Group representations 1

Elementary results on finite groups proved via representation theory

May 18, 2021

Every group of order p^2 is abelian

Proposition

If $p \in \mathbb{P}$, then every group of order p^2 is commutative.

Outline of a standard proof: If G is a group such that G/Z(G) is cyclic, then G has to be abelian. If G is a group of order p^2 and not abelian, then (|G/Z(G)| = p and hence G/Z(G) is cyclic. Then G has to be abelian.

A proof via complex representations of G

The proof using complex representations of finite groups can look like this: Assume G is not abelian, let $\varphi_1,\ldots,\varphi_k\in\operatorname{Rep}_{\mathbb C}(G)$ be a list of all different complex irreducible representations of G up to equivalence. Since G is not trivial, k>1. If d_i is the degree of φ_i , then, because of the degree theorem, $d_i\in\{1,p,p^2\}$. On the other hand, $\sum_{i=1}^k d_i^2=|G|=p^2$. So k>1 implies $d_i\in\{1\}$, for every i. It follows that G has no irreducible representation over $\mathbb C$ of degree >1, hence G is abelian.

Groups of order pq

Proposition

Every group of order pq, where p < q are primes and $q \not\equiv 1 \bmod p$ is commutative.

Outline of the standard proof: Let G be a group of order pq, P its Sylow p-subgroup and Q its Sylow q-subgroup. Since $(q+1)(q-1)+1=q^2>pq$, Q has to be normal. Since $P\cap Q=1$, G is a semidirect product of P and Q. Such a product can be costructed from P,Q and a homomorphism $f\colon P\to \operatorname{Aut}(Q)$. Now $P\simeq \mathbb{Z}_p, Q\simeq \mathbb{Z}_q$, $\operatorname{Aut}(Q)\simeq \mathbb{Z}_{q-1}$. Hence either f is trivial or $p=|\mathrm{Im}\ f|$ divides $q-1=|\mathrm{Aut}(Q)|$. The latter is not possible because of the assumption $q\not\equiv 1 \mod p$, so f is trivial. That is, the semidirect product is actually a product and $G=P\times Q$ is commutative.

Proof using complex representations

As in the first exercise we consider $\varphi_1, \ldots, \varphi_k \in \operatorname{Rep}_{\mathbb{C}}(G)$ a complete list of all different irreducible representations of G over $\mathbb C$ up to equivalence. If d_i is the degree of φ_i , then $d_i \in \{1, p, q, pq\}$ by the degree theorem. Since $\sum_{i=1}^k d_i^2 = |G| = pq$, each d_i has to be either 1 or p. Assume G is not commutative, so $[G, G] \neq 1$. The number of degree 1 representations in the list is G is [G:[G,G]]. Note that [G:[G,G]] cannot be 1, since in this case $1+(k-1)p^2=pq$ cannot hold for any $k\in\mathbb{N}$. Similarly, [G:[G,G]] cannot be q, since $q+(k-q)p^2=pq$ implies $q(1-p^2) = p(q-kp)$ where the left hand side is a product of two numbers coprime to p. Finally, if [G : [G, G]] = p, then $p + (k - p)p^2 = pq$ implies $1 + kp - p^2 = q$ and hence p|(q - 1).

Every finite p-group has nontrivial center

Proposition

Proof: The classical argument is easy: Consider G as $G = \bigcup_{i=1}^k C_i$, the union of conjugacy classes of G. Size of each C_i is either 1 (in this case $C_i \subseteq Z(G)$) or divisible by p. Then $|G| = \sum_{i=1}^k |C_i|$ shows that there exists i such that $C_i \neq \{1_G\}$ and $|C_i| = 1$.

First let us show that every finite p-group is solvable: If $\varphi_1,\ldots,\varphi_k\in\operatorname{Rep}_{\mathbb C}(G)$ is a complete list of all different irreducible representations of G up to equivalence, d_i is the degree of φ_i . The trivial representation is of degree 1 and if $d_i>1$, then $p|d_i$. From $\sum_{i=1}^k d_i^2=|G|=p^l$ we see that there exists a nontrivial representation of degree 1. The kernel of this representation contains [G,G], since the image of this representation is abelian. Thus for every finite p-group G, $[G,G]\neq G$ holds. Then every finite p-group is solvable.

Now we can prove that every finite p-group has a nontrivial center in a rather bizarre way. Assume there exists a finite p-group with trivial center. Let G be such a group of the smallest possible order. Since G is solvable, it has a normal subgroup N with [G:N]=p. Note that $1 \neq Z(N)$ and Z(N) is a characteristic subgroup of N (this means that $\alpha(Z(N)) \subseteq Z(N)$ for every $\alpha \in \operatorname{Aut}(N)$). Let S be the socle of Z(N), that is, $S = \{g \in Z(N) \mid g^p = 1\}$. Then S is a characteristic subgroup of N and as a group, $S \simeq \mathbb{Z}_p^t$ for some $t \in \mathbb{N}$.

Now consider a group homomorphism $\varphi\colon G\to \operatorname{Aut}(S)$ given by $\varphi(g)\colon s\mapsto gsg^{-1}$. Since S has a natural vector space structure over the field \mathbb{F}_p , we can consider S as an \mathbb{F}_p -vector space. Moreover, $\operatorname{Aut}(S)=\operatorname{Aut}_{\mathbb{F}_p}(S)$. So $\varphi\in\operatorname{Rep}_{\mathbb{F}_p}(G)$. Note that $N\subseteq\operatorname{Ker}\varphi$. So either $\operatorname{Ker}\varphi=N$ or $\operatorname{Ker}\varphi=G$. If $\operatorname{Ker}\varphi=G$ holds, then $S\subseteq Z(G)$. Which is not possible. Assume $\operatorname{Ker}\varphi=N$. Let $\pi\colon G\to G/N$ be the canonical projection and let $\psi\colon G/N\to\operatorname{Aut}_{\mathbb{F}_p}(S)$ be the homomorphism such that $\varphi=\psi\pi$. So ψ is a representation of $G/N\simeq\mathbb{Z}_p$ over the field \mathbb{F}_p .

Now use the connection between $\operatorname{Rep}_{\mathbb{F}_p}(G/N)$ and $\mathbb{F}_p(G/N)$ - Mod and the fact that $\mathbb{F}_p(G/N) \simeq \mathbb{F}_p[x]/(x^p-1)$ as \mathbb{F}_p -algebras. The ring $R = \mathbb{F}_p[x]/(x^p - 1)$ is local, so every simple R-module is isomorphic to R/m, where m is the maximal ideal of R. Note that for every $\overline{r} \in R/m$ the relation $\overline{r} = x\overline{r}$ holds, since $m = (x-1)/(x^p-1)$. Moreover, the ring is artinian, so every finitely generated R-module is artinian and, in particular, contains a simple submodule. When translated to $\operatorname{Rep}_{\mathbb{F}_n}(G/N)$ we get that every irreducible representation of G/N over \mathbb{F}_p is trivial and that every representation of G/N finite degree contains an invariant subspace on which the action of G/N is trivial. Apply this to ψ : There exists $s \in S$ such that $|\langle s \rangle| = p$ and $\psi(gN)(s) = s$ for every $g \in G$. Then $[\varphi(g)](s) = [\psi(gN)](s) = s$, so $gsg^{-1} = s$. Then $s \in Z(G)$ a contradiction again.