ} , has basis $\{e_t \mid t \in Y^{\lambda}\}$, in particular $\dim_{\mathbb{C}}(S^{\lambda}) = |Y^{\lambda}|$.

(4) Let $n=5, \lambda=(3,2)$. Compute the character of ψ^{λ} . For every $\mu \vdash n$ determine the multiplicity of ψ^{μ} in φ^{λ} (it can be easier to find the multiplicities first).